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This paper describes a variation of the
conventional two-pass explicit Adams-
Moulton predictor-corrector integration
methods which is suitable for real-time
simulation. In this new method the first
pass through the state equations uses an
Adams-Bashforth type of predictor algo-
rithm to compute an estimate of the state at
the n+1/2 frame instead of the n+1 frame, as
is customary. This estimate is then used to
compute the derivative at the n+1/2 frame
which, along with derivatives at the n, n-1,
n-2, ... frames is used in the final corrector
pass to calculate the state at the n+1 frame.
Unlike conventional two-pass Adams-
Moulton methods, these new versions are
compatible with real-time inputs. The paper
shows that they are also superior based on
dynamic accuracy measures and stability
measures. A three-pass predictor-corrector
integration algorithm compatible with real-
time inputs is also presented and shown to
yield significantly more accurate results
than 3rd-order RK (Runge-Kutta) integra-
tion.

Introduction

One of the methods sometimes considered as a candidate
for numerical integration of ordinary differential equations is
the two-pass explicit Adams-Moulton algorithm. In this
method the first pass through the state equations in the nth
integration frame utilizes an Adams-Bashforth predictor
formula to compute an estimate of the state at the n+1 frame.
In the second pass this estimate is used for the n+1 derivative
in theimplicit Adams-Moulton formula to compute the
corrected n+1 state. Two-pass explicit Adams-Moulton
algorithms of this type exhibit asymptotic accuracy equal to
that of implicit Adams-Moulton methods, which can be
significantly better than the asymptotic accuracy of Adams-
Bashforth corrector methods of the same order [Howe 1985].
Yet the AB (Adams-Bashforth) methods are more popular for
real-time digital simulation than the AM (Adams-Moulton)
methods. This is primarily because the AB methods are
compatible with real-time inputs, whercas the AM methods
are not. In this paper we introduce a variation of the two-
pass predictor-corrector method which is compatible with
real time inputs. It also turns out to be more accurate than the
traditional AM methods and has a slightly larger stability
region in the Ak plane, where 4 is an eigenvalue of the system
being simulated and k is the step size used in the numerical
integration.

In the next section we review the standard two-pass AM
predictor-corrector algorithms and present the asymptotic
formulas for the dynamic errors associated with the algo-
rithms. In the following sections we present the new real-
time predictor-corrector algorithms and show from asymp-
totic error formulas that they offer improved dynamic
accuracy in addition to real-time compatibility. The Ak-plane
stability boundaries for both standard and real-time predic-
tor-corrector methods are also compared. Finally, a three-
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pass predictor-corrector integration algorithm compatible
with real-time inputs is presented and shown to yield more
accurateresults than 3rd-order RK (Runge-Kutta) integration.

Two-pass Explicit Adams-Moulton Algorithms

Assume that the dynamic system being simulated is
represented by the following differential equation:

X= d = F[X,U(t)] (D

Here X isthe state vector and U(#) is the explicit input
vector. The second-order two-pass AM predictor-corrector
algorithm (hereafter designated as AM-2) employs the
following formulas:

F,=FX,U), X . = X, +h3F,-1F,)

n+1

+F) )

Here X = X(nh) and U, = U(nh), where the integer n
represents the integration step or frame index and h is the
integration step size. In the first pass through the state
equations the derivative F is computed using X and U_ This

is followed by the calculation of X , which is the estimate
for X_ , based on the AB-2 predlctor formula In the second

pass F , is computed using X .and U__. Thisis followed
by the corrector calculation of X usmg trapezmdal mtegra-

tion. Note that (2/2)(3Fn - F, ) in the formula for X .
represents the area undera finear extrapolation from t = nh to

(n+1)h based onF and F ;(h/2)(F  +F)in theformula for
X, ,,represents the area under the trapezoid based on a linear
interpolation between F_and F_,. It is straightforward to
show that dynamic errors associated with the AM-2 integra-
tion algorithm are proportional to-h*/12 [Howe 1985].

For AM-3, the third-order predictor-corrector algorithm,
the predictor and corrector passes are based on quadratic
extrapolation and interpolation, respectively. This leads to
the following formulas:

X, =X, +L(3F -16F  +5F,,)
12 n n n-,

X, =X +8GF +8F-F ) &)
12 n

HercF and F _, aredefined as inEq.(2). Thedynamic
errors for AM-3 integration are proportional to -/ /24.

For AM-4 integration the predictor and corrector passes are
based on cubic extrapolation and interpolation, respectively.
This leads to the formulas

~

X, =X, +L (55F -59F  +37F_,-9F,)
n 24 n n n n-.
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X=X, +ko F_ +19F -5F, +F.) @

Again F_and ?m are defined as in Eq. (2). The dynamic
errors for AM-4 integration are proportional to -1 9ht/720.

