
173

Some techniques for accuracy improvement in analog computation
by ROBERT M. HOWE
University of Michigan
Ann Arbor, Michigan

ROBERT M. HOWE was born in Oberlin, Ohio in 1925. He re-
ceived his BS in Electrical Engineering from California Institute
of Technology in 1945, his AB in Physics from Oberlin College
in ’47, the MS in Physics from the University of Michigan in ’48,
and his PhD from Massachusetts Institute of Technology in ’50.

Since 1950 he has been at the University of Michigan, where
he is Professor of Aerospace and Astronautical Engineering and
serves as chairman of the Information and Control Engineering
Program. His technical areas of teaching and research include
design and application of analog computers, automatic control,
the flight simulation. He has numerous publications in these

areas, including a book on analog computers.
He was one of the founders of Applied Dynamics, Inc., and

currently serves as board chairman. He was also a &dquo;founder&dquo;
and first chairman of the Midwestern Simulation Council, one
of our largest and most active regional Councils.

Dr. Howe is a member of Tau Beta Pi, Phi Beta Kappa, Sigma
Xi, and Simulation Councils Inc.

1. INTRODUCTION

Although analog computers have many attributes which
make them well suited to the solution of differential equa-
tions, it is clear that one of the disadvantages of analog
computers is their limited computing accuracy, particu-
larly in the nonlinear area. For many types of problems
this accuracy limitation presents no difficulty, particularly
if the computer mechanization is suitably scaled. There
are certain critical problems, however, where the accuracy
limitation does make the application of analog computers
marginal, if acceptable at all. The purpose of this paper is
to illustrate some of the techniques markedly increasing
the computing accuracy of the nonlinear analog compo-
nents, as well as an example technique of rescaling for
improved computational accuracy.

2. METHODS OF IMPROVING NONLINEAR

COMPUTATIONAL ACCURACY

2.1 Accuracy improvement of squarers
Computation of an output voltage proportional to the

square of an input voltage x is of interest in analog compu-
tation not only because we are often required to generate
quadratic functions in solving problems, but also because
two such square-law devices can be combined using the
quarter-square principle to produce the product of two
voltages. Square-law function generation is implemented
in most state-of-the-art analog computers by approximat-
ing the parabolic function with a series of straight-line
approximations using biased diode circuits. Normally these
circuits are combined into a single circuit element with
input voltages ±x which, when terminated into the sum-

174

ming junction of an operational amplifier as shown in fig-
ure 2.1, produces an output voltage proportional to -x2.
One can show that ideally the fractional error e in the
approximation is given by

where n is the number of segments used in the approxi-
mation for 0 <_ x <_ 1. In practice the rounding of the
segment corners caused by the diode characteristics can
reduce the actual error obtained to a value considerably
lower than the formula shows. On the other hand, in

practice the error is increased by inability to manufac-
ture or adjust the square-law circuit perfectly.

Typical static accuracies of such square-law function
generators range between 0.01°/o and 1°/0 of computer
reference voltage. There may be times when the accuracy
of a square-law function generator in a given computer
is not sufficient for satisfactory problem-solution accuracy.
Let us now consider a circuit which allows us to extend
this accuracy considerably. First of all, the circuit is based
on a highly accurate mechanization for taking the abso-
lute value of x using amplifiers 1 and 2 in figure 2.2. In

this well-known circuit diode Dl conducts when x > 0,
since the output of amplifier 1 is negative. Thus ei repre-
sents the output of a unity gain inverter for x > 0. On the
other hand, for x < 0 the amplifier output goes positive,
diode D2 conducts, and diode 01 is back biased. There-
fore el = 0 (assuming an ideal amplifier with zero sum-
ming junction offset). The result is a highly-accurate
half-wave rectification, i.e.,

In amplifier 2 the voltage 2ei is summed with the volt-

age x, producing an output voltage given by ~ x Assuming
very high open-loop gain for the amplifiers, negligible
amplifier offsets, and very large diode back-resistance (all
three excellent assumptions for precision analog com-
puters), the circuit accuracy depends on the computing-
resistor accuracy and can easily exceed 0.01°/0 of full-
scale reference. The only potential problem is excessive

output noise when x = 0 volts.

