THE UNIVERSITY OF MICHIGAN INDUSTRY PROGRAM OF THE COLLEGE OF ENGINEERING HEAT EXCHANGER DESIGN MANUAL (Shell and Tube Types with Plain Tubes) H. A. Ohlgren L. H. Udani L. H. Landrum October, 1955 IP-139

ACKNOWLEDGEMENT The Industry Program of the College of Engineering has sponsored the preparation of this manual for limited distribution to its subscribers. We wish to express our appreciation to Gordon A. Fluke, Earl S. Grimmett, Charles V. King, Reed S. Nixon, and Marx E. Weech for contributions to various portions of the manual. iii

TABLE OF CONTENTS Page ACKNOWLEDGEMENT iii LIST OF FIGURES vii LIST OF TABLES xiii INTRODUCTION 1 I. TYPES AND DESCRIPTION OF HEAT EXCHANGERS 3 A. Shell and Tube Heat Exchangers 3 1. Fixed Tube Sheet Type Heat Exchanger 3 2. U-Tube Type Heat Exchanger 3 3. Internal Floating Head, Removable Tube Bundle Type Heat Exchanger 3 4. Packed Floating Head, Removable Tube Bundle Type Heat Exchanger 3 5. Reboilers 8 6. Concentric Tube, or Double Pipe Heat Exchanger 8 B. Internal Arrangements 8 1. Single Pass Shell - Single Pass Tubes 8 2. Single Pass Shell - Multipass Tubes 8 3. U-Tube, Single Pass Shell - Multipass Tubes 8 4. Two Pass Shell - Multipass Tubes 8 5. Divided Flow Shell - Multipass Tubes 14 6. Divided Flow Shell - Multipass Tubes with Longitudinal Baffles 14 7. Transverse Baffles 14 8. Impingement Baffles 19 9. Vents and Drains 19 10. Routing of Fluids 19 II. NOMENCLATURE AND HEAT EXCHANGER TERMINOLOGY 21 A. Table of Nomenclature 21 B. Heat Exchange Terminology 25 1. General 25 2. Heat Exchanger Shell 25 3. Heat Exchanger Tube-Bundles 28 III. CORRELATIONS OF HEAT TRANSFER AND PRESSURE DROP DATA 34 A. General Considerations 34 1. Heat Transfers through Solid Conductors 34 2. Mean Temperature Difference 36 iv

TABLE OF CONTENTS (cont.) Page 3. Film and Overall Transfer Coefficients 36 4. Heat Balanc.e 37 5. Shell-Side Mass Velocity 37 6. Shell Side Equivalent Diameter 39 B. Correlations for Film Coefficients 41 1. Shell-Side Film Coefficients 41 2. Tube-Side Film Coefficients 41 3. Free Convection Heat Transfer Rates 44 4. Film Coefficients for Gravity Flow of Liquids in Layer Form (Falling Films) 47 5. Film Coefficients for Condensing Vapors 47 6. The Caloric Fluid Temperature 48 7. Fouling Factors 49 C. Correlations of Pressure Drop Data 50 1. Tube-Side Pressure Drop 50 2. Shell-Side Pressure Drop 51 3. Pressure Drop for Condensing Vapors 52 IV. ILLUSTRATIVE HEAT EXCHANGER CALCULATIONS 54 A. Procedure 54 1. Services 54 2. Data 54 3. Determination of Inlet and Outlet Temperature 54 4. Duty 54 5. Log Mean Temperature Difference (IMTD) 54 6i. Estimated Surface 54 6ii.Check on Transfer Rate 55 7. The Optimum Overall Transfer Rate 55 8. Pressure Drop Calculations 55 9. Summary of Design 56 B. Illustrative Problems 56 Problem No. 1 - Liquid to Liquid Heat Transfer 56 1. Statement of the Problem 56 2. Data 56 3. Calculated Data 58 4. Solution 58 Problem No. 2 - Heat Transfer from a Condensing Vapor to a Liquid 63 1. Statement of the Problem 63 2. Data 63 3. Solution 64 4. Summary of Exchanger Design 68 Problem No. 3 - Condensing a Vapor Mixture Containing a Noncondensable Gas —An Example of Liquid to Vapor, Liquid to Condensing Vapor, and Liquid to Liquid Heat Transfer 69 1. Statement of the Problem 69 Problem No. 4 - Design of a Falling Film Evaporator 87 1. Statement of the Problem 87 2. Given Data 87 3. Solution v 87

