Conventional multistate life table accounting procedures are based on theoretical
assumptions that are appropriate primarily for demographic events. Applying these
approaches to the area of health care, however, may lead to serious biases given the
frequent turnovers of events such as hospitalization and institutionalization. In addition,
traditional approaches have been criticized for failing to capture population heteroge-
neity. This research introduces a new algorithm to estimate multistate life table indicators
regarding health care use, taking advantage of the availability of information on average
lengths of stay in hospitals and nursing homes. The survival analysis approach is used
to estimate age-specific transition probabilities in order to address the issue of population
heterogeneity.
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1. INTRODUCTION

ecent decades have witnessed dramatic advances in mod-
eling the demographic implications of social dynamics
(Land and Rogers 1982; Schoen 1988). Sociologists and population
researchers have developed a number of procedures to generalize the
multidimensional transitions in sociologically relevant events such as
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geographical mobility, marital status patterns, occupational careers,
and health status (Hayward and Grady 1990; Rogers 1975; Rogers,
Rogers, and Belanger 1990; Schoen 1988; Schoen and Land 1979).
These approaches have proved appropriate and useful for social
processes that occur at a relatively slow pace.

However, because currently existing multistate estimating proce-
dures are not designed to analyze events with frequent turnovers, it is
highly inappropriate to apply them to more intense and rapidly unfold-
ing social processes. Some traditional procedures allow only one
transition within a 1-year period (Rogers 1975), which would yield
very misleading results when applied to multiple and recurrent events.
For example, a patient admitted to a hospital stays there for only a few
days on average (U.S. Department of Health and Human Services
[DHHS] 1987). Other sociological processes that occur rapidly over
time include adolescent dating behavior, the employment experiences
of marginal workers, mental health, and the like.

Several refined methods, such as Schoen’s (1988) approach, relax
the single-transition assumption, thereby taking into account the re-
turning of those who have left a given state at an earlier stage. These
methods, however, may still lead to substantial biases for the events
with rapid processes because those who have returned to the state of
origin may leave there again soon. On the other hand, scarcity of data
on frequent transitions makes it extremely difficult to use shorter
intervals while retaining the standard ways of estimating interval-
specific transition rates. Indeed, the traditional accounting procedures
are not capable of handling the issue of frequent turnovers, resulting
in a characterization of life-cycle experiences at variance with the true
set of experiences generated by the stochastic processes. It is thus
important to adapt the standard estimation procedures to accurately
characterize the social phenomena that occur intensely and rapidly
over time.

The pattern of health care use typifies such processes given the
frequent turnovers of hospitalization and institutionalization over
time. Modeling health care is of pressing need for both planners and
researchers in view of the significant impact of population aging on
the demand for health services (Brock and Brody 1985; Fisher 1980).
Gaining an understanding of health care perspectives also is important
for sociologists in the other areas because the health care system
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reflects the political and economic organization of the U.S. society and
is concerned with fundamental philosophical issues involving life,
death, and the quality of life (Twaddle and Hessler 1987). Although
single- and multiple-decrement life tables appear fairly popular in
analyzing the patterns of hospital and nursing home stays (Kemper
and Murtaugh 1991; Liang and Tu 1986; McConnel 1984), the prac-
ticality of these models is dubious both because of the lack of a health
care system perspective (Densen 1991) and due to the misspecification
of the nature of health care use (e.g., a nursing home stay is viewed as
an “absorbing” rather than a “transient” state). A multistate life table,
which has the analytic power of estimating both risk and duration
within an integrated system and of permitting for two-way flows
among multiple states, addresses both problems.

There have been few systematic attempts to gauge these issues in
the fields of medical sociology and applied demography. A major
obstacle may be the difficulty in finding a fitting function for estimat-
ing certain indicators such as transition probabilities and the expected
durations in relevant states. This issue, however, may be solved by
obtaining supplementary information such as the average length of
stay in a given state for relevant episodes. Such data often are unob-
tainable for general demographic phenomena (e.g., migration, marital
status) but usually are available in the domain of health care.

The traditional multistate accounting procedures also have been
criticized for their lack of capability to capture population heteroge-
neity (Heckman and Singer 1982; Keyfitz 1985). Neglect of such
heterogeneity would simplify models and reduce the possible discrep-
ancies that might arise. Therefore, further generalization from a simple
life table may be substantially limited. For example, using a traditional
life table to predict the future pattern of health care use can be very
problematic because it does not reflect the structural changes in
important determinants other than age (Boult, Kane, Louis, and Ibra-
him 1991; Keyfitz 1985). Because the heterogeneity always is intrinsic
and would not be reduced by involving more data, it is essential to
incorporate more dimensions in a multistate life table model. Although
a complete solution of this issue is not yet available, employing a
multivariate approach in constructing a life table model can partially
overcome this limitation. A recent development is to use the hazard
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rate or logistic models to address this issue (Gill 1992; Guilkey and
Rindfuss 1987; Guralnik, Land, Blazer, Fillenbaum, and Branch 1993;
Hayward and Grady 1990; Land, Guralnik, and Blazer 1994). These
approaches are appropriate for controlling some population heteroge-
neity in generalizing the stochastic processes of a dynamic event and
have the added advantage of deriving life expectancy from data with
small sample size (Land et al. 1994).

The aforementioned limitations point to the need to develop a
unique system to model the multidimensional transitions in social
events with rapid processes. This research introduces a new algorithm
to estimate multistate life table indicators specifically on health care
use. The construction of this system takes advantage of the availability
of information on the average lengths of stay in both hospitals and
nursing homes, which often is obtainable from hospital censuses or
sample surveys. To partially overcome the issue of population hetero-
geneity, we employ multivariate survival analysis to estimate age-
specific transition probabilities. Hence effects of some of the impor-
tant determinants other than age can be captured.

In the following two sections, we briefly review the theory of
multistate increment-decrement life tables and the traditional account-
ing procedures used to estimate life table indicators. We follow
Schoen’s mathematical notation given its diversity and popularity.

2. OVERVIEW OF THEORY

The purpose of this section is to review existing model specifica-
tions, basic concepts, and function definitions with respect to the
theory of multistate life table models. Much of the presentation is
based on Land and Schoen (1982), Schoen (1988), and Schoen and
Land (1979).