Having obtained a precision absolute value function,
we can proceed to the implementation of the high-accu-
racy squaring circuit shown in the remainder of figure 2.2.
Amplifiers 3 and 4 are used to compute the voltages
+(2) x ~ 1 -1), which in turn are applied as inputs to the
squaring circuit terminated in amplifier 5. Also summed
into amplifier 5 are the reference voltage -1 (we assume
that full-scale reference voltage is considered unity for
scaling purposes) along with the voltages x I. It is then

easy to show that the output of amplifier 5 is, ideally,
equal to -x2. In fact, we are implementing the following
equality:

Note that the net gain in the squaring circuit is 0.25, i.e.,
any errors Eae2 in that circuit are reduced by a factor of 4

Figure 2.1 - Mechanization of quadratic function generation
using a segmented straight-line approximation

in the final output of amplifier 5. Figure 2.2 shows graphi-
cally that to synthesize x2, we are adding the absolute
value of a quadratic function of x, a linear function of x,
and a constant. The net result is an overall error in com-

puting x2 which is a factor of 4 less than the square-law
function generator provides if used separately. Note, how-
ever, that this accuracy is realized only if the linear com-
ponent inaccuracies can be neglected. In practice calibra-
tion procedures can be used to insure this.

It is interesting to observe that the square-law function
generator in figure 2.2, which presumably would consist
of an n-segment diode function generator, can be itself
replaced by another circuit identical with figure 2.2. The
net result would be an ideal error reduction by a factor
of 16 over the n-segment diode function generator by it-
self. In fact, the process can be repeated indefinitely, in

principle, each time picking up an ideal accuracy improve-
ment of a factor of 4. Careful calibration techniques for
the linear elements have allowed the writer to implement
analog x2 function generation to 10 parts per million start-
ing with a 100 ppm 37-segment square-law diode function
generator and applying the circuit of figure 2.2 twice. The
resulting x2 function has the equivalent of 148 segments
with a peak ripple error of less than 5 ppm (0.0005°10)
due to segmentation.

This general technique for square-law accuracy im-

provement has been known for some time’ and is even
the basis for physical implementation for at least one com-
mercial quarter-square multiplier design. In the context
of this paper its main attractiveness lies in being able to
generate highly-accurate square-law functions using a

device of more modest accuracy on a standard computer.
Although at least 5 operational amplifiers are required
instead of the usual 2, the added complexity may be war-
ranted if a particular problem needs a very accurate quad-
ratic function. Actually, the writer was motivated to utilize
this circuit in order to have a precision square-law refer-
ence function generator for the purpose of calibrating
quarter-square multipliers.

175

2.2 Accuracy improvement of multipliers
Two of the circuits described in the previous section can
be combined to mechanize an improved-accuracy multi-
plier. The usual quarter-square multiplier is based on the

identitv

The circuit shown in figure 2.3 is based on the following
identity: -

Again note that the gain of each of the two squaring units
terminated in amplifier 9 is 0.25 so that the errors which

these function generators would normally provide in im-
plementing a product xy are reduced by a factor of 4.
Thus the output product, -xy, is 4 times more accurate,
assuming that linear computing errors can be calibrated
out. As described in the previous section, one can substi-
tute the circuit of figure 2.2 for each of the squaring units
in figure 2.3 to obtain, ideally, an additional factor of 4
reduction in error. Starting with individual square-law
diode function generators accurate to, say, ~-150 ppm,
with careful calibration of the linear components it is

possible to construct a multiplier with a static accuracy
of about 20 ppm or 0.002°/0. Not only could this be useful
for providing a single critical product in certain problems,
but also it could be extremely useful as a reference multi-
plier against which any given multiplier could be com-
pared in order to produce an error map for all inputs x
and y.
2.3 Accuracy improvement of dividers
It is well known that the analog operation of division can
be performed using a multiplier in the feedback loop of
a high-gain amplifier, as shown in figure 2.4. It is also easy
to show that if en, is the maximum multiplier error, then
the error e~ in the quotient is given by

where 0 < y < 1 (reference voltage equals unity). Thus
the smaller the divisor, the larger will be the error.
One can immediately provide an ideal accuracy in-

crease of a factor of two by dividing by a new variable y
given by

Figure 2.2 - Circuit schematic for improved-accuracy
squaring circuit

Figure 2.3 - Circuit schematic for improving multiplier accuracy

176

Clearly for 0 < y < 1, -1 < y :5 1, i.e., y ranges over
full ± reference rather than just + reference. Computing
the quotient Q = x,/y can now be written as