TABLE OF CONTENTS (cont.) Page Problem No. 5 - Design of a Thermosyphon Evaporator 92 1. Statement of Problem 92 2. Summary of Given Data 92 3. Solution 92 V. TABLES AND CURVES 96 VI. BIBLIOGRAPHY 216 A. Types, Description, and General Considerations of Heat Exchangers 216 B. Bundle Layout and Tube Count 216 C. Heat Transfer and Pressure Drop Data for Heat Exchangers 217 1. Heat Transfer and Pressure Drop In and Over Tubes 217 2. Mean Temperature Difference and Its Correction 219 3. Fouling Factors 219 4. Pressure Drop across Tube Banks 219 D. Problems on Heat Exchangers 220 vi

LIST OF FIGURES Page Figure I-1 Fixed Tube-Sheet Heat Exchanger 4 Figure I-2 U Tube Heat Exchanger 5 Figure I-3 Internal Floating-Head Heat Exchanger 6 Figure I-4 Packed Floating-Head Heat Exchanger 7 Figure I-5 Kettle Type Reboiler 9 Figure I-6 Single Pass Shell - Single Pass Tubes 10 Figure I-7 Single Pass Shell - Multipass Tubes 11 Figure I-8 U-Tube, Single Pass Shell - Multipass Tubes 12 Figure I-9 Two Pass Shell - Multipass Tubes 13 Figure I-10 Divided Flow Shell - Multipass Tubes 15 Figure I-11 Divided Flow Shell - Multipass Tubes with Longitudinal Baffle 16 Figure I-12 Orifice Baffle 17 Figure I-13 Disk and Doughnut Baffle 18 Figure I-14 Segmental Baffle 20 Figure II-1 Nomenclature of Typical Heat Exchanger Parts 26 Figure II-2 Nomenclature of Typical Heat Exchanger Parts 27 Figure II-3 Pitch and Ligament 28 Figure II-4 In-Line Square Tube Pitch 30 Figure II-5 Staggered Square Tube Pitch 31 Figure II-6 Triangular Tube Pitch 32 Figure II-7 Triangular Tube Pitch 33 Figure III-1 Thermal Resistance 34 Figure III-2 Resistances in Series 35 Figure III-5 Cylindrical Thermal Resistance 35 Figure III-4 Cylindrical Resistances in Series 35 Figure III-5 Wetted Perimeter for Square Tube Pitch 40 vii

LIST OF FIGURES (cont.) Page Figure III-6 Wetted Perimeter for 600 Triangular V-Pitch 40 Figure IV-1 Vapor Pressure of Azetropic Mixture, Hexane H20 72 Figure IV-2 Condensing Curve 75 Section V Figure 1 Nozzle Capacities 97 Figure 2 M.T.D. Correction Factors, 1 Shell Pass, 2 or More Tube Passes 98 Figure 3 M.T.D. Correction Factors, 2 Shell Passes, 4 or More Tube Passes 99 Figure 4 M.T.D. Correction Factors, 3 Shell Passes, 6 or More Tube Passes 100 Figure 5 M.T.D. Correction Factors, 4 Shell Passes, 8 or More Tube Passes 101 Figure 6 M.T.D. Correction Factors, 5 Shell Passes, 10 or More Tube Passes 102 Figure 7 M.T.D. Correction Factors, 6 Shell Passes, 12 or More Tube Passes 103 Figure 8 Shell-Side Heat-Transfer Curve for Bundles with 25% Cut Segmental Baffles 104 Figure 9 Heat Transfer Rates, Liquids across Banks of Tubes 105 Figure 9a Correction Factors for Heat Transfer Rates for Liquids in Cross-Flow on Shell Side 106 Figure 10 Heat Transfer Rates, Gases in Cross-Flow over Banks of Tubes 107 Figure 10a Correction Factors for Heat Transfer Rates for Gases in Shell-Side Cross Flow 108 Figure 11 Heat Transfer Rates for Gases and Vapors in ShellSide Cross Flow 109 Figure 1la Correction Factors for Heat Transfer Rates for Gases and Vapors in Shell-Side Cross-Flow 110 Figure 12 Heat Transfer Rates for Gases across Tubes 111 viii