Dynamic Error Measures for Integration Algorithms

In this section we introduce methods for determining the
dynamic errors associated with integration algorithms in
general. We begin by considering the solution of the state
equationdx/dt = f(t) using a numerical integration formula
for x__ in terms of x_and the derivative f. We let x[(n+1)h]
and x[nh] represent the exact solution of the continuous
system at the times ¢ = (n+1)h and nh, respectively. From the
appropriate Taylor series expansions we obtain a formula for
x_,, -X, which takes the following form [Gear 1971]:

%, - x = A(n+Dh] - xlnh] - e f PR ®)

Here the term -¢,f ®1** represents the local truncation error
associated with the integration method of order kand f % is
the kth time derivative of fat t = nh. For example, k=1and ¢,
=1/2 for Euler integration; for trapezoidal integration k =2
and e, =-1/12. To develop formulas for the global truncation
error we use the method of Z transforms [Gilbert 1966].
Taking the Z transform of Eq. (5) and dividing by z-1, we
obtain

k+ 1k R .
X(2)= X 22) - Mlﬁ | ©
Z_

Here X _*(z)is the Z transform of the exact solution, x[nh].
Next we consider the case of sinusoidal data sequences by
replacing z with e*%. We also note that F**(e™") = (juw)"F*(e™"),
i.e., the Fourier transform of the kth derivative of a function is
equal to the Fourier transform of the function multiplied by
(jw)t. After dividing the resulting expression by F¥, we have

XE™ _ Xt (e7)
P~ pfgmn)

The term X*/F* is simply the sinusoidal transfer function,

H*e #k), of the numerical integrator. The term X_ */ =1/
j, the transfer function of an ideal integrator. If we now
approximate e #*-1 by jwh, Eq. (8) becomes the following:

e Hjwh)

e ]

@

1- -€r (]wh)" 1
jo ]cdl +e (jwh)t

H*(el™) = , jwh<<1 ®)

Eq. (8) represents a transfer function model which canbe
used for each numerical integrator. Thus jwassociated with
the ideal integrator is replaced by jeX1+ E) for the numerical
integrator, where the integrator error E is given by

E = ¢, (jwh)* ©)

Again, ¢, is the integrator error coefficient and k is the
algorithm order. Toillustrate the application of this integra-



tor transfer function model, we consider numerical simula-
tion of the simple first-order linear system with the differen-
tial equation

x=Ax +u(t) (10)
with transfer function H(s) given by

H(s) = X0 _
ue)

a (11
s—A

The transfer function H(jw) for sinusoidal inputs for the
continuous system is

H(jw) = —1 (12)
jo+i

We obtain the equivalent transfer function when using
numerical integration by replacing jw with jw[1-+e, (jwh)*].
Thus the digital transfer function is given approximately by

Ay — 1
jel e Gao)* ] = &

,wh << 1 (13)

Replacing join Eq. (13) with A%, we obtain simply

Hey=— 1 (14)
M1+ ] -2

Here the values of A* which make the denominator of
H*(e*) vanish are the equivalent characteristic roots of the
digital system. Thus we have A*=A[1-¢(A*h}]. Noting that
A*z=A when |Akl <<1, we can write the following approxi-

mate formula for e, the fraction error in the characteristic root
A

e,= XA = o An)k, IAhI<<I (15)
A

Eq. (15) holds for complex as well as real A and therefore
represents a general formula for the characteristic root errors
in simulation of any order linear systern using an integration
algorithm of order k with a known error coefficiente,, Note
that the formula derivation is based on the replacement of jo
with je{1+ e (jwh)*} in the linear system transfer function
H(jw) to obtain the digital transfer function H*(e #*). This
procedure is valid only for single-pass integration algorithms
or for multiple-pass algorithms where the derivates used in
the final pass are based on state-variable estimates obtained
with integration algorithms of the same order k as the multi-
pass algorithm. This is because the local truncation error
associated with intermediate state estimates is of order k+1,
which in turn means that Eq. (8) is a valid model for integra-
tion of both the state X as well as the input U. Thus the
substitution procedure works for the single-pass AB predictor
and two-pass AM predictor-corrector methods considered
here. It does not work for RK methods, where lower-order
methods, i.e,, Euler integration, are used for intermediate

stateestimates.

We next consider the derivation of approximate formulas
for transfer function gain and phase errors. From Eq. (13) we
canwrite

H¥(e) = . = Hja)1- 12 e Gjuwoh)¥
Gjeo- A1+ Gwh) / Geo- D jod
or
jarh ;
™) 122 12 (o, oh<<t 16)
Hj) joh

Here H*/H - 1 is a complex number that represents the
fractional error in digital transfer function. For wh << 1 it will
have a magnitude which is small compared with unity. In
this case it is easy to show that the real partof H*/H-1is
approximately equal to the fractional error in transfer
function gain, which we denote as e, and the imaginary part
is approximately equal to the phase error, which we denote as
e, [Howe 1985]. To obtain H*/H - 1in the form e¢,, +je, we
must rationalize the right side of Eq. (16), which means that
the general form of the equations for e,, and ¢, will depend on
whether k is even or odd.

