
80

Computer generation of arbitrary functions
by L. E. FOGARTY
University of Michigan
Ann Arbor, Michigan

Preparation of this report was supported under Contract NASr 54(06).

L. E. FOGARTY was born in Minnesota in 1920, and grew up near
Bozeman, Montana where he graduated from Montana State

College in 1940 with a degree in Electrical Engineering. That
same year he joined NACA (the forerunner of NASA) and worked
as a wind-tunnel engineer at Langley Field, Virginia until 1944,
when he joined the Navy. The Navy also had him working as a
wind-tunnel engineer, at the David Taylor Model Basin in Wash-
ington, D.C., where he remained after his discharge from the
Navy until 1947.

In 1950 he received a PhD from Cornell University in Aero-

nautical Engineering, and after a short stay at North American
Aviation, joined Link Aviation in Binghamton, New York. At

Link he was concerned with flight simulation as Supervisor of
the Flight Mechanics Department and later as Chief Engineer.

In 1959 he joined the University of Michigan as lecturer in

Aerospace Engineering, then went with Applied Dynamics, where
he served as a vice-president in ’63 and ’64. In 1965 he returned
to the University of Michigan as a lecturer and research associate.

Dr. Fogarty continues to serve as a consultant to Link and to
Applied Dynamics. His major interests are in flight simulation,
space vehicle mechanics, and analog computer applications.
He is an Associate Fellow of the AIAA and is a member of SCi.

AUTHOR’S NOTE:

This presentation is intended to be mainly tutorial, rather
than a report on original research - I don’t claim priority
on any of it except possibly the use of multi-dimensional
elementary functions (the hyperboloids shown in Figure
13). I’m not even sure that someone else hasn’t used them

before, although I’ve never seen them. The series expan-
sion technique described in the last part of the paper is old.
The reference by Silverburg and Pike is the earliest descrip-
tion I have found, but Clymer tells me that he used it years
ago. Probably this is another instance where proper credit
can’t be given because of antiquity..

INTRODUCTION

One of the pressing problems of computer technology is
that of generating an arbitrary specified output as a func-
tion of given input variables. Examples of such problems
are:

1. Given an input variable which represents altitude, h,
generate an output which represents atmospheric
density, p(h).

2. Given input variables a, M, which represent angle of
attack and Mach number, generate an output which
represents drag coefficient CD, as a function of «
and M.

In these examples, p and CD, although known functions
of the input variables h, a, and M, are not specified in

terms of mathematical formulas, hence are &dquo;arbitrary&dquo;
functions of the input variables. Such functions seldom
are given as continuous functions of the input variables,
but rather are specified at a number of discrete values of
them. They must be estimated by means of an interpola-
tion formula at intermediate values.
The problem considered here is:
Given a data matrix which represents the values of a

function F(xi) for given values of n input variables xi, gen-
erate a continuous output, F(xi), using prescribed interpo-
lation rules for determining F at intermediate values of
the xi.

Because of the generality of the problem, it is necessary
to eliminate most of the many possible schemes from
consideration. General methods depend on series expan-
sion in terms of prescribed continuous functions (refer-
ence 1). Suitable expansion series are Fourier series, power
series, etc., each of which has advantages in particular
cases. In the general case, when the output functional
form is not known ahead of time, one cannot always select
the best type of series. -

81

THEORY OF THE ONE-DIMENSIONAL
INTERPOLATION SERIES (reference 2)
it is desired to represent an arbitrary function by super-
posing a series of elementary functions which can be gen-
erated easily on a computer. For analysis purposes, we will
start with the elementary function known as the unit im-
pulse, or Dirac delta function. Physically we can think of
the unit impulse, 8o(x), as a thin pulse of unit area and
width approaching zero located &dquo;at&dquo; x = 0.

Figure 1 - unit impulse, 8o(x)

Formally, we define the unit impulse from:

Additional higher order elementary functions are obtained
by repeated integrations of the unit impulse. For example:

81(x) is the unit step function located at x = 0

Figure 2 - Unit step, 81(x)

Also the integral of the unit step function, 81(x), is the unit
ramp function, 82(x); the integral of the unit ramp is a

&dquo;unit parabola,&dquo; 83(x), etc.

Figure 3 - Unit ramp, 82(X)

Figure 4 - Unit parabola, 83(x)

From the properties of the unit impulse defined by equa-
tions (1) and (2) it is readily shown that, for a < x < b,

Since we wish to approximate f(x) in terms of quantities
evaluated at the beginning of the interval, we choose the
second form of equation (6) and integrate by parts to
obtain:

Representing the integral in (7) by a finite sum, with the
interval from a to b divided, for simplicity, into n equal
increments of length h:

Figure 5 - Zero-order interpolation

Equation (8) is a series representation of f(x) which cor-

responds to the assumption that f(x) is constant in each

subinterval of length h. Series (8) will be named the &dquo;zero-
order interpolation series.&dquo;

In equation (7) we integrate by parts again to obtain:

82

Representing the integral in (9) by a finite sum as before,

The functions 82 are unit ramps, hence the individual terms
of the series (10) represent slope increments of magni-
tude hf&dquo;.