Circuit implementation is shown in figure 2.5. Note that
amplifier 1 has a unity feedback resistor and that the
multiplier is used over all four quadrants for -1 ~ x ~ 1.
It is easy to show that for a maximum multiplier error em,
the error -Q in the quotient is equal to Fm/2y, i.e., half the
error of the previous circuit. Actually, the circuit is easy to
understand when one realizes that for y = 1, y = 2y -1 1
=1, and the multiplier in the feedback loop acts as a

unity feedback resistor. This, in parallel with the already
existing unity feedback, yields an effective feedback re-

sistor of 0.5, or overall unity gain for amplifier 1. This is
indeed correct for y =1 in the quotient Q = x/y. For

y = 0.5, 2y - 1 = 0, the multiplier provides no feedback
around amplifier 1, which therefore has a net operational
gain of 2, as required for y = 0.5. Finally, for y = 0, the
multiplier acts like a feedback resistor of -1 around
amplifier 1. The net result is infinite operational gain, as
required for y=U.

It is apparent that two additional operational amplifiers,
numbers 3 and 4 in figure 2.5, are required to compute
±(2y - 1) from y. In many cases 2y - 1 can be computed

Figure 2.4 - Conventional divide circuit for y > 0

Figure 2.5 - Divide circuit to provide a factor-of-two
increase in accuracy

1

Figure 2.6 - General divide circuit for accuracy improvement

directly, e.g., by integrating ’y to produce 2y - 1 rather
than y. In this case it may be possible to save the two
extra amplifiers.

In many problems the divisor does not range down to
zero. For example, assume that we wish to compute the
quotient Q = x/y where (1 -.a) < y < (1 -t- a) and where
Ay = y - 1. Good scaling practice indicates that we should
compute Asyla rather than y, so that -1 <_ Asyla < 1.

Assuming this is the case, the circuit in figure 2.6 shows
the mechanization of the dividing operation. It is easy to
show that for a given multiplier accuracy this circuit pro-
duces an error which is 0.5a times the error of the con-
ventional divide circuit in figure 2.4.

2.4. Mechanization of a high-accuracy sine function
The generation of precision sine and cosine functions in

general-purpose analog computers is usually accomplished
with special-purpose fixed-diode function generators. The
technique described in this section requires only squaring
and multiplying circuits. It is useful when no sine-cosine
diode function generators are available or when a high-
precision master sine-cosine generator is needed for cali-
bration purposes. The first approximation to the sine func-
tion is obtained using a Taylor series expansion. Thus

where Ax = x - xo. For f(x) = sin x and xo = 0, we have

Assume we wish to generate sin x over the range -7r/2
z x2 7r/2, since by the use of zig-zag circuits this can be
used to generate both sin x and cos x over any range. If we
let a new variable x be given by

then x ranges through =t1 corresponding to ±7r/2 radians
(±90 degrees). In terms ofx equation (2.4.2) becomes

if we take only the first four terms in the series, then for
X = ±1(±90 degrees) the error will be a maximum and
will equal 0.016 percent. However, we can represent the
X9 term which has been neglected by using a Chebyshev
polynomial Tg(x) given by2

Chebyshev polynomials of this type have the character-
istic that over the interval -1 _< x <_ ~--1 they oscillate
back and forth across Tn = 0 a maximum number of times
for the order of the polynomial, and with a maximum value

K of ::L-1 at each oscillation peak. Thus if we solve equation
.-

(2.4.5) for X9 to obtain

and neglect T9(x), the maximum error will be 1/256.
Hence replacing X9 in equation (2.4.4) by equation (2.4.6)
with T9 = 0 will result in a representation for the sine with

177

terms only up to order x7 but with a maximum error of
160 X 10-6/256, or 0.6 ppm, plus the error due to the
neglect of the Xll term. In this case the series representa-
tion for the sine function becomes

where the maximum error over ±90 degrees is approxi-
mately 2 ppm (0.0002 per cent).