Note that the transfer function for any order linear system
can be represented as the product of factors 1/(s + 1 ) asin
Eq. (11) that result from the transfer-function poles, A ,
multiplied by factors of the form (1 + A ) that result from the
transfer function zeros, A . We have noted above that Eq. (16)
can be used to calculate tf1e gain and phase crrors associated
with each of the first-order pole factors. For zero factors
corresponding to the reciprocal of Eq. (11) the gain and phase
errors are simply the negative of those given by the real and
imaginary parts of H*/H - 1in Eq. (16), respectively. It
follows that the overall digital transfer function gainand
phase errors are just the sum of the gain and phase errors,
respectively, associated with the individual pole and zero
factors of H(s). Thus Eq. (16) can be used to determine quite
easily the transfer function gain and phase errorsasa
function of input frequency wand step size k in digital
simulation of any linear system. We only need to know the
order k and error coefficient e, associated with the integration
algorithm used for the simulation.

In this section, then, we have shown how Eq. (15) can be used
to determine characteristic root errors and Eq. (16) to determine
transfer function gain and phase errors when simulating linear
systems. The former is directly related to transient dynamic
errors and the latter to dynamic response errors. Since nonlinear
systems in general can often be approximated by linear systems
using perturbations with respect to a reference or steady-state
solution, the formulas presented here can be used to estimate the
dynamicaccuracy in simulating nonlinear systems. In particular,
they can be used to compare the relative accuracy of different
integration methods as reflected by the integrator error coeffi-
ciente, and the order kassociated with each method.

The Real-time Predictor-corrector Algorithms

The AM predictor-corrector algorithms represented by Egs.
(2), 3) and (4) are all two-pass methods, i.e. they require two

SEPTEMBER 1991 SIMULATION 179



(2), (3) and (4) are all two-pass methods, i.e. they require two
evaluations of the state-variable derivative F for each
integration step. The evaluation of F_ in the first pass requires
theinput U . If Uis an external input in a real-time simula-
tion, then U_can be available at the beginning of the nth
integration step. However, the evaluationof F_, in the
second pass requires U_ ,, which will not yetbe availableina
real time simulation when U is an external real-time input.
This is because computation of the output state X must be
completed prior to t = (n+1)h. This in turn means that U, as
needed for the second pass must be available well in advance
of t = (n+1)h, usually about one-half frame ahead of time.
Thus the AM algorithms are not compatible with real-time
inputs in a real-time simulation.

The way around this problem in predictor-corrector
methods is to use the predictor pass to compute an estimate

of X . P rather than X . The estimate X, 18 then used to
compute the derivative estimate F, .. Thisderivativealso

requires the input U__ ., which now can be available in real
time, since itis needed i’\alfway through the integration step.

X.,., is then computed using a corrector passbasedon F o1/
F , F, . etc. For thereal-time predictor-corrector algorithm of
order 2, hereafter referred to as RTAM-2, the formulas
become the following:

F=FX,U), X

n+1/2

=X +BGF -F )
8

u

n+1/2 ne1/2 n+1/2) ’ Xm =X, + thn/z (17)

F =KX

Here the term (4/8)(SF -F, ) in the predictor formula for

—~

X .12 represents the area under a linear extrapolation from ¢

= nhto (n+1/2)hbased on F, and F_,. The corrector pass for

computing X, uses the derivative estimate F, , , halfway
through the frame in a modified Euler or rectangular formula
[Smith 1977, Howe 1988]. It is interesting to note that the
dynamic errors associated with this RTAM-2 integration are
proportional to h*/24 compared with -h?/12 for standard AM-
2 integration, i.e. twice as accurate. This results from an
integrator error coefficient given by e, = 1/24 for RTAM-2
integration.

If Euler integration with a step size of k/2 is used for the
first pass in Eq. (17), the formulas become the following;

F =FX,U), X

n+1/2

=X +kF
2

F,.,=KX_ U X,,=X,+hF

n+1/2 n+1/2° nol/Z) ’ ne n+1/2

[18]

Eq. (18) is a version of second-order Runge-Kutta integration
sometimes called RTRK-2 because of its compatibility with
rcal-time inputs U. For this integration method the asymp-
totic formula for the characteristic root error, when compared
with Eq. (15), indicates an integrator error coefficient ¢, = h*/6,
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compared with #?/24 for RTAM-2. This lower accuracy
results from the larger error associated with the use of first-
order Euler integration rather than the second-order predictor

for the computation of X172

For RTAM-3 the predictor estimateof X__ , is based on the
areafrom t=nhtot = (n+1/2)hunder a quac{ratic approxima-
tion for F(t) which passes throughF  F_ and F_,. Thisis
followed by the corrector formula for X, which is based on
the area from t = nh to t = (n+1)h under a quadratic approxi-

mation for F(t) which passes through F .12, F and F, . This
leads to the following equations:

Xnan=X +L(7F -7F  +2F )
24

x’”1 - Xu +_h__ (20 Pn+l/2' 3F,, + Fn-l) [19]
18

Here F and F n.1/2are defined asin Eq. (17). For RTAM-3
the integrator error coefficient e, = i*/36, compared with R/
24 for conventional AM-3.