Figure 6 - First-order interpolation series representation of f(x)

The series (10) corresponds to the assumption that the
slope of f(x) is constant in each subinterval, h. Linear inter-
polation is performed between values of f(x) specified at
the ends of the intervals, x = a -~- kh, k = 0,1, ... n. Series
(10) will be named the &dquo;first-order interpolation series.&dquo;

It is obvious that we can repeat, as many times as re-

quired, the operations of integrating by parts and repre-
senting the resulting integral by a finite sum. In each case
one assumes the existence of all derivatives of f(x) on (a, b)
through the order one higher than the order of the result-
ing interpolation series. The mth order series is:

The mth order interpolation series representation of f(x)
consists of the first (m -~ 1) terms of the Taylor series to-
gether with an n-term approximation of the integral re-

mainder of the Taylor series. Note that, in accordance with
the mean value theorem, a better representation of f(x) is
obtained when the derivative terms, hfm + 1, are evaluated
at an intermediate point on each interval, rather than at
the beginning as shown in equation (11).
The zero-order series (8) approximates a digital function

generator without interpolation between data points. The
first-order series (10) which performs linear interpolation
between data points is the one which best represents the
common analog diode function generator.
The second-order series,

provides parabolic interpolation between data points. This
series is not commonly used but it would seem to have

good promise for representing physical functions which
are well-behaved, that is, functions for which the higher-
order derivatives are small and the Taylor series converges
rapidly.
The utility of the analytical representation of f(x), as in

series (11), lies in the ready availability of error estimates
for each series and the opportunity for analytical manipu-
lation.
Note that equal increments of x were used in series (11)

only for simplicity. The form of the series is unaltered by
the use of unequal increments, and the size of the (m-~1)th

hoerivative indicates the proper spacing of the &dquo;break

points&dquo; for the elementary functions. For example, to

generate a parabola using the functions 82, as in the widely
used diode quarter-square multiplier, the break points
should be spaced evenly since f&dquo; is constant in this case.

ANALOG COMPUTER GENERATION OF THE
INTERPOLATION SERIES
To reduce confusion, we define the mth-order interpola-
tion function:

For example,

Figure 7 - First-order interpolation function, gl,(x)

Then the first-order series is written, for 0 < x < Xn:
(xo = 0)

The second-order series is

An analog computer circuit for generating several func-
tions of x, using the first-order interpolation series, is

shown in figure 8. Once the first-order interpolation func-
tions, gh, are generated, then any number of arbitrary
functions of x can be generated by summing the giv mul-
tiplied by suitable constants. The resulting straight-line
approximations of the Fi(x) all will have the same break

points, but the breakpoints are otherwise arbitrary and
can be selected for best fit of the family of functions to
be generated.

Note that the second-order interpolation functions are
sections of parabolas, the square of the first-order func-

83

tions. Therefore, the circuit for generating the second-
order series is similar to that for the first-order series

except that the gli are squared before being applied to
the coefficient potentiometers, and an additional slope
term is needed in the final summation.

Figure 8 - Computer circuit for several functions of x
using first-order interpolation functions, gli(x)

GENERALIZED INTERPOLATION FUNCTIONS z

OF ORDER ONE

We are led, by consideration of scaling problems and
function generator setup procedure, to consider a modi-
fication of the interpolation functions,. In designing the
actual computer setup of a general-purpose function gen-
erator based on the interpolation series, we encounter
the occasional requirement for large slopes of some Fj(x),
hence large values of the coefficients a~~ in figure 8. We
therefore consider the generalized interpolation functions
h’i, shown in figure 9.

Figure 9 - Reflexed first-order interpolation functions

The functions hi(x) are defined as: .

The functions hli(x) are easily generated on the computer
by means of the circuitry shown in figure 10. Use of the
reflexed interpolation functions eliminates the slope lim-
itation of F(x) encountered with the gli(x), since the cir-
cuitry shown in figure 10 can generate hB(x) with nearly
infinite slope. Further, the hh,(x) always range from 0 to 1;
hence scaling problems associated with the interpolation
functions are eliminated. This advantage is of particular
importance in generation of functions of several variables.
The generalized interpolation functions of higher order

obviously are reflexed parabolas, cubic curves, etc.

Figure 10 - Circuit for generation of reflexed first-
order interpolation function

FUNCTIONS OF TWO OR MORE VARIABLES

Functions of two variables are generated by a double
series related to series 8, 10, or 12. Consider the function
of two variables shown in figure 11.