We specify a time-inhomogeneous and continuous-time Markov
process model with finite state space Q. We then assume that the state
space Q of the process has k + 1 states, where k is a positive integer
greater than 1. The (k + 1) state is defined as an absorbing state (say,
death) with all the others defined as transient states. Two-way transi-
tions are allowed among the transient states to permit increments and
decrements between given states of the model.
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On the state space 2, we define a stochastic process, [(x): x = 0],
where x denotes the exact age. The transition probabilities between
the k + 1 states of £, assumed absolutely continuous, are

I1,(x, n) = prob[&(x + n) = jIECX) = il, @1

where 7;(x, n) denotes the probability that a person in state i at exact
age x will be in state j at exact age x + n. The corresponding transition
forces, also referred to as the gross flow hazard rates, are assumed
to be

py(x) = imITy(x, n)/n,  fori#j 2.2)
n—0

where p,(x) represents the force of decrement for transfers from state
i to state j at exact age x. It is nonnegative but not necessarily smaller
than 1. We also assume

k+1

i) = = lim [1 - T(x, nY/n ==Y p; (x). (2.3)
n—>0

Jj#i

where p; always is nonpositive and often is referred to as the “force
of retention” (Schoen 1988). We may arrange the transition proba-
bilities and the forces of transition into two (k + 1) by (k + 1) stochastic
matrices, defined as II(x, n) and p.(x + n), respectively, which we shall
call the “matrix of transition probabilities” and “matrix of transition
forces,” respectively. By definition, each row in the Il matrix sums to
1, and each row in the p matrix sums to 0.
We then introduce the initial distribution

1(0) = prob[£(0) = i] forie Q 24)

and define

I(x) = prob[E(x) = i] = Y L(O)T; (0,%). 2.5)

ke Q2

The /(0) is the radix of the corresponding multistate life table, and
the sequence of /(x) is the stationary population corresponding to the
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Markov chain. Demographers often tabulate some multiple of /(x),
such as 10%* /(x), for convenience (Hoem and Jensen 1982). We may
define 1(x), named the “matrix of survivors,” as a (k + 1) by (k + 1)
diagonal matrix having elements /,(x).

The gross flows of the stationary population are specified as the
function

Ly(x, n) = LI (x, n), 2.6)

where [;(x, n) represents the number of persons in state i at exact age
x who are also in state j at exact age (x + n).

Because the transition probabilities satisfy the Kolmogorov for-
ward differential equations (Schoen 1988), we may derive the follow-
ing equation:

k+1 k+1
I, 1) = 100 = Y di(x, n) + ) di(x, ), 2.7)
y#j y#j

where dj;(x, n) represents the number of transfers from state j to state
y between exact ages x and (x + n) by persons in state { at exact age x,
and d;; denotes those in state i at exact age x who move from state y
to state j between exact ages x and (x + n). We define a (k + 1) by (k +
1) matrix I(x, n) containing elements [,(x, n), called the “matrix of gross
flows.”

The actual sojourn time in state j between exact ages x and (x + n)

spent by persons in state i at exact age x is defined as
Ly my = [ 1ytx, )b, 2.8)
0

where L(x, n) denotes the sojourn time, often referred to as person-
years lived. We define a (k + 1) by (k + 1) matrix L(x, n) in a manner
analogous to l(x, n), whose elements are the L;. Whereas the L(x, n)
matrix reflects person-years lived at the level of the gross flows, these
person-years can be aggregated to the level of the net flows by

k n
L m)y = YL, n)=I0 x+ tydb, 2.9)

y=1
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where L(x, n) denotes the person-years lived in state i between exact
ages x and (x + n) without the constraint of being in state i at age x.
The elements of L(x, n) sequence constitute a diagonal matrix L(x, n).

These equations constitute the basic theory of multistate transitions,
which has guided the constructions of various algorithms to estimate
life table indicators.

3. CONVENTIONAL ESTIMATION PROCEDURE

Whereas a continuous process of redistribution of survivors accu-
rately reflects the multidimensional flows within a well-defined state
space, researchers have developed a variety of estimating algorithms
to formalize the functions specified in the preceding section (Land and
Schoen 1982; Namboodiri and Suchindran 1987; Rogers 1975;
Schoen 1988; Schoen and Land 1979). Because these accounting
procedures are based on varying assumptions on the patterns of
transitions within a limited interval, there are explicit differences in
the results derived from these approaches as well as a general distinc-
tion between the underlying stochastic processes of a given event and
the accounting procedures (Hoem and Jensen 1982). The following is
a brief review of a linear estimating procedure that has been used
frequently in constructing the multistate life tables (Schoen 1988).

Demographers often start the procedure of estimating multistate life
table indicators by obtaining a set of observed occurrence/exposure
rates with respect to transitions from state i to state j between ages x
and (x + n), excluding the case where j = i, such that

M(x, n) = Dj(x, n)/P{x, n), 3.1

where D;(x, n) denotes the observed number of transfers from state i
to state j of the state space Q occurring among members of the
population ages x to (x + n) during the period of observation, and P(x, n)
represents the observed population in state i between ages x and (x + n).
Given the Markov assumption, such an observed rate applies to all
persons ages x and (x + n) in state i, regardless of the state they were
in at exact age x. We define a (k + 1) by (k + 1) matrix of observed
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transition rates M(x, n), with the elements in diagonal as the summa-
tions over j, run from 1 to (k + 1) excluding the case in which j =i,
and the off-diagonal elements as M;(x, n) multiplied by —1. Given the
existence of an absorbing state, the (k + 1) row contains all zeros.

We then define the matrix of model transition rates, m(x, n), in the
same fashion, given by

m(x, n) = M(x, n), 3.2)

where m;(x, n) = di(x, n)/L(x, n) and d; represents decrements from i
toj.
We further specify the following equation:

I(x, n) = 1(x) - L(x, )M(x, n). (33)

With f(x, n) known, the matrix of transition probabilities can be
found from

(x, n) = "' ®)i(x, n), (3.4)

where the superscript —1 denotes the inverse of a matrix.
Assuming linearity in the /; functions, we may write

L(x,n) = w 3.5)

where n represents the width of age interval.

Schoen (1975) introduces a linear scaler method to operationalize
the preceding accounting procedure, allowing for return flows within
a specific time period as well as the general intercommunication
between states. However, multiple destination-specific transitions
within a given period are restricted given the relative infrequency of
demographic events.