By applying the same method to equation (2.4.7) we
can eliminate the X7 term. Since the Chebyshev polynomial
T7(X) = 64xi - 112x2 56x3 - 7x, we can approximate
;,’’ with

with a maximum error of 1/64 over the interval -1 _< x

z 1. Substituting equation (2.4.8) into equation (2.4.7),
we obtain

with a maximum error of approximately 4322/64 = 68
ppm. Figure 2.7 shows a plot of the actual error in equa-
tion (2.4.9) in representing the true sine function over

±90 degrees.
In mechanizing equation (2.4.9) with analog circuitry it

should be noted that any errors in computing 3(:1 are multi-
plied by 0.642. Thus a squaring error of 0.02 percent in
computing X=’ along with an additional multiplier error of
0.03 percent in computing k&dquo;3 leads to a total error of 0.05

percent in addition to the approximation error of 0.007
percent in using equation (2.4.9). By using the techniques
of sections 2.1 and 2.2 the component errors can be re-
duced arbitrarily except for linear calibration errors.

Next consider a Taylor series expansion of sin x about
x == -rr/4 (i.e., 45 degrees). Application of equation (2.4.1)

gives

if we let a new variable X be given by

N - ,

then as x ranges over 0 <_ x ~ 7T /2, x ranges over -1
< x < 1. In terms of X, equation (2.4.10) becomes

Let us use equation (2.4.8) to replace the X7 term and the
following equation based on the Chebyshev polynomial
T6 to replace X6 in equation (2.4.12).

Equation (2.4.12) then becomes

If -!-x is available. as an input voltage, mechanization of
equation (2.4.14) takes 7 operational amplifiers, one dual
squarer, and one multiplier. Figure 2.8 shows a plot of the
actual error in the sine approximation in equation (2.4.14).
Note that the maximum error is approximately 8 ppm. To
this must be added the analog error in implementing the
circuit. The predominant nonlinear component error con-
tribution lies in the g2 term, which has a net coefficient of

Figure 2.7 - Error versus angle in sine approximation of
equation (2.4.9)

Figure 2.8 - Error versus angle in sine approximation of
equation (2.4.14)

178

0.218. Thus any errors in generating X2 are reduced by a
factor of 4.6 in the sin x computation. Using this mechani-
zation the author has computed precision sin x voltages to
the order of 20 ppm accuracy (0.002°/o). By appropriate
biasing and sign reversals the same circuit can be used to
generate both sin x and cos x over all four quadrants with
90° range in each quadrant. Such a mechanization has
proven extremely useful in calibrating and checking gen-
eral-purpose sine-cosine diode function generators. Be-

cause of the circuit complexity it is of questionable value
as a means for computing sin x in problem solutions.

2.5 Improvement of function-generator accuracy
In the previous section we saw how the power series ex-

pansion method could be used to compute an accurate

approximation to a sine function. Had it been worthwhile
we could have used a general purpose diode function gen-
erator to compute the remaining error function -(x). This
forms the basis for the technique proposed in this section,
namely, to approximate a desired function f(x) using the
first several terms of a power series f and using the diode
function generator to compute the remainder of the func-
tion. For example, consider the function shown in figure
2.9. This function is broken into a constant fo, a linear term
flx, a quadratic term f2x2, and a remainder Af(x). Only the
small remainder function need be set up on the variable

diode function generator, and the scaling is such that per-
haps 20 Of(x) could be set on the diode function gener-
ator and then multiplied by 0.05 when summed with x).
The constant and linear terms in nf can be computed with
high accuracy and stability, and even the x2 term can be
computed with a precision square-law fixed diode function
generator (typically one-half of a quarter-square multi-

plier) with far more segments and much more drift stability
than a variable diode function generator would have.

Figure 2.9 - Combined Taylor-series and perturbation scheme
for accurate function generation

Although this technique requires more components than
a direct setup of f~x) on a diode function generator, in

critical applications the increased number of segments
affected by the quadratic term and the greatly-increased
stability might very well make the technique attractive.

Obviously any number of additional terms could be added
to the power series ix), If only two terms are present, fo
and flx, these correspond essentially to the parallax and
central-slope term which are already a part of any variable
diode function generator. Whatever the range of the input
variable for the function, accuracy can always be gained
by transforming it to a variable x rang.,.g over ±1, as

shown in figure 2.9.
It should be noted that if the function f(x) has higher

derivatives which are quite large, i.e., is very badly be-
haved, the power series approximation may gain little in

comparison with the added equipment requirements.

3. RESCALING FOR IMPROVED

COMPUTATIONAL ACCURACY
We have seen in Section 2.3 how the multiplier used in
the conventional analog divide circuit is, at best, utilized
in only two of its four quadrants. By rescaling the divisor
voltage, as shown in figure 2.5 or 2.6, the multiplier can
be used over all four quadrants with a corresponding im-
provement in accuracy.