LIST OF FIGURES (cont.) Page Figure 13 Heat Transfer Rates for Water in Transverse Flow in Banks of Tubes 112 Figure 14 Heat Transfer Rates, Water in Shell Segment Baffles 113 Figure 15 Heat Transfer Coefficients, Water in Shell, Orifice Baffles 114 Figure 16 Heat Transfer Rates for Oil across Banks of Tubes 115 Figure 16a Corrections for Heat Transfer Rates for Oil in Cross-Flow over Tube Banks 116 Figure 17 Heat Transfer Rates, Oils in Longitudinal Flow to Banks of Tubes 117 Figure 17a Correction Factors for Transfer Rates for Oil in Longitudinal Flow to Banks of Tubes 118 Figure 18 Heat Transfer Rates for Oils in Shell Flowing through Orifice Baffles 119 Figure 19 Heat Transfer to Liquids Flowing inside Tubes 120 Figure 20 Heat Transfer Rates for Liquids in Tubes, Heating and Cooling 121 Figure 20a Correction Factors for Heat Transfer Rate for Liquids in Tubes 122 Figure 21 Methyl Chloride and Freon-Water Coolers, Overall Heat Transfer Rate vs. Water -Velocity 123 Figure 21a Overall U Correction Factors for Freon-Water Coolers at Various Water Temperatures 124 Figure 22 Heat Transfer Coefficients for Gas inside Pipes or Annular Spaces 125 Figure 23 Heat Transfer Rates for Gases through Tubes 126 Figure 24 Heat Transfer Rates for Water in 5/8 in. Diam., 16 BWG Tubes 127 Figure 25 Heat Transfer Rates for Water in 3/4 in. Diam., 16 BWG Tubes 128 Figure 26 Heat Transfer Rates for Water in 1 in. Diam., 16 BWG Tubes 129 Figure 27 Heat Transfer Rates for Water in 3/8 in. OD x 18 BWG Tubes 130 ix

LIST OF FIGURES (cont.) Page Figure 28 Transfer Rate —Oil in Tubes, Film Rate between Wall of 5/8 in. OD Tube, 18 BWG and Petroleum Oil Flowing in Tubes 131 Figure 28a Correction Factors for Heat Transfer Rates for Oils in 5/8 in. Diameter 18 BWG Tubes 132 Figure 29 Transfer Rate —Oil in Tubes, Film Rate between Wall of 3/4 in. OD No. 16 BWG Tubes and Petroleum Oil Flowing in Tubes 133 Figure 30 Transfer Rates —Oil in Tubes 134 Figure 31 Heat Transfer Rates —Free Convection 135 Figure 31a Correction for Free Convection Heat Transfer Rates 136 Figure 31b Correction for Free Convection Heat Transfer Rates 137 Figure 32 Free Convection Heat Transfer Rates for Oil and Water 138 Figure 32a Free Convection, Outside Horizontal Tubes 138a Figure 33 Heat Transfer Rates for Film-Type Condensation Outside Horizontal Tubes 139 Figure 34 Heat Transfer Rates for Film-Type Condensation Inside or Outside Vertical Tubes 140 Figure 34a Correction Factors for Heat Transfer Rates for Film Type Condensation Inside or Outside Horizontal or Vertical Tubes 141 Figure 35 Heat Transfer Rates for Single Phase Condensation on Vertical Tubes 142 Figure 36 Caloric Temperature or Average Fluid Temperature 143 Figure 37 Free Area per Inchof' Baffle Pitch for Cross Tube Flow in Segmental Baffled Exchangers 144 Figure 38 Free Area per Inch of Baffle Pitch for Cross Tube Flow in Segmental Baffled Exchangers 145 Figure 39 Free Area per Inch of Baffle Pitch for Cross Tube Flow in Segmental Baffled Exchangers 146 Figure 40 Free Area per Inch of Baffle Pitch for Cross Tube Flow in Segmental Baffled Exchangers 147 Figure 41 Free Area per Inch of Baffle Pitch for Cross Tube Flow in Segmental Baffled Exchangers 148 Figure 42 Net Free Area, Horizontal Baffle Cut, Full Floating Head 149 x