In the case of RTAM-4 the predictor estimateof X, , is
based on the area from ¢ = nh to t = (n+1/2)h under a cubic
approximation for F(t) which passes through F F,_, F_ and
F_,. This is followed by the corrector formula for X, which
is based on the area from t = nh to t = (n+1)h under a cubic

approximation for F(t) which passes through Fn.1/2,F,F,
and F_,. This then leads to the following equations:

-~

Xmi2= X, +-1 (97F, -187F,, + 107F - 25F )
384
X =X +- (36 Fpnis2-10F, + 5F, -F,) O 20]
30

Once again F_and F »,1/2are defined as in Eq. (17). For
RTAM-4 the integrator error coefficient e, = 59k*/ 2880,
compared with -19#*/720, i.e. -76h" / 2880, for conventional
AM-4,

From the above results itis apparent that the RTAM
predictor-corrector integration algorithms introduced in this
section, in addition to being compatible with real-time inputs,
are more accurate than the conventional AM predictor-
corrector methods. In particular we have seen that the ratio
of RTAM to AM integrator error coefficients is 1/2,2/3, and
59/76 for the 2nd, 3rd and 4th order algorithms, respectively.

Before comparing the stability boundaries in the Ak plane
for RTAM and AM integration, we consider a real-time three-
pass integration method based on RTAM-2 which has a
significant accuracy advantage over RK-3 integration.

Real-time Three-pass Predictor-Corrector

The performance of the two-pass RTAM-3 integra-
tion method suggests thata similar algorithm be used to

provide an estimate of X_, ;s instead of X, .,- Thena third pass

based on F, and F ».2/3can be used to compute X, .. The



F,=FX,U) , Xnn=X +-B (137F, -40F, , +11F )

324
F nl1/3 F(Xn+1/3’ n+1/3)’ X"+2/3 - X + ;39 F n+1/3 4Fn + Fn-l)
Foop=FXnanU, ), X, =X +Z(Fn +3F n+Z/3) (21]

Here the first-pass estimate for X,..1/3is based on the area
from t = nh tot = (n+1/3)h under a quadratic approximation
for F(t) which passes through F ,F,_, and F_,. The second-

pass estimate for X,.2/3is based on the area from t =nhtot =
(n+2/3)hunder a quadratic approximation for F(t) which

passes through F /3,1—" and F .. The final pass for X
based on the area from ¢t = nh to t =(n+1)hundera quadratlc

approximation for F(t) which passes through F_, ., F .
and F . For this real-time three-pass predlctor-corrector
algonthm of Eq. (18) the integrator error coefficient ¢, = k*/216
and the algorithm order k = 3. Note that the method is
compatible with real-time 1nputs, since U_is required at the
beginning of the first pass, U, , ,atthe bcgmnmg of the
second pass, and U, , , at the beginning of the third pass.

It is useful to compare the above integration method with
the version of RK-3 integration given by the following
formulas [Howe 1985]:

Fu = F(X,{u,) ’ Xﬂ+l/3 = Xn +th
3

~

F n+1/3 F(Xm/s'unu/a) Xns213= Xn+%Pn+l/3

F w23 F(X"+2/3'uu+2/3) P X=X+ Z(Fn +3F n+2/3) (22]

Here X,.2/3is computed in the first two passes using the
RTRK-2 algorithm givenin Eq. (18), but with a step size of
2h/3 rather than k. The formula for final pass which com-
putes X __ is the same as in Eq. (21). For the RK-3 integration
method of Eq. (22) the asymptotic formula for the characteris-
tic root error, when compared with Eq. (15), indicates an
integrator error coefficient e, = h*/24, versus h? /216 for the
three-pass method given previously by Eq. (21). This lower
accuracy results from the larger error associated with the use
of second-order RTRK-2 integration rather than the third-

order predictor for the computation of X,.2/3.
An interesting variation of the three-pass method of
Eq. (21) is to use a second-order rather than third-order

predictor formula for computing Xg.1/3in the first pass. In
this case the formulas become

F,=FX,U) , Xea3= X, + - (7Fs-Foa)
18

F n+1/3 = F(Xn+1/3’un+1/3)’ X'”Z/S = Xn + 5(391:"” /3° 4Fn + F”'l)

~

F n+2/3 = F(X""Z/"" n+2/3) X - Xn +b(Fn + 3 F m2/3) [23]

Here the integrator error coefficient is still given by ¢, = ¥/
216, since a third-order predictor formula is used to compute
Xns2/3in the second pass. But now the stability boundary in
the Ah plane is slightly larger, as we shall see in the next

section.