In addition to the linear method, population researchers have spec-
ified other approaches such as mean duration, exponential, and cubic
methods. When a complete life table is constructed, these methods
produce very similar results (Land and Rogers 1982; Schoen 1988),
and so the disparities among these methods are not discussed.
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4. THREE MAJOR CRITICAL ISSUES

The following is an elaboration of the major issues regarding the
application of conventional methods to multidimensional transitions
in events with rapid processes. These issues are discussed on the basis
of a 1-year interval, consistent with the pattern imposed by the
traditional accounting procedures.

TRANSITION PROBABILITIES AND NUMBER OF SURVIVORS

As already mentioned, the traditional methods may take into ac-
count the return flows between two states within a single-year period.
For example, in deriving the estimates of I and 1 by the linear method,
a given transition rate is simply multiplied by a factor (smaller than 1)
to reduce the force of transition (Schoen 1975). In the domain of health
care and other social events with rapid processes, however, there often
are a number of transition cycles occurring during a limited interval
(U.S. DHHS 1987); therefore, those who have returned to a given state
would have a high risk of leaving again within the interval. Because
the transition probabilities originating from a specific state, including
returning to that state, always sum to unity, the misspecification of one
destination-specific probability would automatically disturb all the
others, in turn confounding the estimation of the number of survivors
in each transient state at the beginning of the subsequent age interval.

PERSON-YEARS LIVED IN TRANSIENT STATES

Given the assumpion of linearity on the gross flows, the person-
years lived in a given state by those who have moved in or out within
a single age often are assumed to be around 6 months. Although there
are several alternative ways in which to specify the function of
transitions over time (Schoen 1988), most yield close estimates. This
specification would lead to substantial biases with respect to health
care use, considering its frequent flows. It is not possible that patients
in a short-term hospital would stay there for 6 months on average
within a single age interval. Because the total person-years lived by
all survivors at the outset of a given age are restrained within a life
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table framework, biased estimates of the person-years lived in one
state would automatically result in the misspecification of those in
the others, thereby confounding further the estimation of other life
table summary measures such as life expectancy. Even in terms of a
general demographic event, the traditional linear system may still
overestimate the person-years lived in a transient state because it does
not rule out the person-years lived in other states by those who have
returned to the origin, as shown in Equation 3.5.

Schoen (1988) specifies a mean duration method to estimate the
actual duration in a given state. For a 1-year interval, this approach
can be expressed as

k+1 k+1
Lix, 1) =l + 1) + Y ay (6 1)dy(x1) = Y a,(xDd,(x,1),  (4.1)
y#i y#i

where a;(x, 1) is the mean duration into age interval (x, 1) for transfers
from state i to state j, and d;(x, 1) denotes the number of transfers from
i to j between exact ages x and (x + n). This state survival function
does include the occurrences of multiple transitions within a limited
interval. However, several problems arise if we make use of this
equation to generalize the pattern of health care use. First, the number
of transfers between two states of health care cannot be derived from
the traditional approaches, as noted subsequently. Second, multiple
transitions always occur within a truncated time period; therefore, the
mean duration in a given state within a time bound is a function of the
order of transfers. The traditional methods may estimate the mean
duration for the first transfer but not the subsequent spacings within a
1-year interval. Third, the length of stay in a hospital or nursing home
has been observed to be positively linked to age. The traditional mean
duration method does not have the capability to integrate such a
relationship in the multistate model. These limitations will greatly
hamper the application of this approach in the estimation process.

NUMBER OF TRANSFERS

Given the bias in the estimates of number of survivors and transition
probabilities, the total number of transitions from one state to another
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also would be erroneous because it is partly derived from them. Even
if the estimates of the number of survivors and transition probabilities
are valid, the number of transfers still would be misspecified because
the conventional accounting procedures do not reflect multiple and
recurring moves.

Theoretically, the preceding three concerns can be resolved by
using shorter intervals. If the interval width is sufficiently short (say,
weekly) to suit the circumstances of a given process, then it may be
reasonable to assume that the rate of transition from state i to state j is
the same across all subintervals within a single age interval. Such a
strategy, however, is not realistic. First, the estimating procedure
would become extremely tedious. Second, it would be very difficult,
if not impossible, to obtain data of weekly based populations, which
should serve as the proxy of exposure for calculating transition rates.
Third, the use of data from several sample surveys, which often is the
case for multistate analyses, would be very limited given an insuffi-
cient sample size for each subinterval.

Indeed, with the guidance of the multistate life table theory, it is
critical to develop a new algorithm reflecting the unique stochastic
processes of social events with rapid turnovers.

5. MODELING A MULTISTATE LIFE TABLE FOR HEALTH CARE

In this section, we specify an age-inhomogeneous, finite-space, and
continuous-time process model to formalize the functions specified in
the Overview of Theory section with respect to health care use. It
introduces a set of accounting rules that take into consideration the
multiple sequences of transfers per single age.

To make the model operational to the data usually available, we
specify four mutually exclusive states—community, short-term hos-
pital, nursing home, and death—which are denoted as c, h, n, and d,
respectively, with c as the initial state and d as the only absorbing state,
as displayed in Figure 1. The long-stay hospital sector is contained in
the state of community due to the data scarcity and an effort to simplify
the state space. We also assume that all hospitalized patients in
short-term hospitals would be discharged in the same year as they are
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| Community (C) |
r Hospital (H) l ‘ , | Nursing Home (N)
‘
Death (D) |

Figure 1: Four-State Increment-Decrement Life Table Model

admitted given the rapid turnovers in this regard. (Data of the National
Hospital Discharge Survey have shown that about 95% of admitted
patients would be discharged within 15 days and that the median length
of stay for admitted patients was only S to 7 days.)

We propose to start the estimation procedure by deriving a series
of age-specific transfer probabilities (Land and Schoen 1982) among
the four designated states. Given a Markov process, a transfer proba-
bility, which is defined subsequently, is assumed to be constant
throughout an age interval. We attempt to use such probabilities to
reflect the occurrences of multiple and recurring events in health
care. Whereas using the hazard rate models in this regard is well
rationalized (Gill 1992), we employ multivariate survival analysis,
an effective statistical approach, to estimate these probabilities so
as to address the issue of population heterogeneity. Therefore, con-
structing the life table model within this context is divided into two
steps: (1) estimating transfer probabilities and (2) deriving life table
indicators.

