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Abstract: Spindle speed variation has been shown to be an effective method for chatter control. In this paper,
a single-degree-of-freedom regenerative type chatter equation is treated using perturbation methods. Rather
than using the time coordinate, the angle of revolution is taken as the independent coordinate for maintaining a
constant delay in the equations. The spindle speed is taken to be harmonically varying about a constant mean
speed. Approximate analytical solutions are sought using the method of strained parameters, a perturbation
technique. The amplitude of speed fluctuations (&epsiv;) is assumed to be small, and solutions are constructed using
this parameter as the perturbation parameter. The stability lobes for constant spindle speeds are calculated
exactly. By using the approximate perturbation analysis, the gain in stability is calculated for variable spindle
speeds. The analysis is valid for (&epsiv;) values up to 0.02 (i.e., 2% of the constant mean speed). Solutions are
verified using numerical simulations of the original equation.
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1. INTRODUCTION

A fundamental problem in machine tool dynamics is the elimination of chatter vibrations.
Chatter reduces the tool life, causes poor surface finish, and leads to alignment problems
and damaged bearings. Extensive research has been done on understanding the mecha-
nisms behind chatter and on the elimination of unwanted vibrations. The fundamentals

of chatter are outlined in Arnold (1946), Tobias (1965), and Welboum and Smith (1970).
Three basic mechanisms are known to be effective in causing chatter: (1) mode cou-

pling, (2) velocity dependent effect, and (3) regenerative effect. Among these three, the
regenerative effect is the most influential. When a cutter removes chips from the work-
piece, a wavy surface is left behind. In the next turn, another wavy surface, out of phase
with the previous one, causes variations in the depth of cut, which then alters the cutting
forces. These alterations in the cutting forces due to tool and workpiece interactions lead
to self-excited vibrations. When the amplitudes of these vibrations become large, chatter
occurs.

One of the effective ways of reducing chatter is to vary the spindle speed continu-
ously. This method was first proposed by Stoferle and Grab (1972). Inamura and Sata
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(1974) then used function space theory to understand the effectiveness of this method.
Due to some oversimplifying assumptions, their method predicted gains in stability much
higher than those numerically and experimentally observed. Sexton, Milne, and Stone

(1977) repeated their analysis, corrected the unjustified assumptions, and found mod-
erate improvements. However, the results they found are qualitatively different from
their analog computer simulations (Sexton and Stone, 1978). Although theoretically they
determined stability lobes, they could not find definite lobes in the case of analog com-
puter simulations. Takemura, Kitamura, and Hoshi (1974), Inamura and Sata (1975),
and Hoshi, et al. (1977) experimentally investigated the suppression of chatter by spin-
dle speed variation. Sexton and Stone (1980) predicted the transient vibration behavior,
which may be harmful even though the system reaches a final stable solution, through ex-
periments and analog computer simulations. Lin, DeVor, and Kapoor (1990) investigated
the spindle drive characteristics and showed that sinusoidal variations can be tracked more
precisely than some other periodic waves in practice. Their experimental and numeri-
cal simulations proved that vibrations can be suppressed substantially by continuously
varying the spindle speed. They searched for optimum values of fluctuation amplitudes
and frequencies of the spindle speed. Tsao, McCarthy, and Kapoor (1993) considered
a single-degree-of-freedom regenerative chatter equation in revolution angle coordinates
rather than using time as the independent variable. This formulation transforms the time-
varying delay equations into a system with fixed delay. A finite difference scheme is used
in analyzing the stability of the system. Stability lobes are calculated numerically for
variable speeds.

One of the inadequacies of the linear theory is that the unstable vibrations grow in-
definitely, which is a contradiction of what is observed experimentally. Two mechanisms
to overcome the discrepancy have been proposed: one is the multiple regenerative ef-
fect and the other is the nonlinearities of both structural and regenerative type. Kondo,
Kawano, and Sato (1981) investigated the multiple regenerative effect. Lin and Weng
(1990) developed a nonlinear model and solved this model using the method of multiple
scales, a perturbation technique. Nayfeh, Chin, and Pratt (1996) used another nonlinear
model first proposed by Hanna and Tobias (1974). The model includes the quadratic and
cubic stiffness terms of the machine tool as well as linear, quadratic, and cubic regenera-
tive terms. Using the method of multiple scales, the harmonic balance method, and direct
numerical integration, they predicted limit-cycle, quasi-periodic, and chaotic behavior of
this model.

Perturbation methods are very effective in analyzing vibration phenomena. Because
they yield approximate analytical solutions, a better understanding of the problem can
be achieved when combined with numerical techniques. In this work, for the first time,
we apply perturbation techniques to the variable spindle speed chatter problem. The

nonlinear analyses by Nayfeh, Chin, and Pratt (1996) and Lin and Weng (1990) do not
address the variable spindle speed case.