Figure 11 -Typical function of two variables

We can generate F(x, y) with linear interpolation be-
tween values of y by means of the series:

84

Figure 12 - Circuit for generation of k functions of two variables

The functions F,(x) are generated by the method described
earlier for functions of a single variable.

Because of multiplier scaling problems, in many cases

it is preferable to use reflex functions, h/(y), as shown in
figure 9, and to represent F(x, y) by means of the series:

A block diagram for generating several functions of x and
y, Fk(x, y), is shown in figure 12.

TWO-DIMENSIONAL INTERPOLATING
FUNCTIONS

The two-dimensional series (16) can be expanded in the
alternate form:

where

Or, using reflexed functions,

The functions hij 1(x,y) are limited hyperboloids of the

form shown in figure 13.
It is obvious that series (17) and the series (21) are equiv-

alent. However, the generation of the two series on the

Figure 13-The two-dimensional interpolation function of
first order, h,’(x,y)

85

computer differs in the order of performing the multipli-
cation and summation operations. The block diagram for
mechanization of (21) is shown in figure 14. The choice
between the circuit of figure 12 or that of figure 14 de-
pends on the number of functions of two variables which
must be generated simultaneously. If k functions of two
common variables must be generated simultaneously, and
k is greater than either m-+-1 or n-~-1 [there are (m-~-1)
g/(y) and (n+ 1) g/(x)] then less equipment is required
to use the circuit of figure 14, i.e., the two-dimensional
interpolation functions.

, 2B&dquo;’, 11

Figure 14 - Generation of two-dimensional functions
using two-dimensional interpolation functions

FUNCTIONS OF MORE THAN TWO VARIABLES

The processes indicated by series (17) and (21) can be
extended to any number of dimensions. For example, in

analogy to (17), for three dimensions:

Expansion of the circuits of figure 12 or 14 to generate
series (23) is straightforward. It is readily apparent that,
when multidimensional functions must be generated, the
quantities of equipment required can become very large
indeed. If the same number of data divisions is used on
each axis, the number of data points increases exponen-
tially (e.g., 10 data points for a one-dimensional data ma-
trix, 100 data points for a 10 X 10 two-dimensional matrix,
1000 data points for a 10 X 10 X 10 three-dimensional
matrix, etc.). The quantity of equipment required tends
to increase exponentially, also. One is therefore led to give
serious consideration to any method which can decrease
the number of required data divisions on each axis, since
the equipment required tends to decrease exponentially.

For example, if one can halve the data divisions required
along each axis, the function generation equipment needed
for a three-dimensional function should decrease by over
80°/0. While we do not at this time have sufficient experi-
ence to make a valid comparison, there are indications
that use of the second-order interpolation series (14)
rather than the first-order series can provide just such sub-
stantial savings in many cases where physical data are

represented.

SYMMETRICAL FUNCTIONS
A great many functions are symmetrical about one or more
axes. When this is the case, the required data divisions
per axis of symmetry can be reduced by a factor of two
by use of the simple absolute value circuit, shown in figure
15, on the input for each axis of symmetry.

Figure 15 - Absolute value circuit

86

Figure 16 - Two-variable function generation
f({3, a) vs. p for various œ

Figure 17 - Two-variable function generation f({3, a).
Cross-plot of f versus a for various /3.

m -

EXPERIMENTAL RESULTS
’ ’

Figure 16 shows a function of two variables, f(f3, œ), gen-
erated by means of the two-variable series (17).

Figure 17 shows a cross-plot made by holding ~3 con-
stant and sweeping through the range of z.

Figure 18 is a contour map of constant f(/3, œ). It was
made by sweeping through the range of f3 and using the
error between the generated f(f3, œ) and the desired con-
stant value of f to drive the value of a.

APPROXIMATION OF FUNCTIONS OF SEVERAL
VARIABLES BY MEANS OF ONE-DIMENSIONAL
FUNCTIONS (Reference 3)
The scheme presented in the first eight sections reproduces
F(x, y) exactly at each of the data points x,, yj and provides
intermediate values by means of a selected interpolation
formula. The quantities of equipment required for func-
tions of several variables can become very large if there
are many data points.

In order to reduce the required quantity of equipment,
we are led to consider approximating the multidimen-
sional function by means of a series of functions of the
individual variables. For computer purposes, a simple se-
ries approximation of F(x, y) is:

F(x, y) is tabulated as an n X m data matrix f(x~, y~)i = 1 ...

n,j-1...m.
Since we wish to terminate the series (26) as soon as

acceptable accuracy is attained, we minimize the error of
approximation term-by-term.

Because some portions of the data matrix may be of
greater importance than others, i.e., the required accu-
racy of the approximation may not be uniform over x and
y, we weigh the errors differently in different portions of
the field, x, y. Therefore we determine Fi(x), Gj(y) to mini-
mize the weighted squared error term-by-term.