ESTIMATING TRANSFER PROBABILITIES

Initially, we aim at obtaining, first, the probabilities of making at
least one destination-specific movement within a 1-year period (rather
than those that a person in state i at exact age x would be in state j at
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exact age [x + n]). This is because the conventional indicator cannot
capture frequent transitions between two exact ages. We denote such
a probability, termed “transfer probability” within this context, as p;
to differentiate from the conventional transition probability ;. There
are basically nine origin-and-destination transfer probabilities given
i # j. The value of p;, the probability of staying in state i throughout
the whole period, may be estimated residually given that origin-
specific transition probabilities, including that to the origin state itself,
always sum to 1. Note that Schoen and Land (1979) used p;; to define
another life table concept, whereas Schoen (1988) defined p; as the
ratios of survivorship functions.

Provided that relevant data are available, we construct three sets of
hazard rate models, dealing respectively with the transfers from three
transient states: community, hospital, and nursing home. Because
there are multiple destinations with respect to each origin state, we
employ hazard rate models with competing risks for each set. Al-
though our research concentrates on constructing a complete multi-
state life table, we intend to derive various hazard rates with respect
to a specific calendar year, and so those who have yet to move out by
the end of the year would be treated as censored cases. In generating
an origin-and destination-specific transfer rate, all transitions to other
destinations also are considered right censored. Because it presumably
involves all person-years lived in a given state, a hazard model deals
with the number of destination-specific transfers versus all person-
years lived in the origin state before making the first transfer; there-
fore, existence of multiple counts in an individual’s record would not
affect the estimation of the hazard rates under study. Note that the unit
of analysis for generating a transfer probability is each interval be-
tween events for each person rather than an individual, and so it
represents the likelihood of having a single run of the chain.

Age, as well as other causally related individual and societal factors,
is assumed to influence the hazard rates according to a conceptual
framework. The transition forces ,(¢), where j denotes the state of
destination (j = ¢, h, n, d) and i represents the origin state for a specific
transition type (i = c, h, n), is defined by Equations 5.1 and 5.2.

Kilt) = Ho,dt)explay, + b log(A) + X'Cyl, .1
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where d represents death, A is age, and J,;, denotes a specified (such
as Weibull or exponential) or an unspecified baseline hazard function
for continuous time 7, the duration from the onset of a given observa-
tion period to the occurrence of a specific transfer. X is a vector of
explanatory variables other than age, and C is a vector of coefficients.
The increase of mortality with age commonly is modeled as an
exponential function of age (see, e.g., Rogers et al. 1990). The speci-
fication of time function in fitting such a hazard rate model relies on -
the primary assumption regarding the shape of a given type of transfers
over time. And the function for discharges to the states other than death
is specified as

u'ig(t) = ’J'O,ig(t)exp(aig + bl[,’A + X,C'ig)$ (52)

where g = ¢, h, n. In constructing a complete multistate life table, these
two equations typically are used to operate within a 1-year interval
assuming a specific time function.

The selection of explanatory variables should rely on an underlying
conceptual framework or specific research interest; they may incor-
porate both categorical and continuous variables, interaction terms,
and time-varying covariates. Theoretically, these equations also can
be used to model a non-Markovian process. The estimation of the
parameters in these two equations may be based on either a maximum
likelihood approach for a fully parametric model or a partial likelihood
method for a semiparametric model (Lawless 1982). Inserting relevant
values into the preceding formulas, we may obtain the estimates of
hazard rates for a given population subgroup.

The use of age as a continuous variable needs to be discussed. A
piecewise application in this regard, which has been widely used in
sociology, often is impractical in the life table analysis because of the
restriction of sample size. Even if the sample size is large enough for
each single-year age group, exclusion of the age factor from the
multivariate framework is inconsistent with our model specification.
Additionally, how to statistically evaluate the difference in a life table
indicator between two age groups would be a critical issue. On the
other hand, by treating age as a continuous variable with the specifi-
cation of a given time function, we may readily assess the quality of
relevant parameter estimates by reading standard errors.
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Generally, the survival function with respect to a specific transfer
is intimately related to the hazard rates given by

Si(t) = eXP[—I ()uij(u)du], (5.3)

where S;(#) represents the proportion surviving from a transfer from
state i to state j at time ¢. Note that this survival function refers not to
the gross flows but rather to a single cycle of transitions. A specific
survival function for an observation interval can be derived readily
from a set of hazard rate estimates given a specific time function for
specific transfers. Usually, very small differences between survival
functions can be associated with large discrepancies in hazard func-
tions (Teachman 1983).

Because statistically the joint density for several independent states
is the product of the marginal densities (Greene 1993), the destination-
independent survival function, S;(?), is given by

k+1
S, &y =TT 5:. (5.4)
Jj=1
j#i
As indicated earlier, in the present research we are interested in deriving
a set of discrete survival functions with respect to a 1-year period.
Given the intimate relationship between the survival and proba-
bility functions (Teachman 1983), the age-specific probability for a
specific type of transfers can be calculated as follows:

pyt, £ + m) = SAD =S+ m) 5.5)

S

where p,(t, t + n) is the transfer probability from state i to state j
between time ¢ and time (¢ + n). When ¢ = 0, this equation becomes

pi0, n) =1-Syn). (5.6)

For a state survival function, the timing for a specific transfer can
be viewed as that of the initial transfer from the origin to the destination
states (Allison 1984), and so we also consider p; the initial transfer
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probability from state i to state j between exact ages x and (x + 1).
Similarly, given a Markov process, p; also can be viewed as the
one-step transition probability defined by statisticians, constant
throughout a given age interval (Cox and Miller 1978; Karlin and
Taylor 1975). When a specific time function is defined, we may readily
identify the exact timing for the first transfer from state i to state j and
the remaining time in the interval for the occurrence of another
transfer.

For the transfers from hospital to other states, the annual age-
specific transfer probabilities also can be viewed as those for each
transfer cycle, under the assumptions that all hospital patients would
be discharged within the same year as they are admitted and that such
transfers are linearly distributed. Theoretically, when a multiple des-
tination-specific transfer occurs and another cycle can be completed
within the truncated time interval, pj(x) = p;(x) where pj(x) represents
the probability of multiple occurrences within a shortened time period.
Specifically, we let all p;(x) be p,,(x).