In this paper, we apply perturbation methods to obtain approximate solutions to the
chatter problem with spindle speed variations. Following Tsao, McCarthy, and Kapoor
(1993), we consider a single-degree-of-freedom linear chatter equation in revolution an-
gle coordinates, since the fixed delay equations are more appropriate for a perturbation
analysis. This is the basic model (i.e., linear, single degree of freedom, single regenerative
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effect) widely used for the analyis of chatter vibrations in turning, and we employ it here
as well. The method of strained parameters is used as our perturbation technique. The
increases in the stability regions compared to the constant speed problem are calculated
for variable spindle speeds. The perturbation parameter is selected as the amplitude of the
speed fluctuations. We compare our results to those presented by previous researchers.
We found that the proposed perturbation analysis is only valid for very small amplitudes
of the speed fluctuations. Resonant frequencies to be avoided are determined. Results are
verified using numerical integrations of the original equations.

2. MODELING AND ANALYSIS

In this section, we treat the one-dimensional linear regenerative type chatter equation ex-
pressed in angle coordinates. The spindle speed is assumed to vary harmonically about a
constant mean speed. Approximate analytical solutions are presented using the method of
strained parameters, a perturbation technique (Nayfeh, 1981). We chose the perturbation
parameter as the amplitude of the speed fluctuations because the varying component of
the spindle speed is small compared to the constant mean part. Analytical expressions for
determining stability are presented in this section, and the relevant numerical results are
given in the next section.

2.1 Formulation of the Problem

Following Tsao, McCarthy, and Kapoor (1993), we write the single-degree-of-freedom
regenerative type chatter equation as follows:

All variables are in angle coordinates 0, and prime denotes differentiation with respect to
this coordinate. This form is convenient, especially for our perturbation analysis, because
the time varying delay term is converted to a constant delay term. Because t = t(0) is a
monotonic function, the stability analysis in the 0 domain is similar to that in the t do-
main (Chen, Ulsoy, and Koren, 1992). The variable x(6) is the relative cutter-workpiece
displacement, co is the spindle speed, ~ is the damping, and K is the cutting force coef-
ficient. All quantities in equation (1) are nondimensional. They are obtained from the
dimensional quantities (denoted by asterisks) through the following relations:

where L is a reference length and co&dquo; is the fundamental natural frequency of the system.
To proceed further, we assume that the spindle speed variation is of the following

form:
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where coo is the constant mean spindle speed and E and Q are the amplitude and fre-
quency of the speed variation, respectively. In practical applications, the fluctuations are
small compared to the mean velocity, and hence E < < 1. This justifies taking E as the
perturbation parameter in search of approximate solutions.

2.2. Approximate Analytical Solution

Before applying perturbations, we first transform equation (1) by defining the new vari-
able y(6) as follows:

This form is more convenient in representing the growing and decaying solutions ob-
served in chatter vibrations. Substituting equation (4) into equation (1), we have

We seek solutions in terms of our natural perturbation parameter E as follows:

We find that the method of strained parameters (Nayfeh, 1981) is best suited as a pertur-
bation technique for this specific problem. First, y is expanded as follows:

Substituting equations (3), (6), and (7) into equation (5) and separating terms at each
order of E, we obtain

Order 1
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At order 1, we assume a solution of the form
. m -

where A is a complex constant and cc stands for the complex conjugate of the preceding
terms. Substituting equation (11) into (8), separating real and imaginary parts, we obtain

For a given mean spindle speed and cutting force coefficient K (~ is assumed fixed for
a specific system), equations (12) and (13) can be considered as two nonlinear algebraic
equations with unknowns yo and 11. Once these terms are solved, from equations (11) and
(4), the constant spindle speed solutions are retrieved, the theory of which is well estab-
lished. It turns out that there are an infinite number of (Yo, 11) pairs satisfying equations
(12) and (13). This fact is pointed out in Nayfeh, Chin, and Pratt (1996) also. If all yo are
negative, the solutions are decaying, and if at least one of the yo values are positive, the
solutions are exponentially growing. The yo = 0 condition yields the well-known stability
lobes separating the stable solutions from the unstable solutions. The stability lobes and
the solutions of equations (12) and (13) will be further discussed in the Numerical Results
section.