Stability Boundaries for Predictor-Corrector
Algorithms

Until now we have concentrated on comparing the
dynamic accuracy of various real-time and non real-time
predictor-corrector algorithms. Another important consider-
ation is the stability of the algorithms. When the integration
step size h becomes too large, instability can result, either
from changes in one of the roots corresponding to a continu-
ous system eigenvalue or from one of the extraneous roots
introduced by the predictor integration algorithm. For
example, in the AM-2 algorithm of Eq. (2) the dependence of

—~

X, ,onF  aswellasF introducesan additional discrete
staleé for eAth state of the continuous system, assuming F is a

function of X. The corresponding extraneous characteristic
root can cause instability when h becomes too large, even
when the main root remains fairly close to its original value.
To depict the stability range of numerical integration methods
itis customary to plot the stability boundary in the complex
Ak plane [Benyon 1968)]. The calculation of this bourdary is
most easily accomplished by considering the Z transform of
the digital system when solving the simple first-order system
of Eq. (10), where in general the complex eigenvalue A= 4 +
JA g If weapply the AM-2 integration algorithm repre-
sented by Eq. (2) to Eq. (10) and take the Z transform of the
resulting difference equations, the following formula for
H*(2), the digital system Z transform, is obtained:

h(z@-(l +%M)Z_%M)

2—(1 - Ah+4ixzh2)z+1—fh2

X2
F4(z)

=H*(z)= [24]

The digital system will be unstable when one or morc of
the poles of H*(z) lie outside the unit circle in the z plane
[Gilbert 1966]. Thus the stability boundary in the A plane
will be defined by the values of Ak for which the denominator
of H*(z) vanishes when [z =1, i.e. when z =&® To obtain
these Ak values we let z = €° in the denominator of Eq. (24),
set the denominator equal to zero, and solve for A__hand
A, pugh for 8 values ranging from 0 to 2. The boundary has
been plotted in Figure 1 for AM-2, RTAM-2 and AB-2
integration. Any points lying outside the boundary for each
of the algorithms signify instability for that particular A1 The
stability boundaries are, of course, symmetric with respect to
the real axis.
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Figure 1. Stability boundaries for AB-2 (normalized), AM-2 and
RTAM-2 integration

In the case of AB-2 integration the stability boundary shown
in Figure 1 has been doubled in size to reflect the fact that AB-
2integration is a single-pass method, whereas AM-2 and
RTAM-2 are two-pass methods. Becausc of this a given
digital processor will be able to execute a real-time AB-2
simulation at twice the frame rate and hence half the math-
cmatical step size in comparison with an AM-2 or RTAM-2
simulation. With this factor of two normalization the AB-2
boundary is somewhat larger than the RTAM-2 boundary,
which in turn is larger than the stability boundary for
conventional AM-2 integration.

The stability boundaries for AM-3, RTAM-3 and AB-3 are
shown in Figure 2. Again the AB-3 boundary has been
doubled in size to reflect the fact that the algorithm executes
twice as fast as either AM-3 or RTAM-3. In all three of these
methods the integration formulas depend on F_, and F,in
addition to F,. Thus in each case there are two additional
states and hence two extraneous roots for each state in the
continuous system being simulated. Portions of the stability
boundaries in Figure 2 are due to these extrancous roots. The
stability boundaries have been calculated using the same
methodology described above for Figure 1. From Figure 2 it
is evident that the RTAM-3 algorithm has the largest stability
area, followed by conventional AM-3 and AB-3 integration.

The stability boundaries for AM-4, RTAM-4and AB4 are
shown in Figure 3. Once again the AB-4 boundary has been
doubled in size to reflect the fact that the algorithm executes
twice as fast as either AM-4 or RTAM-4. Here all of the
methods use integration formulas that depend on F_,, F, and
F,,inaddition to F,. Thusin ecach case there are three
additional states and therefore three extraneous roots for each
state in the continuous system being simulated. Asin Figure
2, portions of the stability boundaries in Figure 3 are due to
these extraneous roots. From Figure 3 it is clear that the
RTAM-4 has the largest arca of stability, with both RTAM-4
and AM-4 exhibiting substantially larger stability arca than
ABA4.

Finally, in Figure 4 are shown the stability boundaries for

the tworeal-time three-pass predictor-corrector algorithms
introduced in the previous section. Also shown in the figure
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Figure 2. Stability boundaries for AB-3 (normalized), AM-3 and
RTAM-3 integration
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Figure 3. Stability boundaries for AB-4 (normalized), AM-4 and
RTAM-4 integration

for comparison purposes are the stability boundaries for RK-3
and AB-3 integration. The AB-3 boundary has been tripled in
size to reflect the fact that single-pass AB-3 algorithm
executes threc times as fast as the other three-pass algorithms.
From Figure 4 it is evident that all four algorithms have
comparable stability boundaries, with RK-3 having the largest
and AB-3 (normalized) the smallest. Thus the tworcal-time
three-pass predictor-corrector algorithms suffer only a slight
degradation in stability in return for a factor of nine improve-
ment over RK-3 in eigenvalue accuracy.