When the remaining time within a given age interval is not long
enough for the completion of a cycle, the value of a given probability
of multiple occurrences would be smaller than the corresponding p;.
Assuming a constant probability density function within a specific
age, the probability of multiple occurrences would simply change
proportionally with the truncation of the age interval such that

Y=

pl:(x) = pq(x) Q,-(x)’

6.7
where V; is the days remaining in the age interval, exposed to experi-
encing a multiple transition from state i to state j, and Q, refers to the
number of days required for the completion of an annual cycle. (It is
operationally defined as 365 days for transfers from community and
nursing home because the average lengths of stay in these two states
usually are beyond a year.) On the other hand, if the function of
constant forces of transfers (i.e., exponential function) are posited,
then such a conditional probability would change exponentially with
the linearly truncated central rate such that

P;(x) = p;(IV; < Q; = M'(x, 1)exp[0.5M"(x, 1], (5.8)
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where M" denotes the force of multiple occurrences within a truncated
period, defined as

M, ifQ,<V,
M= . 59
oy,

Because the occurrence of a multiple destination-specific transition -
involves more than two consecutive moves within a single age, fitting
a linear change in p; with the truncation of the central rate would not
pose much threat to the accuracy of estimating a discrete life table
model in this context. For ease of computation, we may use the
following approximate equation given constant forces:

Vi(x)
0/x) '

Pii(%) = py(x) (5.10)
This approximate equation also can be used for other time functions
when the accurate derivation of the probabilities of multiple occur-
rences is unduly complicated.

DERIVING LIFE TABLE INDICATORS

In this subsection, we consider parallel independent runs of the
Markov chain and the related spacings between realizations within a
1-year interval (Smith and Roberts 1993). With the availability of
various transfer probabilities, we may estimate the values of /; and dj;,
the number of transfers from state i to state j. To generate these
indicators, we make three additional assumptions. First, we allow
three return flows to hospital within a single age. Second, between the
community and nursing home, one return flow is allowed within a
single age because the transitions initiating from these two states are
relatively infrequent. Third, only one transition is allowed before death
within each age interval. We start with /,(0) = 100,000 (community is
the initial state in this context). The estimation of the number of
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survivors at the onset of each age and the number of transfers from a
given state to another within a 1-year interval are based on the principle
of Chapman-Kolmogorov relation (Cox and Miller 1978), given by

K+1

pf,'""zp(" D) (n=1,2,..), (5.11)

where p{ is defined as the probability of being at state j at time n for
those who are at state i at time 0, termed “n-step transition probability”
(Cox and Miller 1978). Similarly, p§~" is an (n — 1)-step transition
probability and p{) is a one-step transition probability. This Markov
process equation indicates that, with the presence of repeated transi-
tions within a limited time interval, the n-step transition probability is
virtually the outcome of a series of one-step transition probabilities
within period n. The transfer probability p; reflects only a single move
from states i to j and may not be relevant to the conditional probability
distribution on k states (Karlin and Taylor 1975).

Given the aforementioned three assumptions, Equation (5.11) will
give rise to the pattern of the multidimensional random walks in health
care and the following equations to estimate /,(x) sequence, assuming
a constant probability density function.

lo(x + 1) = L(x){1 = [Pen(%) — Pen(¥)Pyc(x)
= Per()PunX)Z(X)Pnc(x) = Per(X)Pin(X)Z1 (X)P,in(X) P (x)]
- pcd(x) - [pcn(x) - pcn(x)o'spnc(x) - pcn(x)o'spnh(x)phc(x)]} (5 12)
+ L) {Pac([1 = 0.5pe1(x) = 0.5pc4(¥)Ppa(X) = 0.5pc4(x)] '
+ [Pan)Pc0)] = [Pac(0)0.5peu (N[ ¥4(x)/21} + L (x){ [Prelx)
+ Prn()Z2(X)Puc(¥) = Pre(¥)Z5(¥)Pey(x)]
= [P Z, ()P (V[ Y5(x) — 0.5]} = [L(x)pen(x))/ Y (x)

L(x+1) = L) { 1= [pun(X)~ Pun(*¥)Ppa(X)
- pnh(x)phc(x)z l(x)pcn(x)—pnh(x)phc(x)z 1 (x)pcn(x)phn(x)]
- pnd(x) - [pnc(x) - pnc(x)o'spcn(x) - pnc(x)0~5pch(x)phn(x)]} (5 13)
+ L) {Pen(D)[1 = 0.5 (%) = 0.5p(X)Ppc(x) — 0.5ppg(x)] '
+ [Pen()Pun(*)] = [Pen(¥)0-5pun OV [Y1(x)/21} + b(x){ [Pra(x)
+ Pre(D)Zo(X)Pen(®) = Pra¥)Zo(X)Ppa(¥)] = [Pra¥)Zo ()P (¥))/[Y1(x)
= 0.5]} - [PV Yi(x)
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Lix + 1) = [PV Yi(x) + [L()Pun())/ Y3(x)

+ [P () Z(X)pen (D) V[ Y3(x) — 0.5]

+ [P Zo)Pum(X) /[ Y1(x) — 0.5] (5.14)
+ [L()Pen(3)0. 5PV [ Y (x)/2]

+ [L()P(x)0.5pen () V[ Y3(x)/2]

In these equations, Y, denotes the number of cycles of hospital admis-
sion in a year, which can be estimated by 365 divided by the average
length of stay in a hospital, Q,. In addition,

Z(x) =[0.5Y,(x) - 1)/Y,,(x)
and
Zy(x) = [Y}(x) = 0.5)/Y,(x).

It is clear that a multiple transition probability from one state to
another within a truncated time period is viewed as proportional to the
initial transfer probability, with Zs and other numerals as the multi-
plicative factors to derive these recurring probabilities. Because a
sequence of possible transitions is included within each brace in
Equations 5.12 and 5.13, a set of n-step transition probabilities also
can be calculated in the form of these equations. For example, the term
within the first brace in Equation 5.12 yields the estimate of the
conventional n-step transition probability from C to C (T,.), that is, the
probability of being in the community at exact age (x + 1) for those
who are in the community at exact age x. Similarly, the terms within
the second and third braces of Equation 5.12 calculate the n-step
transition probabilities from the nursing home and the hospital, respec-
tively, to the community between exact ages x and (x + 1) (%, and 7).
The final term estimates the number of survivors who are in the
community at age x and in the hospital at age (x + 1), serving as a
correction factor.