LIST OF FIGURES (cont.) Page Figure 43 Net Free Area, Vertical Baffle Cut, Full Floating Head 150 Figure 44 Net Free Area,Vertical Baffle Cut, Full Floating Head 151 Figure 45 Net Free Area, Horizontal Baffle Cut, Full Floating Head 152 Figure 46 Net Free Area, Vertical Baffle Cut, Full Floating Head 153 Figure 47 Net Free Area, Vertical Baffle Cut, Full Floating Head 154 Figure 48 Net Free Area, Horizontal Baffle Cut, Full Floating Head 155 Figure 49 Net Free Area, Vertical Baffle Cut, Full Floating Head 192 Figure 50 Net Free Area, Horizontal Baffle Cut, Full Floating Head 193 Figure 51 Net Free Area, Horizontal Baffle Cut, Full Floating Head 194 Figure 52 Net Free Area, Vertical Baffle Cut, Full Floating Head 195 Figure 53 Approximate Free Area for Longitudinal Flow 196 Figure 54 Approximate Free Area for Longitudinal Flow 197 Figure 55 Approximate Free Area for Longitudinal Flow 198 Figure 56 Tube Side Friction Factors 199 Figure 57 Tube Side Return Pressure Loss 200 Figure 58 Friction Loss for Liquids Flowing in Tubes 201 Figure 59 Pressure Drop for Liquids through 3/4 in. OD Tubes, Turbulent Flow Only 202 Figure 60 Pressure Drop, Liquids through 1 in. OD Tubes, Turbulent Flow Only 203 Figure 61 Friction Loss for Gases through Tubes 204 xi

LIST OF FIGURES (cont.) Page Figure 61a Correction Factors for Flow of Gases through Tubes 205 Figure 62 Pressure Drop, Water in 3/8 in. Diameter, 18 BWG Tubes 206 Figure 63 Pressure Drop for Water through Smooth Seamless Drawn Tubes 207 Figure 64 Fluid Pressure Drop Due to Bends and Change in Velocity 208 Figure 65 Shell-Side Friction Factors for Bundles with 25% Cut Segmental Baffles 209 Figure 66 Pressure Drop for Gas or Vapor in Cross-Flow, ShellSide 210 Figure 67 Pressure Drop-Liquids across Banks of Tubes 211 Figure 68 Pressure Drop for Fluids in Cross Flow on the Shell Side 212 Figure 69 Pressure Drop, Liquids in Shell, Longitudinal Flow 213 Figure 70 Correction Factors for Presence of Condensate in Horizontal Tubes 214 Figure 71 Heat Exchanger Specifications 215 xii

LIST OF TABLES Page Table II-1 Nozzle Capacities lbs/hr 25 Table II-2 Maximum Steam Velocities 25 Table II-3 Common Pitches for Various Tube Arrangements When Tubes Are Rolled into Tube Sheets 28 Table III-1 Table of Plots on Shell-Side Film Coefficients 42 Table III-2 Table of Plots on Tube-Side Film Coefficients 45 Table IV-1 Summary of Exchanger Design 57 Section V Table I Tables of Normal Fouling Factors A. Fouling Factors for Water 156 B. Fouling Factors for Industrial Oils 156 C. Fouling Factors for Industrial Gases and Vapors 157 D. Fouling Factors for Industrial Liquids 157 E. Fouling Factors for Atmospheric Distillation Units 157 F. Fouling Factors for Vacuum Distillation Units 157 G. Fouling Factors for Cracking Units 157 H. Fouling Factors for Crude Oil Stream 158 I. Fouling Factors for Absorption Units 158 J. Fouling Factors for Natural Gasoline Stabilizer Units 158 K. Fouling Factors for Debutanisers, Depropanisers, Depentanisers and Alkylation Units 159 L. Fouling Factors for Tube Treating Units 159 M. Fouling Factors for Deasphalting Units 159 N Fouling Factors for Dewaxing Units 159 O. Fouling Factors for Hydrogen Sulfide Removal 159 Units Table II Pipe Dimensions and Data to Calculate Flow Rates 160 Table III Tube-Sheet Layouts (Tube-Counts) for Fixed Tube Sheets A. 1/2 in. IPS on 1-1/32 in. Triangular Pitch 162 B. 1 in. OD Tubes on 1-1/4 in. Triangular Pitch 162 C. 3/8 in. OD Tubes on 1/2 in. Triangular Pitch 163 D. 5/8 in. OD Tubes on 13/16 in. Triangular Pitch 163 E. 3/4 in. OD Tubes on 15/16 in. Triangular Pitch 164 F. 1-1/4 in. OD Tubes on 1-9/16 in. - 600 Pitch 164 G. 5/8 in. OD Tubes on 7/8 in. Triangular Pitch 165 Table IV Tube-Sheet Layouts for Full Floating Head Heat Exchangers A. 5/8 in. OD Tubes on 13/16 in. Triangular Pitch 166 B. 3/4 in. OD Tubes on 15/16 in. Triangular Pitch 166 C. 1 in. OD Tubes on 1-1/4 in. Triangular Pitch 167 D. 4 in. OD Tubes on 1 in. Square Pitch 167 xiii