Accuracy of the Asymptotic Formulas for Dynamic
Errors

The formulas presented in Eqs. (15) and (16) for the
dynamic errors associated with integration algorithms are
only valid when the integration step size h is sufficiently
small (1 Akl << 1 for characteristic root errors, wh << 1 for
transfer function errors). For the different integration
methods described in the paper, Table 1 summarizes the
formulas for the approximate errors in the characteristic roots.
In the last column of the table the integrator error coefficient,
e, has been normalized through multiplication by N¥, where
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Figure 4. Stability boundaries for AB-3 (normalized), RK-3 and two
real-time three-pass predictor corrector algorithms, one
with second-order prediction used for the first pass (P-2/
PC-3/C-3), the other with third-order prediction used for
the first pass (P-3/PC-3/C-3).

N is the number of passes (state-variable derivative calcula-
tions) associated with the given integration algorithm. For
example, N =2and k = 2 for AM-2 integration, sinceitisa
two-pass algorithm of second order. This means that in
general it will require twice as long to execute as the single-
pass AB-2 method, which in turn means that the mathemati-
cal step size hin a real-time simulation will need to be twice
as large. Since the root error is proportional to B, i.e., I in
this case, the error will be 22 = 4 times larger than it would be
for the samee, were the algorithm single-pass. Thus among
algorithms of the same order the normalized error coefficient
is a true indication of the relative accuracy of each method for
small step size (| Akl << 1). Based on asymptotic errors in the
characteristic root, then, it is apparent from the last column in
Table 1 that RTAM-2 is the best second-order method, either
of the three-pass predictor-corrector algorithms represent the
best third-order method, and RTAM-4 is the best fourth-order
method.

The asymptotic formula for the fractional error in sinusoi-
dal transfer function was derived earlier as Eq. (16). We recall
that this formula is valid for the e  values listed in Table 1 for
all the integration algorithms except RK-2 and RK-3, where a
different formula applies (Howe 1985). This is because the
RK methods use lower-order integration algorithms for the
intermediate-pass integrations, as pointed out earlier in the
section on dynamic error measures.

It should be noted that there can be significant differences
between various integration methods in regard to the range
of | Akl or wh over which the asymptotic error formulas are
valid. This is an especially important consideration in real-
time simulation, where the accuracy requirements are often
modest and where relatively large integration step sizes are
therefore frequently used. The | A2 range of validity of the
asymptotic formulas for the fractional error in characteristic
root, e, , is illustrated in Figure 5. The curves shown in the
figure tor each integration method are based on exact values,
A%, of digital system roots when solving Eq. (10) numerically
for A negative real. In each case the exact A* is computed from
the appropriate pole, z,, of the digital system Z transform,
H*(z), using the following formula [Gilbert 1966}:

A*=1linz) [25]
h

Table 1. Summary of Asymptotic Formulas for Characteristic Root

Errors
Integration Reference for No.of Algorithm e, (error e, (normalized
algorithm algorithm passes order, k coefficient) for single pass)
formula

AB-2 Eq. (2), first pass 1 2 5 041667
12

AM-2 Eq. (2) 2 2 L -0.33333
12

RTAM-2 Eq. (17) 2 2 L 0.16667
24

RTRK-2 Eq.(18) 2 2 1 0.66667
6

AB-3 Eq. @), first pass 1 3 3 0.37500
8

AM-3 Eq. 3) 2 3 - -0.33333
24

RTAM-3 Eq. (19) 2 3 e 0.22222
36

P-3/PC-3/C-3 Eq. 21) 3 3 . 0.12500
216

P-2/PC-3/C-3 Eq. 22) 3 3 A 0.12500
216

RK-3 Eq. 23) 3 3 L 112500
24

AB-4 Eq. (@), first pass 1 4 251 0.34861
720

AM-4 Eq. (4 2 4 L1 -0.42222
720

RTAM-4 Eq. 20) 2 4 9 032778
2880

For example, in the case of AM-2 integration, H*(z) is given
by Eq. (24). For a specific A1 we can solve for the two roots of
the denominator of H*(z). One of these roots corresponds to
z,, from which we can determine A* with Eq. (25). Using Eq.
(15), we can then determine the fractional root error e,, which
will be exact. In Figure 5 we have plotted normalized root
errors as N, / | Ak 1%, where N as before is the number of
state-equation passes per integration step associated with the
given kth-order algorithm. For AM-2 integration, N =2 and k
= 2. Hence the normalized root error for AM-2 in Figure 5a is
plotted as4e, / | Al 12, From Table 1 we see that for AM-2
integration the asymptotic formula for e, is 2,(Ak)* = (Ah)*/12.
Thus N"el/ |Ah*=de /| AR 2=4/12 =0.333, which is indeed
the value for the normalized AM-2 root error in Figure 5a
when | Ah] =0. As | Akl increases, the normalized error
increases. This is because the asymptotic formula is less
accurate for larger | Al values. N is also equal to 2 for the
two-pass RTAM-2 and RTRK-2 methods in Figure 5a,
whereas N =1 for the single-pass AB-2 algorithm.