In these equations, only the multiple transitions are relevant to the
linear function given that p;’s are derived directly from multivariate
survival analysis. Hence these equations also can be used for other
time functions given Equation 5.10. Our empirical data analysis shows
that the estimates of a given /(x) derived from two different time
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functions are identical within the framework of a complete life table.
There are some other combinations of transition probabilities, such as
PurPrnPunPre> Which are not included in the first two equations. This is
because the chance of making so many transitions within a 1-year
period would be negligible and the exclusion of them would not
disturb the construction of a multistate life table.

Next, we estimate the number of transfers from one state to another
so as to calculate the person-years lived in each transient state beyond
a given age, using the empirical data of the average length of stay in
that state. Because the average length of stay in community is un-
known and sometimes is meaningless, we calculate the number of
transfers to the other two states first according to the Chapman-
Kolmogorov principle and the assumptions stated earlier. Specifically,
the distribution of survivors at initial time and the pattern of the
“multidimensional random walks” (Karlin and Taylor 1975), as seen
through a set of one-step transition probabilities, would lead to the
following formulas.

dop®, 1) = L@Pa{ 1 + [(%®) = 2B Ipre(X)pa®)
+ [(H0) = DG — 10V/BY (2P0 P . . -} (5.15)
+ 1P )05y (D +Pr (PO Z (X)Prs()] - .

dn,h(x$ 1) = ln(x)pnh(x)[l + phn(x)zl(x)pnh(x)
+ Zy(0)Z,(X)Pn(X)Pun(¥)” . . ] (5.16)
+ ln(x)[o'spnc(x)pch(x) + Zl(x)pnh(x)phc(x)pch(x)] v

dii(x, 1) = LN Zp() PP 1 + Zy(X)Ppc(X)Pen(x)
+ ZyO)Prm)Pan(®) - - -1} + 5(X)Zo(X) P (K)o (X) (5.17)
{1 + Z,()Ppn(X)Pan(x) + Z4(X)Pp()Pen(®) - - .}

dc.n(x’ 1) = lc(x)pcn(x)[l + O'Spnh(x)phn(x) .. ]
+ LOPa PO + Z,(X)Pur(X)Ppal) - - -] (.18)

Ay (%, 1) = P[] + Zo(X)Pa(X)Pha(x)
+ ZZ(x)ZS(x)pnh(-x)zphn(x)2 + Zz(x)Z6(x)pncpcn L] ] (519)
+ L) ZX)Prc([Pen(X) + Pen(X)Pun(X) - - -]
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A (%, 1) = L ()Pre()0.5[Pen(¥)+Pen(X)Pia ()] (5-20)
+ LPum()[Pm(®) + Zi(X)Pre(X)Peal) - - .},

where d, (x, 1) denotes the number of transfers to state j between exact
agesx and (x + 1) for those who are in state i at exact age x. The ellipsis
dots represent possible but negligible terms. In addition,

Zy(x) = [0.25Y,(x) - 1)/Y,(x),

Z,(x) = [0.5Y,(x) — 1.25/Y,(x),
Zy(x) = [Yy(x) - 2.51/2Y,(x), and
Zy(x) = [0.5Y,(x) - 0.25]/Y,(x).

The Zs are the multiplicative factors to calculate the number of
recurring events. These equations illustrate that the estimation of the
number of transfers within a 1-year period takes into consideration the
multiple transfers within a 1-year interval according to the imposed
conditions. Knowing these numbers, we may further calculate the
person-years lived in hospitals and nursing homes by those who have
made the transfers during the age interval as follows:

L) = [dep(x, 1) + do(x, 1) + dy(x, 1] * [Q4(x)/365] (5.21)
and
LX) = [denx, 1) + diy (%, 1) + dy o (x, D] * [Q,(0)/365],  (5.22)

where 'L,(x) and "L,(x) are the person-years lived in hospitals and
nursing homes, respectively, by those who have moved to hospitals or
nursing homes between exact ages x and (x + 1). We put a superscript
asterisk to this indicator because it differs intuitively from the conven-
tional L(x), given that the person-years lived by those who have made
relevant transfers are not necessarily positioned between exact ages x
and (x + 1). Although this age-crossing phenomenon may influence
the implication of this indicator, it would not affect the derivation of
the cumulative person-years lived beyond exact age x, often referred
to as T(x).
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The estimation of such cumulative person-years lived is based
primarily on the "L,(x)’s. Because "L,(x) covers only the years spent by
the new entries, we must take into account the years spent by those
staying in state i at the beginning of the age. Assuming that the entries
into a state are evenly distributed, we have

T,®) = Y, "In(i) + h(x) 1Q,(x)A2'365)] (5.23)

i=x

and

T,() = Y, "Ly(i) + h(0)'TQ,(x)/(2'365)], (5.24)

i=x

where ® denotes the upper limit of a life span.

The life expectancies in the hospital and the nursing home beyond
exact age x, denoted by e,(x) and e,(x), respectively, are calculated as
follows:

en(x) = Ty(x)/l(x) (5.25)
and
e,(x) = T,(x)/I(x), (5.26)

where [(x) represents the number of survivors at exact age x, usually
obtained from the complete single decrement life table.

The corresponding indicators with respect to the community state
are calculated as

T(x) = T(x) - Ty(x) - Ty(x) (5.27)
and
e(x) = T (x)/l(x) = e(x) — e,(x) - €,(x), (5.28)

where T(x) represents the aggregate cumulative person-years lived
beyond exact age x.
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6. APPLICATION

In this section, we contrast two sets of multistate life table indica-
tors, derived from the traditional linear method and our new estimating
procedure, using data of health care use among U.S. civilians during
the mid-1980s. The purpose of the comparison is to highlight the need
for a unique algorithm for events with rapid processes. To make the
application conform to the state space specified previously, we distin-
guish four states in this context: community, short-stay hospital,
nursing home, and death, with death as an absorbing state and the
others as transient states.