At order E, we substitute yo given in (11) into the right-hand side of equation (9).
Three different cases arise: (1) 0. ~ 0, (2) 0. ~ 211/COo and (3) S2 away from 0 or 2r)/Mo.
In the previous work, the frequency values for suppression of chatter are usually chosen to
be not very close to zero, hence the 0. ~ 0 case will be discarded. Case 2 yields very high
fluctuation frequencies, which are hard to attain practically. In fact, this case is a resonant
case and destabilizes the system rather than stabilizing it even at order E. For bounded
solutions of the constant spindle speed (yo = 0), it can be shown that the boundaries

separating stable and unstable solutions in the frequency-amplitude (Q-E) plane are

When damping is extremely small, this region tends to close, as can be verified from the
second term. The frequency 11 is usually an O ( 1 ) term, and if the dimensionless speed
coo = 0.2, then 92 ~--- 10, which is very high compared to the practically used frequency
range of 0 < S2 < 0.4 (Tsao, McCarthy, and Kapoor, 1993). For systems with very high
spindle speeds, 211/coo values may decrease drastically, making it necessary to consider
this resonant frequency. To the best of the authors’ knowledge, this primary resonant
frequency has not been reported.

To obtain the stabilizing mechanism reported theoretically and experimentally in pre-
vious studies, we therefore consider that the fluctuating frequency is always away from 0
or 211/ COo (i.e., Case 3). Elimination of secular terms for this case yields
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A solution for yl can therefore be written in the form

where ci and c2 are complex constants defined in the appendix (equations (Al) through
(A 10)).

At order E2, we substitute equations (11) and (16) to the right-hand side of equation
(10). Two different cases arise: (1) 0. ~ 11/COo and (2) SZ away from 11/COo. Again, l1/COo
is a relatively high frequency, which in practice would be hard to track in working mech-
anisms at reasonable mean speeds and hence is discarded. For Case 2, then, elimination
of secular terms yields

where h, g, b, and e terms are all defined in the appendix. We calculated only the real part
of yoy2, since this is the component contributing to the stability of the system. Substituting
equation (17) into (7), we have

where ~y&dquo;1 is the approximate value of y. The new stability boundaries can now be found
by taking ym = 0. Because we have an infinite number of zoo, on the new stability bound-
ary, only one of the ym will be zero, with all others being negative numbers. Numerical
calculations of Ym, as well as the stability boundaries, will be presented in the next section.

Rather than numerically integrating the original equations, which requires high costs
in terms of computational time, we presented an approximate analytical solution that
requires solution of a nonlinear algebraic equation and evaluation of some coefficients,
thereby reducing the computational time drastically. The analytical approach provides a
better understanding of the dynamics of the problem. We obtain the resonant frequencies,
which are hard to detect using pure numerical techniques. If the analysis had been cairied
out to higher orders, we would have found that the frequencies at which resonance may
occur would be

For an increasing n, the resonances will be weaker, with the primary resonance corre-
sponding to n = 1. We showed that n = 1 in fact does yield instability, but a further
investigation of stability is needed for n > 1.
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3. NUMERICAL RESULTS

Numerical results for constant spindle speed and the effect of speed variation on the
stability of the system will be presented in this section.

3.1. Constant Spindle Speed

To determine the stability lobes analytically for constant speeds, we take yo = 0 in equa-
tions (12) and (13):

Squaring and adding both equations, and solving for the frequency 11, we have

For a given ( and K, the two different 11 values correspond to the left and right arms of a
stability lobe. For the case of

we obtain the minimum points of all stability lobes, that is, the line represents the tangent
line to the minimum points of all stability lobes. Below this value of K, we always have
stability irrespective of the mean velocity.

Substituting equation (22) into (20) and solving for coo, we have

Each n corresponds to a different lobe. In Figure 1, the stability lobes for = 0.005 (solid)
and the stability lobes for ~ = 0.05 (dashed) are presented. There is a net stability gain
when damping is larger, as can be seen also from equation (23). Figure 1 (solid lines) is
similar to that given in Tsao, McCarthy, and Kapoor (1993, Figure 4), with improvements
in our results at lower spindle speeds. Note also that the spindle speed range considered
is greater in our figure.

The stable (decaying) solutions under the stability lobes and the unstable (growing)
solutions above the stability lobes can be detected analytically by solving equations (12)
and (13) for a given (Do and K value. Although the equation modeling the motion is a
second-order differential-difference equation, due to the delay term, the modes of vibra-
tions are infinite in agreement with Nayfeh, Chin, and Pratt (1996). We therefore have an
infinite number of (yo, 11 ) pairs. Below the stability lobes, all yo are negative, and hence
the solutions are decaying. Exactly on the stability lobes, one yo is zero while all others
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Figure 1. Stability lobes for constant spindle speed case with damping § = 0.005 (solid) and = 0.05 (dashed).

are negative (decaying in time). Above the stability lobes, one or more yo are positive, and
the solutions grow in time. Numerical values of some of the (yo, 11) pairs are presented
in Table 1 and in Table 2 for sample growing solutions. Note that only the largest several
roots are presented.