From Figure 5a it is apparent for | Ak | < 0.7 that the RTAM-
2 algorithm exhibits the smallest characteristic-root error. Itis
considerably more accurate than the conventional AM-2
predictor-corrector method. Only for | Ak] > 0.7 does the AB-
2 algorithm exhibit smaller root errors than RTAM-2. For
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these large step sizes, however, the root errors will be very
largeindeed.

Figure 5b for the third-order algorithms shows that the
three-pass predictor-corrector methods (P-2/PC-3/C-3 or P-
3/PC-3/C-3) as introduced in this paper perform better than
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Figure 5. Normalized characteristic root errors for 2nd, 3rd, and
4th-order integration algorithms.

any of the other third-order methods, based on characteristic-
root errors. This is true in spite of the penalty associated with
three passes (N = 3) compared with N = 2 for AM-2 and RT-
AM-2,and N =1 for AB-3. From Figure 5c¢ for fourth-order
algorithms we sce that the RTAM-4 introduced in this paper
exhibits the smallest normalized characteristic root errors.

We consider next the wh range of validity of the asymptotic
formulas for sinusoidal transfer function errors. Exact values
for gain and phase errors can be calculated from H*(e™),
where H*(z) is the digital system Z transform. The approxi-
mate formulas for wh << 1 are determined from Eq. (16),
except, as noted earlier, in the case of the RK methods. Herea
graphical comparison of exact and approximate normalized
gain and phase errors is more complicated, since the errors
depend on both wh and Ah. In general, however, the trends
evident in Figure 5 for characteristic root errors are similar
when normalized transfer function gain and phase errors are
plotted versus Ah for fixed values of wh.
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Comparison of Time-domain Errors

To this point we have only compared the dynamic accuracy
of the different integration algorithms by considering
characteristic root errors, and sinusoidal transfer function
gainand phase errors. Itis also tempting to make dynamic
accuracy comparisons based on time-domain errors in
simulating the response of a given system to a specific time-
dependent input. For example, the errors in computed
response to a step-function input are sometimes considered.
However, unless one is specifically interested in step-function
response accuracy, this can be a very misleading method for
dynamic accuracy comparison in the case of integration
algorithms which employ predictor methods. This is because
predictor algorithms of order two and higher will have large
transient errors introduced by the step input. The accuracy of
predictor methods depends on the existence of input deriva-
tives, a condition which is violated by a discontinuous input.
In fact, the dynamic accuracy of the time-domain response is
often completely dominated by the startup transient gener-
ated as a result of a step input.

To avoid this difficulty we will consider in this section the
errors of the various integration methods in simulating the
response of a dynamic system to a step displacement input
with limited acceleration. For simplicity we let the dynamic
system be represented by the following second-order linear
system:

X=Y, Y=ad[U®-X]-2%aY . [26]
Here X is the output, L(#) is theinput, @, is the undamped
natural frequency, and { is the damping ratio. Welet LK#) be

the acceleration-limited unit step function shown in Figure 6,
where the limit on input acceleration is given by

U=1 0<<T ,

-1 Tt
TZ

0,e22T . {271

When integrated twice with T'setequal to 1.2/ w,, Eq. (27)
yields the input shown in Figure 6. The ideal second-order

15 T T
R'esponsc\\ N
Input
‘o \ N S
0.5 /
0.0 /
0 2 4 6 Wt 8 10 12

Figure 6. Response of second-order system ({=0.25) to an accelera-
tion-limited step input.



system response to this input with initial conditions X(0) =
Y(0) = 0 is also shown in the figure. The response is very
nearly the same as that obtained when a true unit step input
isappliedatt=T,i.e.at @t =1.2in Figure 6. Thus the use of
this acceleration-limited step input removes input
discontinuities in displacement, slope, and second derivative
without changing significantly the shape of the second-order
system unit step response. It can also be argued that the
acceleration-limited step input is a more realistic input for a
mechanical dynamic system.