DATA AND OPERATIONALIZATION

Data for the application came primarily from several national
probability sample surveys including the 1985 National Nursing
Home Survey (NNHS), the 1985 National Hospital Discharge Survey
(NHDS), and the 1987 National Medical Care Expenditure Survey.
The data from the first two surveys are used to capture the pattern of
the risk and duration of nursing home and short-term hospital stays
during the mid-1980s. The 1985 NNHS covered all types of nursing
homes that provided some level of nursing care in the conterminous
United States. The sampling was basically a stratified two-stage
probability design, with the selection of facilities as the first stage and
the selection of residents, discharges, and registered nurses as the
second stage. Whereas this survey included two subsamples dealing
with current residents and discharges in the previous year, a merged
data file was constructed involving all nursing home residents in the
year prior to the survey. The merged file involved 11,129 respondents,
both current residents and discharges, and incorporated a number of
variables such as date of birth, date of interview, sex, marital status,
whether the respondent was a current resident, destination of discharge
if it occurred, and dates of admission and discharge. Such information
permits dynamic analysis on the transitions from nursing home to
other states.

The 1985 NHDS encompassed patients discharged from noninsti-
tutional hospitals located in the 50 states and the District of Columbia,
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with the National Master Facility Inventory (NMFI) constituting the
sampling frame. (NMFI is a census of all inpatient health facilities
conducted periodically by mail by the National Center for Health
Statistics.) It is assumed that all hospitalized patients in short-stay
hospitals would be discharged in the same year as they are admitted.
The data file contained about 200,000 cases and a number of variables
including dates of admission and discharge, date of birth, sex, race,
marital status, destination of discharge, and length of stay. Given the
large sample size, a 5% random sample of respondents was selected
for data analysis. Due to the execution of the multivariate survival
analysis, an effective parameter estimating approach, the use of a large
subsample would not pose serious threats to the quality of the life table
construction. Like the NNHS data set, the NHDS provided sufficient
information to execute an event history analysis for the transfer
probabilities from hospital to other states.

For the transfers from the community to other states, we used the
1987 National Medical Care Expenditure Survey as the major data
source. This survey covered the entire civilian noninstitutionalized
population of the United States. The sampling used a stratified multi-
stage area probability sample design. The data in the person file
included age, sex, race, marital status, employment status, health
status, and the like. Although the file consisted of information on
hospitalization (whether the respondents had been hospitalized in the
prior year), the status of institutionalization was unknown. However,
the number of occurrences from the community to the nursing home
can be derived from the NNHS using weights and information on
residence before institutionalization. Similarly, the transitions from
the community to death may be estimated as a residual after capturing
the risk and number of deaths in hospitals and nursing homes.

First, we employed the multivariate survival analysis to estimate
the transfer probabilities from short-stay hospital or nursing home to
other states, using the equations specified earlier. Cox proportional
hazard rate models with competing risks were used because specific
time functions of transfers within a 1-year interval were not of concern
in this application. In estimating the survival functions, we used
Kalbfleisch and Prentice’s (1980) method to derive the baseline hazard
rate for operationalizing Equation 5.3. To construct a period life table,
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the duration in the origin state was defined as the length of stay during
the previous 1-year period. Therefore, for those who were in the origin
state at the beginning of an age, the starting date of the period, rather
than the date of admission, served as the onset of the observation
period given the assumption of a Markov process.

Because each destination state represents an independent event
type, we employed a separate model for the transfers from a given
origin state to each destination state, treating the other types of
transfers as censored cases. Age, sex, race, and marital status were
included as covariates in these hazard models. Age, a continuous
variable, was defined as the age at the beginning of the observation
period. Sex and race were indexed by two dummy variables, with
“female” and “White” coded 1. Because there was a large number of
missing values on marital status in both data sets, we created two
dummies, “currently married” and “not currently married,” for this
variable, with “others” coded 0. Therefore, the “missing” cases were
treated as a reference group. In deriving the transfer probabilities,
exact ages and age-specific sample means of other covariates were
inserted into Equations 5.1 and 5.2.

With respect to transfers from the community to other states, a
binary logit model was executed to estimate the transfer probabilities
from the community to short-stay hospitals because the exact timing
for making such transfers is not available in the data. The probability
of death, as indicated earlier, was derived by substracting the observed
deaths in hospitals and nursing homes from the total number of deaths
in 1985, which was obtained from the 1986 Demographic Yearbook
(United Nations 1988), and then calculating the observed death rates
that were finally transferred into probabilities. The results of the
multivariate analysis, not presented here, are available on request.

For the transfer probabilities from the community to nursing homes,
first the age-specific transfer rates were calculated using data of the
1985 NNHS and 1987 National Medical Care Expenditure Survey, as
indicated previously, and then transferred into probabilities. Because
the latter survey, which provided estimates of mid-year population,
involved only a portion of deaths, the transfer probabilities thus
derived may be overestimated to some extent. Such a bias, however,
would not be serious in terms of the construction of a multistate life
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table because most deaths, among older adults in particular, tend to
occur in hospitals and nursing homes and also because the community
involves a huge base population.

We used the transfer probabilities as inputs into acomputer program
that operationalized the newly developed algorithm, as specified by
Equations 5.12 through 5.28. The age-specific average lengths of stay
in short-stay hospitals and nursing homes were derived from the 1985
NHDS and NNHS. A complete multistate life table, both by single
year of age and by the birth of a synthetic cohort, was then constructed,
reflecting the patterns of health care use for U.S. civilians during the
mid-1980s.

The application of the conventional linear method, on the other
hand, was based on traditional perspectives. We first created the
observed age-specific occurrence/exposure rates from the three data
sets and then estimated the life table summary measures using
Schoen’s (1988) computer program. In calculating the occurrence/
exposure rates, all events of a particular transition type within an age
interval were counted, and the mid-period population was used as the
proxy for exposure. Because all hospital admissions were assumed to
be discharged in the same year as they were admitted, the exposure of
the transitions from hospital to other states within a 1-year interval
was estimated as about half of all discharges. Because the life expec-
tancy at birth thus derived tends to be overestimated due to the
inadequate assumption on the frequency of turnovers in short-stay
hospitals, relevant life table indicators in the three states were adjusted
according to the 1985 national life table, recognizing the pattern of
distribution.