This same technique can be extended to nonlinear op-
erations in general. It is reasonable to assume that proper
analog scaling techniques have resulted in voltage excur-
sions for each problem variable which extend either to
full positive or full negative reference voltage. What we
are proposing here is to bias each variable as necessary
to have its voltage excursion extend over both the plus
and minus reference range. Although this may add some
complexity, the accuracy improvement in the case of non-
linear computationspmay make it worthwhile.

For example, consider the solution of a set of flight ve-
hicle equations where one of the problem variables is the
total vehicle velocity Vv, which is computed by integrating
Vp. Suppose that Vp varies from 0 to some Vmax. Then we

- can define a dimensionless velocity Av, given by

where the range in v, is -1 <_ v, < 1. This effectively
doubles the voltage range for the velocity (the fact that
we chose a dimensionless variable merely simplifies the
scaling). By appropriately scaling the input to the 1/p inte-
grator and starting with the proper initial condition, one
can compute Ova directly without requiring an additional
summing amplifier.

Having obtained Ova in this way, one can use the circuit
of figure 2.5 to implement division by Vp. The computa-
tion of Vp2, as needed, for example, in the calculation of
dynamic pressure, can be implemented using for formula:

The equation is mechanized using the single operational
amplifier shown in figure 3.1.
If the velocity squared, as given in equation (3.2), is to be

multiplied by a second variable, such as density p, then
additional improvement in scaling may be obtained by
defining a dimensionless density variation Ap given by

179

where -1 <_ ~p < 1. The dynamic pressure q is now

given by the formula

where the circuit of figure 3.1 can be used to compute
VP2. But this must be multiplied by Alp and, since 0 < VP2
z 1, we are only using two quadrants of the multiplier.
The answer, of course, is to compute 2Vp2 - 1 directly
from Avp2 using the formula

From equations (3.4) and (3.5) the equation for q becomes

The overall mechanization of equation (3.6), starting with
Vp and assuming p is a function of altitude h, is shown
in figure 3.2b. Note that it requires no more amplifiers
than the straightforward mechanization shown in figure
3.2a, yet the effect of multiplier errors is reduced by a
factor of four and of square-law diode function generator
errors by a factor of two.

If the velocity Vp or density p range from full scale posi-
tive to a lower limit which is above zero, then even fur-
ther scaling gains can be made, similar to the method
illustrated in figure 2.6. Whether in fact the overall com-
puting accuracy is really increased by a factor of four in
figure 3.2b compared with figure 3.2a depends on whether
or not the multiplier errors predominate and also whether
nonlinear computation errors tend to be as large with
low-level inputs as with high-level inputs. In typical gen-

eral-purpose analog systems, however, techniques of the
type illustrated here and in section 2.3 can offer marked
accuracy improvement. This is particularly true when the
variables involved in nonlinear operations have a range
which is restricted to a small fraction of their maximum
value.

It should be emphasized that the above methods are
really not perturbation methods in the sense that approxi-
mations are made in the equations by dropping high-order
terms. In each case the equations are exact in every way.

Figure 3.1 - Circuit for computing vp’ from Avp,
where ~vp = Vp - 1

REFERENCES

1 A NATHAN

Interpolating multipliers and related interpolators
IEEE Proceedings vol 51 no 11 pp 1549-1554 November 1963

2 M ABRAMOWITZ I A STEGUN (editors)
Handbook of mathematical functions
National Bureau of Standards Applied Mathematics
series 55 p 795 June 1964

Figure 3.2 - Two alternative circuits for computing dynamic pressure

180

DANIEL TEICHROEW is Professor and Head of the Division of

Organizational Sciences at Case Institute of Technology. He was
formerly Professor of Management in the Graduate School of

Business at Stanford University.
A native of Canada, Dr. Teichroew received his BA and MA

degrees in Mathematics from the University of Toronto and his
PhD degree in Statistics from the Institute of Statistics, North
Carolina, in 1953. He served as an instructor and research asso-
ciate at the Institute of Statistics, a statistician with the Institute
of Numerical Analysis, National Bureau of Standards, and as Head
of a Business Systems Analysis Group for the National Cash Reg-
ister Company.