The squared error using only the first term is:

and this is minimized when

or

87

Figure 18 - Two-variable function generation f(a, ~l3).
Contours of constant f.

Thus K is the weighted mean value of F(xi,yj).
Designating F(xi, yj) - K = Rl(xi, yj), we now minimize

Consider, for example, the determination of the value of
Fi(xi). Call this ai. Then we wish to determine ai such that

is minimized. This will be true when

i.e.,

Similarly, if the value of G1(Yj) at y = yj is bj, then

Since Fl(x2) and G1 (Yj) are interdependent, it is necessary
to determine the ai and bj by an iterative procedure. Con-
vergence of the iteration has not been investigated but

convergence has been obtained in all cases so far checked

by starting with G1 (Yj) = 0. ,

.

’ ’

Designating

we now minimize

Proceeding as before, we let a2i be the value of F2 at x = xi
and seek to determine a2i such that ~2i2 is minimized.

Setting the derivative with respect to a2~, equal to zero
we obtain

Similarly, if b2j is the value of G2(y) at y = yi then

Again an iterative procedure is required and convergence
has been obtained in all cases tried so far, starting with
C2(Yi) - 1.
The procedure for obtaining additional terms in the se-

ries (26) is the same. For a sizeable data matrix, the re-

quired calculations are too lengthy to perform by hand,
so they have been programmed for a digital computer.
For comparison purposes, the function of figure 16 was
tabulated (table I) and reproduced on an analog com-
puter as

Table I - Function of two variables, F(a, /3), a = YJ, {3 = x,

88

All points were weighted equally. The analog results
are shown in figure 19 and the digital computer print
out in tables II-V. Tables III and V show the ideal resid-
ual errors, R2(Xi, yi) and R3(Xi, Yi), where

Figure 19 - Two-variable function, f(,8, a).

Table 11 - computer print out of

Table IV-Second product,

Table II I - Error table
1 1&dquo;. 11-11..1-11 1.1-11

Table V - Error table

89

DISCUSSION

The error tables, III and V, show that using only four func-
tions of the two variables « and /3, one should be able to
reproduce the function f(f3, a) with a maximum error of
about 4°/0. Addition of a second product to the series
as shown in (26) further reduces the theoretical error to
well under 1°/0. Practically, it is found that the actual errors
are somewhat greater than the theoretical errors, due to

inaccuracy in setting the single variable diode function
generators, etc. Nevertheless, the scheme works well for
most data from physical systems and is a reasonable solu-
tion of a difficult problem in many cases. The computa-
tions for factoring the data matrix into series form are

fairly lengthy if performed by hand, so they have been
programmed for solution on a digital computer. Running
time on the small PDP-8 computer was under 30 seconds,
even though the iterative calculations were arbitrarily re-
peated 200 times.

FUNCTIONS OF MORE THAN TWO VARIABLES

Extension of the series (26) to more than two variables is

obvious, but again it is found that the quantity of equip-
ment needed tends to increase exponentially. Frequently
the data are given for only a small number of values of
a third variable, and in this case series (26) can be com-
bined with (23) to good advantage.

MODIFICATION OF THE APPROXIMATING SERIES

Inspection of the functions Fl(x), Gl(y), F2(X)f C2(y) used
in producing figure 19 shows that there is a substantially
linear trend to each of these functions. For ease of com-

puter realization, probably one should modify the series
(26) to be of the form:

F(xi, yj) = ~1 + K2X + K3Y + K4 (Xy) --f- K:¡F1(x)C1(y) --f- ~ ..
(41)

Determination of the unknown coefficients and func-
tions in (41) is similar to the procedure for (26) and should
provide maximum accuracy with the least amount of

set-up time.

For the series (41) we obtain:

where

CONCLUSION

Two schemes for generating functions of several variables
have been described. Both schemes have been shown to
be practical, but both have limitations. The first scheme is
capable (theoretically) of reproducing a data matrix with-
out error but the quantities of equipment required may
become very large. The second scheme provides a series
approximation of the data matrix which usually converges
very rapidly, but requires precomputation to determine the
terms of the series. in many cases, this is not a serious

penalty to pay in view of the modest amount of equipment
required to obtain acceptable accuracy.

ACKNOWLEDGMENT

The digital computer program for generating the approxi-
mating series (26) was designed by Mr. John Brussolo of
Applied Dynamics, Inc., who also performed all of the

digital computer runs.

REFERENCES

1 H D HUSKEY G A KORN

Computer handbook section 3 part 3
Contains a bibliography of function generation
McGraw-Hill Book Company New York 1962

2 C LANCZOS

Linear differential operators section 6.2

3 E W PIKE T R SILVERBERG

Designing mechanical computers
Machine Design July 1962