LIST OF TABLES (cont.) Page E. 1 in. Tubes on 1-1/4 in. Square Pitch 168 F. 3/4 in. OD Tubes on 1 in. 600 Pitch 168 G. 3/4 in. Std. IPS Tubes 1-5/16 in. 600 Pitch Floating Head Type Exchangers 169 Table V U-Tube Layout A. 1 in. OD Tubes, 1-1/4 in. Triangular Pitch 170 B. 3/4 in. U Tubes on 15/16 in. Triangular Pitch 1-3/4 in. Minimum Radius 171 C. 1/2 in. IPS Tubes on 1-1/32 in. Triangular Pitchj 1-3/4 in. Minimum Radius 172 D. 3/4 in. OD Tubes on 1 in. Triangular Pitch, Center Tubes on Pitch with 1-3/4 in. Radius, 1-3/4 in. Minimum Radius 173 E. 5/8 in. OD Tubes on 13/16 in. Triangular Pitch, 1-1/4 in. Minimum Radius, Center Tubes on Pitch 1-3/8 in. Radius Tube Circles 8 in.-32 in./HS127 174 F. 3/4 in. Tubes on 1 in. Square Pitch, 1-3/4 in. Minimum Radius 175 G. 1 in. U-Tubes on 1-1/4 in. Square Pitch, 2 in. Minimum Radius 176 H. 5/8 in. Tubes on 7/8 in. Triangular Pitch, Minimum Radius 1-1/4 in., Center Tubes on Pitch 1-3/8 in. Radius, Tube Circle 8-32 in./HS-127 177 Table VI A. Horizontal Free Distance 178 B. Rows of Tubes in Horizontal Flow 179 Table VII A. Vertical Free Distance 180 B. Rows of Tubes in Vertical Flow 181 Table VIII A. Vertical Free Distance 182 B. Row of Tubes in Vertical Flow 183 Table IX A. Horizontal Free Distance 184 B. Full Floating Head Units 185 Table X A. Over-All Coefficients for Heat Exchangers in Petroleum Service 186 B. A Range of Values of Miscellaneous Over-All Coefficients 187 C. Coils Immersed in Liquids. Over-All Coefficients 188 D. Miscellaneous: Special Equipment and Materials 189 E. Jacketed Vessels. Over-All Coefficients 190 F. Values of U for Ammonia Condensers 191 xiv

HEAT EXCHANGER DESIGN MANUAL INTRODUCTION A wide variety of devices are used for transferring heat from one substance to another. The engineer is interested in those types which transfer heat from a liquid to a liquid, from a gas to a liquid, from a gas to a gas, and from a liquid to a gas. Each case represents a particular type of service, which in turn dictates the type of heat exchanger that must be used. Many of these types of heat transfer service can be carried out in similar units, while others require variations. The selection of an optimum design at minimum cost poses many process variables from calculation to initial operations. It is the engineer's problem to determine the type of heat transfer unit that will effect cheaply and efficiently the required heat transfer. He must be familiar with the various types of heat exchangers that are available; and from his calculations and knowledge of the problem, he must choose a unit that will satisfy best the requirements. In many fields, the engineer must often search through a great many sources to obtain specific data bearing upon a given problem. This situation is true in the design of heat exchangers, where the correlations of heat transfer and pressure drop data and the specifications of mechanical aspects are distributed throughout many sources. The purpose of this manual, therefore, is to provide, in a single volume, all pertinent data on the shell and tube type of heat exchangers. The manual covers the following material: 1. General description of shell and tube type heat exchangers, their internal arrangements, nomenclature and terminology. 2. A resume of formulas on heat transfer rates and pressure drop calculations. 3. Sample heat exchanger calculations to illustrate the use of various curves and tables based on the formulas. The manual adopts the industrial standards for heat exchanger design. Insofar as possible the Standards of TEMA are suggested. The data incorporated in the manual have been applied to actual design work. These data will permit the engineer to select and design a heat exchanger which meets specific requirements of a given problem. It is common experience of engineers in actual industrial design problems to be confronted with data based on scant observations and hence of questionable usefulness or with data of widely varying nature. Quite often, sufficient data is not available from which to design heat exchangers. It is the aim of this manual to assure economic and workable designs. 1