RESULTS OF TWO MULTISTATE LIFE TABLES

Although the traditional linear method is essentially a bivariate
procedure, we hold that the two aforementioned schedules are highly
comparable. First, we used age-specific sample means of the four
explanatory variables to generate the transfer probabilities so that they
would be fairly close to bivariate estimates for large samples. Second,
although Keyfitz (1985) revealed the biases of ignoring population
heterogeneity in estimating central rates, they were not sizable when
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only a few covariates were considered. Therefore, the differences in
the estimates of various life table indicators, as shown subsequently,
would arise mainly from the discord of the two estimating procedures.

Table 1 compares the age-specific transition or transfer proba-
bilities derived from the two approaches. The differences are striking.
Although there is no solid base to judge which method is valid simply
from the differentials in the probabilities originating from the commu-
nity and nursing homes, a comparison of the pattern of transitions from
short-stay hospitals to other states provides instructive insights. When
applying the traditional method, which does not permit multiple
destination-specific transfers within a single age interval, a sizable
percentage of hospitalized patients presumably would remain in short-
stay hospitals 1 year later (at almost all ages, it is more than 20%).
Even at the youngest several ages shown in the table, only about three
fourths of these people would return to the community by the end of
the 1-year period. Both phenomena obviously are unrealistic. Because
the origin-specific transition probabilities always sum to unit, the
estimation of the probabilities to the other two states also would be
influenced. By contrast, the results from our new procedure illus-
trate that none of the hospitalized patients would remain in a short-stay
hospital throughout a 1-year period and that the chance of returning
to the community remains greater than 90% before reaching age 50
years. These contrasts on the transitions from hospital to other states
are perhaps the strongest evidence that a traditional accounting proce-
dure does not possess the capability to model the events with frequent
turnovers.

It must be noted that the two sets of probabilities reflect different
concepts, as indicated earlier. However, our algorithm is capable of
deriving the traditional transition probabilities, also as indicated ear-
lier. It would be helpful to compare some transition probabilities (7;)
using both the proposed method and the traditional approach. In our
system, for example, 7t.(80), .,(80), 7t.(80), and 7,,(80) are estimated
as .8779, .0049, .0988, and .0056, respectively, in contrast to .7438,
.1822, .0398, and .2705 as derived from the traditional method. It is
evident that our program provides more reasonable estimates.

Table 2, which compares three life table summary measures by age,
further shows the differences. Let us look at the /,(x) sequence first.
The traditional method generates many more survivors in short-stay
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hospitals at each of the selected ages than does the new model;
accordingly, the proportions of survivors in the community and in
nursing homes appear substantially lower given an identical number
of total survivors. Such differences also are reflected in the estimates
of cumulative person-years lived beyond the selected ages; each of the
T,(x) values from the traditional method appears substantially higher
than that from the new approach. Not surprisingly, given this pattern,
a U.S. civilian would be expected to spend about 67.54 years in the
community, 5.56 years in a short-stay hospital, and 1.68 years in a
nursing home. Obviously, such a distribution is totally unrealistic,
particularly for the life expectancy in a short-stay hospital, which in
turn reduces the life expectancies in the community and nursing homes
given a fixed average remaining years of life. By contrast, our model
produces much more reasonable results. The life expectancies at birth
in the three states are 72.35 years in the community, 0.16 year (59.5
days) in a short-stay hospital, and 2.28 years in a nursing home. This
is because our estimation procedure takes into account the frequent
turnovers of hospitalization and institutionalization and uses the infor-
mation regarding the average length of stay in a hospital and a nursing
home for each episode; hence the frequent multidimensional transi-
tions in health care use are captured.

7. DISCUSSION

We have introduced a new algorithm that takes into account the
multiple sequences of transfers per single age. The system is an
adaptation of the standard multistate accounting procedures to char-
acterize social events involving intense and rapid processes. We make
specific theoretical assumptions about the frequencies of turnovers
and use information on the average lengths of stay in relevant states
to estimate the risk and duration of health care use. If this stochastic
process is assumed correctly, then the estimating system described in
this article provides fairly reasonable life table indicators.

We also have made an effort to employ multivariate survival
analysis generating transfer probabilities as the primary inputs, as have
other researchers (Gill 1992; Guilkey and Rindfuss 1987; Guralnik
etal. 1993; Land et al. 1994). In addition to the statistical implications
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of taking some population heterogeneity into account, multivariate
survival analysis may have potential for developing a non-Markovian
model because the effects of previous health care events can be
addressed. However, this will require a much more complicated
procedure to model probabilities of multiple transfers, which will be
assumed as a function of previous transitions within a non-Markovian
system.

The construction of multistate life tables to generalize events with
rapid and recurring processes could have extensive applications in
sociology, generating important policy implications and new research
orientations. For example, sociologists studying mental health can
gain insight from integrating the transitions in mental health status into
a life table framework. Researchers in employment and occupation
may increase their understanding of risks for various transitions and
durations in working states, including short-term employment. Our
method can be readily adapted to modeling these phenomena provided
that the average length of stay in the short-term state is known.

This approach also can be used to model transitions among more
states given its flexibility in using average length of stay as the primary
variable in calculating life table summary measures. For example, if
data were available, we might incorporate long-term hospital stays as
an independent transient state. The pattern of flows both to and from
this state would be examined through various transfer probabilities
and age-specific life expectancies in conjunction with the dynamic
patterns of other states.

Questions may be raised about the estimation of the "L(x) sequence.
Because some of those who have moved into a given state within an
age interval may stay there beyond this age, this type of indicator does
not possess the primary nature of the conventional L(x). However,
such an age-crossing phenomenon would not disturb the construction
of Ti(x), acumulative indicator, because it counts all person-years lived
beyond a given age. In our new system, *L(x) lacks intuitive meaning
and is used only for estimating summary indicators such as 7;(x) and
e(x). If needed, however, the conventional L(x) sequence can be
readily estimated from two adjacent T(x) values.

It may be argued that repeated events and multiple spacings can be
readily addressed with the application of the traditional mean duration
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method, but this is not the case. As we have pointed out, multiple
transitions always occur within a truncated time interval, and the mean
duration for transfers in a limited time interval is a function of their
orders within the context of health care. An adaptation of the mean
duration method, taking into account the order of transfers within a
single age interval, may yield better estimates. However, the length of
stay in certain states (e.g., nursing home), a function of age in health
care use, still would be misspecified because of the restriction of a
limited time interval. In addition, traditional approaches, when applied
to social phenomena with rapid processes, cannot give the valid
estimates of the number of transfers that are required to execute the
mean duration method.
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