We consider first the performance of second-order integra-
tion methods. The response errors for AB-2, AM-2, RTAM-2,
and RTRK-2, as given, respectively, by the predictor-pass
formula in Eq. (2) and the predictor-corrector-pass formulas
inEqs. (2), (17) and (18) are plotted versus o t in Figure 7.
Initial conditions on X and Y are assumed to be zero for t<0.
This is representative of a second-order system in stable
equilibrium with zero input to which the acceleration-limited
step input is applied att = 0. Thus X,=Y,=X,=Y,=0,
which solves the second-order predictor startup problem. In
Figure7 the integration step size @ s = 0.1 for the single-pass
AB-2 method and 0.2 for the two—pass AM-2,RTAM-2 and
RTRK-2 methods. As noted earlier, this is because the single-
pass AB-2 method will execute approximately twice as fast as
the two-pass algorithms on a given processor. The results in
Figure 7 show that the RTAM-2 predictor-corrector method
introduced in this paper is the most accurate as measured by
the response errors for an acceleration-limited step input.

Next we consider the performance of third-order predictor-
corrector methods. The response errors for AB-3, AM-3, and
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Figure 7. Step-response errors for second-order integration
algorithms.

RTAM-3, as given, respectively, by the predictor-pass
formula in Eq. (3) and the predictor-corrector-pass formulas
in Egs. (3) and (19) are shown in Figure 8. Again, initial
conditions on X and Y are assumed to be zero for ¢t <0. Thus
X,=Y,=X,=Y,=X,=Y,=0for the third-order predictor
startups Asin Flgure 7, the integration step size @ h = 0.1 for
the AB-2 method and 0.2 for the two-pass AM-2 and RTAM-2
methods. Again, Figure 8 shows the superiority of the
RTAM-2algorithm.

In Figure 9 we compare the real-time, three-pass methods
givenin Egs. (21) and (23) with RK-3 integration as given in
Eq.(22) and AB-3integration. Here the integration step size
w,h = 0.3 for the three-pass algorithms and 0.1 for the single-

Figure 8. Step-response errors for third-order predictor-corrector
integration algorithms.
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Figure 9. Step-response errors for three-pass third-order integration
algorithms.

pass AB-3algorithm. We note that the P-3/PC-3/C3 method
of Eq.(21) gives the most accurate response to the accelera-
tion-limited step input, followed closely by the P-2/PC-3/C3
method of Eq. (23). Both are significantly more accurate than
AB-3 despite the fact that their step size is three times larger
to reflect actual processor time requirements per integration
step. The RK-3 method is the least accurate of all for this
example case.

The step-response errors in Figures 7 through 9 in general
reflect the relative sizes of the normalized eigenvalue error
coefficients ¢ shown in the last column of Table 1. An
additional advantage to the two and three-pass predictor-
corrector algorithms introduced in this paper results from
their use of higher order predictor methods for the intermedi-
ate integration passes. As a result, the outputs for these
intermediate passes can be used to provide accurate estimates
of the states at intermediate times during each step. This is
illustrated in Figure 10 for the three-pass P-3/PC-3/C3
method. For comparison purposes, similar results are also
plotted for the RK-3 method. The figure shows the output
errors one-third and two-thirds of the way through each
integration step as well as the errors at the integer step times.
The much larger scatter in the RK-3 data results from the fact
that first-order Euler integration is used in the first pass and
second-order RTRK-2 integration is used in the second pass,
as can be seen in Eq. (22). Conversely, the P-3/PC-3/C-3
method of Eq. (21) uses third-order methods for all three
passes.

Thus the three-pass predictor-corrector methods canbe
used to provide outputs at three times the basic integration
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frame rate. These outputs can in turn be used todrive Dto A
(digital-to-analog) converters in a real-time simulation
requiring continuous outputs. The resulting dynamic errors
in the continuous outputs will be much smaller than the
crrors when only the outputs at integer frame times are used
to drive the DAC's.
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Figure 10. Three-pass P-3/PC-3/C-3 and RK-3 integration data with
step response errors shown at each pass.

Conclusion

In this paper we have introduced new two-pass predictor-
corrector integration algorithms which, unlike conventional
two-pass AM (Adams-Moulton) algorithms, are compatible
with external inputs in a real-time simulation. In each case,
starting with the state at frame n, the new algorithms use a
predictor pass to compute an estimate of the state at the n+1/
2 frame rather than at the n+1 frame, as in conventional AM
integration. The n+1/2 frame estimate is then used in the
corrector pass to compute the n+1 state. The new RTAM
(Real-time Adams-Moulton) algorithms require the external
input U, at the beginning of the first passand U, ,at the
begmnmg of the second pass, both of which can 'be made
available as real-time inputs. Based on characteristic-root
errors, sinusoidal transfer function gain and phase errors, and
time-domain errors we have shown that the new RTAM-2, 3
and 4 integration algorithms are more accurate, respectively,
than conventional AM-2, 3, and 4 algorithms. Inaddition
they exhibit a somewhat larger region of stability in the Ah
plane. The paper also introduces two new three-pass real-
time predictor-corrector algorithms, designated as P-2/PC-3/
C-3and P-3/PC-3/C-3, respective-ly. These new algorithms
are shown to be considerably more accurate than RK-3
integration, based on characteristic root errors and time-
domain responsc errors.
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