The two general types of heat exchangers of prime interest are: 1. Heat exchangers in which only one of the fluids is confined. 2. Heat exchangers in which both fluids are confined. An example of the first type is an air heater. Steam, hot air, or water is circulated through tubes or tube bundles, while air to be heated is passed over the outside of these tubes. Heat is transferred from the hot fluid confined in the tubes, through the tube wall, to the air surrounding the tubes. Other examples of this type are automobile radiators and condenser units in refrigeration systems. The most widely used unit of the second type is the shell and tube type of heat exchanger. Variations of this unit can be used for any heat exchanger service where both fluids are confined. Shell and tube heat exchangers, for example, are used to condense vapors or to heat and cool liquids and vapors. This manual stresses the design of shell and tube heat exchangers using plain tubes. Description of this type of exchanger, bringing out the outstanding features and modifications to suit various duties given in the manual will enable the engineer to delineate the process variable, to distinguish "knowns from-unknowns" and to proceed with confidence in selection of proper equipment. While summaries of the formulas correlating various design variables are given, the development of these correlations is excluded from the manual, as theoretical considerations of this nature do not fall within the scope of the manual. An exhaustive list of references at the end of the manual includes relevant references of this kind. To illustrate the versatile nature of the data incorporated in the manual, sample heat exchanger calculations are included. Such calculations illustrate, by example, the use of curves and tables based on the formulas summarized elsewhere in the manual. In addition, the information presented in the manual may be very helpful in the design of other types of heat exchangers. 2

I. TYPES AND DESCRIPTION OF HEAT EXCHANGERS A. Shell and Tube Heat Exchangers 1. Fixed Tube Sheet Type Heat Exchanger The fixed tube heat exchanger is the simplest and the least expensive of the shell and tube type heat exchangers. In this type, both tube sheets are fixed rigidly to the shell. If the exchanger is short, or if the temperature difference between the shell-side fluid and the tube-side fluid is low, no provision need be made for tube expansion or contraction. If the exchanger is long, or if there is a large difference in temperature between the shell-side fluid and the tube-side fluid, an expansion joint can be fabricated into the shell. This type of unit can be used for many services in which clean shellside fluids are assured. A drawing of a fixed tube sheet type heat exchanger is shown in Figure I-1. 2. U-Tube Type Heat Exchanger Another type of heat exchanger involving simple construction and low cost is the U-tube heat exchanger. This type of exchanger is made by fixing bundles of U-shaped tubes into a single tube sheet. The tube sheet is channeled so that fluid can enter one leg of the U-shaped bundle and return through the other. Since straight through-cleaning of the tubes is not possible, only clean fluids are used in the tube-side of the exchanger. In this type of heat exchanger, it is possible to heat and cool over a wide temperature range, as no stresses are set up between the tube and the tube sheet. A sketch of this type of exchanger is shown in Figure I-2. 3. Internal Floating Head, Removable Tube Bundle Type Heat Exchanger A widely used heat exchanger is the internal floating-head, removable tube bundle type. A differential expansion between the tubes and the shell is provided. This is accomplished by fixing the tubes in a fixed tube sheet at one end of the exchanger, while the tube sheet at the other end is allowed to "float" in the shell. The floating tube sheet has a head cover to separate the two fluids in the exchanger. The tube bundle can easily be removed from the shell for cleaning and repairing. This exchanger is shown in Figure I-3. 4. Packed Floating Head, Removable Tube Bundle Type Heat Exchanger The packed floating head, removable bundle type heat exchanger illustrated in Figure I-4, is similar to the floating head type, except that no floating head cover is used. Instead, a packing material is put between the floating tube sheet and the shell to separate the two fluids. This type is confined to service where the pressure does not exceed 75 psig, as larger packing glands do not give satisfactory service and need frequent replacements causing greater maintenance cost.