Dr. Teichroew is author of Introduction to management sci-
ence, published in 1964 by John Wiley, the co-author (with James
Howell) of Mathematical analysis for business decisions, pub-
lished in 1963 by Richard D. Irwin, co-author (with Michael Con-
nors) of a forthcoming book entitled Optimal control of dynamic
operations research models, and the author of numerous papers
in professional journals.
He is a Fellow of the American Statistical Association, a Vice-

President of the Institute of Management Science, and the Editor
of the Business Applications Section of the Communications of
the ACM. He is also a member of the Operations Research Society
of America, Operational Research Society, Ltd., the Association
for Computing Machinery, the American Mathematical Society,
and the International Institute for Statistics in the Physical
Sciences.

JOHN FRANCIS LUBIN is Director for Computing Activities at

the University of Pennsylvania (since 1964) and Associate Pro-
fessor of Industry in the Wharton School of Finance and Com-
merce. He obtained a Bachelor of Electrical Engineering degree
from the College of Engineering of New York University in 1947,
his MS from the Massachusetts Institute of Technology in 1949,
and his PhD at the Graduate School of Arts and Science of the

University of Pennsylvania in 1956. He is currently Editor-In-Chief
of Computing Reviews, the review journal of the Association for
Computing Machinery.

THOMAS D. TRUITT’S background includes a mix of practical
and academic interests: airborne electronics equipment, elec-
tronic flight simulators; teaching of college mathematics; BS in

math; analog computer programming; MSE from Princeton Uni-
versity ; teaching electrical engineering subjects at the University
of Pennsylvania; digital computer programming; hybrid com-
puter design; and co-authoring of two books on computer pro-
gramming.

Mr. Truitt joined EAI in 1956. Since then he has performed
and directed studies of digital and analog computer organization
and programming techniques including automatic programming,
parallel digital computer structures, incremental computing tech-
niques, special-purpose digital computer organization, and com-
bined analog-digital computer systems. He is responsible for

initiating the development of the EAI HYDAC analog/digital
computers, as well as for the software systems for EAI hybrid
computers.
As Director of the Advanced Development and Programming

Department of the EAI Digital Computer Division, at Princeton,
New Jersey, Mr. Truitt is responsible for Systems-Programming
for EAI computers and for development of special software and
hardware systems.
He is a member of ACM, IEEE, and SCi.

Teichroew Truitt

Editor’s note
The following article is based on a paper by Teichroew
and Lubin which was published in the October 1966 issue
of the Communications of the ACM. While it deals mainly
with the comparison of discrete-change simulation lan-

guages, it does define the difference between continuous-

change and discrete-change languages and lists a number
of continuous-change languages as references. Its coverage
of discrete-change languages is excellent, although parts
of the article suffer from having been written in 1964.
Thomas Truitt of EAI pointed out in a letter to John

McLeod that the Teichroew-Lubin comparisons would be
more complete if they included the specifications for HSL
(HYTRAN Simulation Language), the EAI 8400 implementa-
tion of CSSL (Continuous System Simulation Language),
which was developed by the Simulation Software Commit-
tee of Simulation Councils, Inc. Our feeling is that, in

addition to rounding out the comparison tables, the inclu-
sion of HSL draws parallels between discrete-change and
continuous-change simulation languages that illuminate
their differences and similarities much more strongly than
has been done before.

This article is composed of pertinent sections of the
Teichroew-Lubin paper with Truitt’s HSL specifications
added to the original comparison tables. Interested read-
ers should refer to the full ACM paper for much elabora-
tion which we have omitted.

If, as Truitt states in his letter, the basic difference be-
tween discrete-change and continuous-change simulation
languages lies in the recognition by the former of indi-
vidual items flowing through a system and the treatment
by the latter of material as aggregates of homogeneous
items (neglecting, of course, differences that are mainly
of taste and not substance), the two simulation schools
are not as far apart in their techniques as some seem to
think.
Three excellent discrete-change simulation language

comparisons have been made so far-one by Krasnow
and Merikallio in 1963,’ one by Tocher in 19653 and the
quoted one by Teichroew and Lubin in 1966. Two

continuous-change language surveys have been published,
one by Brennan and Linebarger in 19644 and Clancy and
Fineberg in 1965.5 We reproduce the following survey
because of its currency and the Thomas Truitt contribu-

tions, which allow comparison of discrete-change and
continuous-change language concepts.

PJK