We also integrate numerically the original differential-difference equation using a
Runge-Kutta method. In the first revolution (0 < 0 < 2vc), the delay term is taken as zero,
and in the following revolutions, the delay term is taken into account as in Nayfeh, Chin,
and Pratt (1996). Sample plots are given for stable (Figure 2), bounded (Figure 3), and
unstable (Figure 4) solutions.

3.2. Spindle Speed Variation

When we superpose the harmonic fluctuations onto the constant mean spindle speed,
our perturbation solution indicates that there is a correction term of F2 Re(yoy2) to the
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Figure 2. Numerical simulation for a constant speed stable solution (~ = 0.005, ~ = 0.14887, K= 0.001).

original yo term that determines the stability. Therefore, for each root yo, the correction
term should be calculated and added to yo, thus altering the stability. These modified

values (yam) are also given in Table 1 and Table 2 for E = 0.02 and Q = 0.4. Note that for
K = 0.045 (Table 1), the unstable constant speed solutions can be stabilized, whereas for
K = 0.057 (Table 2), solutions cannot be stabilized.

To determine the new stability lobes corresponding to variable spindle speed, we first
choose a fixed wo value. We start from a low K value and calculate the corresponding (yo,
11) pairs from equations (12) and (13). The range -1 < yo < 1 is enough to consider for
practical purposes. We then calculate the modified y,n values and check their sign. If all
are negative, we increment K and check the signs again. We repeat the procedure until
at least one of the ym is positive. The specific K value then becomes an upper limit for
stability. Repeating the same procedure for different wo values, we determine the new
stability borders. For E = 0.02 and Q = 0.4, the stability lobes for variable spindle speed
(dashed lines) are compared to those of constant spindle speed (solid lines) in Figure 5.
There is always gain in stability, although small, for an amplitude of speed fluctuation of
2%. We also observed that gains are less for S2 = 0.7 compared to the case off = 0.4.
This shows the importance of selecting an optimum amplitude and frequency.

Up to E = 0.02, the stabilizing mechanism works by changing only the sign of the
single positive zoo root. For greater values of E, the stabilizing effect on the positive root
increases. However, a change in sign of the next closest negative root occurs, which
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Figure 3. Numerical simulation for a constant speed bounded solution (Ç = 0.005, ~ = 0.14887, K = 0.01005).

destabilizes the system. This mechanism may explain the reason of the worse solutions
for E = 0.1 compared to the constant speed solutions reported in Tsao McCarthy, and
Kapoor (1993, Figure 6). However, we could not interpret our results for E > 0.02 because
for some wo values, a single stability border could not be achieved. This may be due to
the truncation of the perturbation series after three terms.

The stability borders for E = 0.02 are verified using numerical simulations. From
Figure 5 or Table 1, for wo = 0.112 and K = 0.045, constant spindle speed solutions
are unstable as also verified by numerical integrations of the original equation (Figure 6).
When an amplitude of speed fluctuation of 2% and a frequency of 0.4 is implemented, the
solution should be stable from Figure 5 or Table 1. This is verified numerically, as shown
in Figure 7. K = 0.053 represents the stability border theoretically for coo = 0.112 for the
variable spindle speed case. Taking a slightly higher value of K = 0.057, the solutions
should be unstable (see Table 2 or Figure 5). This result is verified through numerical
simulations, as shown in Figure 8.

(text continues on p. 277)
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4. CONCLUDING REMARKS

Approximate analytical solutions using the method of strained parameters (a pertur-
bation technique) are presented, for the first time, for a variable speed chatter problem.
The resonant frequencies that may lead to instabilities are detected. Although the primary
resonant frequencies are high, they can be reached in high-speed machining. The analy-
sis gives better results for amplitudes of speed fluctuations not exceeding 2% of the mean
spindle speed. For these values, although small, there is always an increase in the stability
regions when the frequency is away from the first two resonances. To attain larger gains
in stability, however, numerical results of previous work predicted required amplitudes
of 20%. These amplitudes are too high to get accurate results using our perturbation
approach. Theoretical results, for small amplitudes, have been verified using numerical
simulations of the original equation by the Runge-Kutta method.

This work can be improved through further research in a number of ways. The range
of validity of the results may be increased by some transformation techniques and differ-
ent expansions. The speed variation problem may also be investigated using a nonlinear
version of the problem. The effectiveness of feed variation instead of speed variation can
also be analyzed using perturbations.

APPENDIX

Definition of Complex Constants in Equations (16) and (17)
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