4Z 1 m",{ — 1 1 - ~~~~~~~~~~~~~~~~~~~~~~~~~~ —FIGURE r- I FIXED TUBE-SHEET HEAT EXCHANGER

FIGURE 1L-2 UI TUBE HEAT EXCHANGER

@ I FIGURE I-3 INTERAL FLOATING-HEAD HEAT EXCHANGER

FIGURE 1-4 FIGURE IHEAT EXCHANGE-4 PACKED FLOATING-HEAD HEAT EXCHANGER

5. Reboilers The most common type of reboiler is shown in Figure I-5. It consists of a tube bundle placed in a shell such that a large vapor space is available. Some reboilers are of the vertical shell and tube heat exchanger type in which boiling takes place in either the tube or the shell side. Reboilers are used extensively in connection with distillation equipment and evaporators. 6. Concentric Tube, or Double Pipe Heat Exchanger When small quantities of heat are to be transferred, an exchanger known as the double pipe or concentric tube type heat exchanger is used. These exchangers are simple to build, small, and relatively inexpensive. This type is made by jacketing a single tube or pipe within another slightly larger tube or pipe. One fluid flows through the inner tube, while the other fluid flows through the annular space between the two tubes. B. Internal Arrangements 1. Single Pass Shell - Single Pass Tubes A typical single pass shell - single pass tube heat exchanger is illustrated in Figure I-6. It is known as 1-1 exchanger. In this arrangement the fluid in the shell side enters one end and leaves the other; while the fluid in the tube side makes one pass through the exchanger counter flow to the liquid on the shell side. 2. Single Pass Shell - Multipass Tubes Figure I-7 shows a typical single pass shell - multipass tube heat exchanger. The fluid on the shell side enters one end of the exchanger, and leaves at the other; the fluid on the tube side enters one end, passes through a portion of the tubes to the opposite end, where its direction is reversed by a channel, and returns through the remaining tubes to its starting end. Each traverse of the exchanger is termed a pass. The exchanger illustrated is an example of a two-pass exchanger, or a 1-2 exchanger. 3. U-Tube, Single Pass Shell - Multipass Tubes A U-tube, single pass shell - multipass tube-heat exchanger is illustrated in Figure I-8. The fluid in the shell side of the exchanger enters one end and leaves the other. The fluid in the tube side may make any number of transverses, but in this case the fluid changes direction in the U bends at one end of the exchanger and by means of channels at the other end. 4. Two Pass Shell - Multipass Tubes When high heat recoveries are required, a two-pass shell- multipass tube heat exchanger is used. An example of such an exchanger is illustrated in Figure I-9. This is an example of a 2-2 exchanger. A longitudinal baffle is placed in the shell of this exchanger so that the fluid on the shell side must enter one end, pass through the shell on one side of the baffle, and return on the other side. The fluid on the tube side can make as many passes as are required. 8

FIGURE 1-5 KETTLE TYPE REBOILER

FIGURE I- 6 SINGLE PASS SHELL - SINGLE PASS TUBES

FIGURE I - SINGLE PASS SHELL MULTIPASS TUBES

FIGURE T -8 U-TUBE, SINGLE PASS SHELL - MULTIPASS TUBES

An ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I FIGURE I - 9 TWO PASS SHELL MULTIPASS TUBES I. l~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5. Divided Flow Shell - Multipass Tubes A divided flow shell - multipass tube heat exchanger is shown in Figure I-10. The baffles are arranged so that the fluid enters the shell side, halfway between the two ends of the exchanger. From this point, the flow of fluid splits. A portion of the fluid flows to one end of the exchanger and the balance of it leaves the other end. This baffle arrangement is used when the flow of shell fluid is high and pressure drop through the exchanger becomes an important design consideration. The fluid in the tube side of the exchanger can make as many passes as necessary. 6. Divided Flow Shell - Multipass Tubes with Longitudinal Baffles Figure I-11 shows a typical divided flow shell - multipass tube exchanger. This exchanger has two shell side inlet nozzles and two shell side outlet nozzles. A longitudinal baffle runs the length of the exchanger and divides the shell into halves. Shell fluid can enter either side of the shell, on either end of the exchanger. The heat transfer problem at hand dictates the best hookup for this exchanger. The fluid in the tube side can make as many passes as required. 7. Transverse Baffles Since physical considerations limit the number of tubes that can be placed in a given shell, the velocity of the fluid on the outside of these tubes is limited for a given mass flow rate. Generally, an increase in the heat transfer coefficient on the shell side can be achieved if the velocity of the shell side fluid can be increased. This is accomplished by using baffles arranged transversely to the axis of the tubes. There are three types of transverse baffles used in heat exchanger design, namely: 1. Orifice type, 2. Disc and doughnut type, 3. Segmental type. Figure I-12 shows an illustration of an orifice-type baffle. These baffles are designed so that a free space, or area, exists between each tube and baffle. The free area at each baffle and between adjacent baffles is shown in the illustration as nonshaded areas. The clearance between the baffles and the shell wall must be as small as possible to minimize channeling and leakage. Tube supports are required if this type of baffle is used. When the shell-side fluid is fouling or corrosive in nature, the orifice-type baffle offers difficulties in maintenance. A disc and doughnut baffle is shown in Figure 1-13. This baffle arrangement consists of disc-shaped baffles and doughnut-shaped baffles placed alternately in the shell. The disc consists of a circular baffle placed transversely to the axis of the tubes. It is smaller in diameter than the shell, and therefore an annular space exists between the edge of the baffle and the shell wall. The doughnut baffle is a circular disc with a hole in the center — much like a doughnut. Its outside diameter allows it to fit snugly in the exchanger shell. The hole is large enough to give the required longitudinal flow velocity across the tubes.

____ ___ ___ _ _ ____L.____ FIGURE I - 10 DIVIDED FLOW SHELL - MULTIPASS TUBES

FIGURE 11I DIVIDED FLOW SHELL - MULTIPASS TUBES WITH LONGITUDINAL BAFFLE

f~~-A P4-&A -AT BA-Ff L+ l3-f 8.rTW+-+ B ATTLESI t) 2' —E- +-"F Figure I -12 ~YXY/~y~~i ~~~0 ////l~ Figure 1:-12

........ D ISK..... ~ S ELL. DOUGI.hNUUT,.. FREE AREA AT DISK FREE AREA AT DOUGQINUT DI5<-AND DOUG;INUT BAFFLE Figure I-13

The most common and generally used transverse baffle is the segmental type. A diagram of this baffle is shown in Figure I-14. This arrangement is made by installing circular discs in the shell, transversely to the tube axis. A segmented area is cut from each disc. These baffles are generally cut with a segment height which is 25 percent cut baffles. Other baffle cuts are made, however, and are designated as being cut a number of tube rows past the centerline of the exchanger. The baffles are oriented in the exchanger so that the shell fluid flows through the segmented openings longitudinally to the axis of the tubes. The segmented opening on the next baffle is on the opposite side of the exchanger; therefore, the shell fluid must cross the tubes between the baffles before it can pass through the opening of the next baffle. This alternating cross and longitudinal flow around the tubes continues the length of the exchanger. The number of times the shell fluid crosses the tubes depends upon the number of baffles in the shell, which, in turn, is determined by the spacing needed to provide the velocity required. 8. Impingement Baffles Near the point of entry of the shell fluid, its velocity can be high. Provisions can be made to protect the tubes at this point; otherwise, serious erosion is likely to occur. This can be done by placing an impingement baffle between the tubes and the point of entry of the shell fluid. In some cases, the nozzles are flared so that the velocity of the entering fluid is reduced. 9. Vents and Drains When designing heat exchange equipment,'adequate vents and drains must be provided. The nature of service for which the exchanger is designed will dictate the type and location of vents, drains, steam traps, etc. If the exchanger is designed for high pressure service, relief valves or rupture discs are required. 10. Routing of Fluids The routing of fluids is determined by two factors: (1) to what degree a fluid fouls the transfer surface, and (2) the corrosiveness of the fluids. In consideration of the first factor, that fluid which fouls the transfer surface more rapidly should be routed through the tube side of the exchanger, since the inside of exchanger tubes are easier to clean. However, if both fluids foul the transfer surface to the same extent, the fluid under the highest pressure should be routed through the inside of the tubes, thus obviating the necessity for designing a costly, high pressure shell. In consideration of the second factor, that fluid with the greater corrosiveness should be routed through the tube side of the exchanger again making it unnecessary to use a shell of costly material. 19

RO 0 FRE.E. AREA Al,AFFL -. 5EGMENTAL.A.FFLE [ Figure I - 14

II. NOMENCLATURE AND HEAT EXCHANGER TERMINOLOGY A. Table of Nomenclature A,Ai,Ao = Heat transfer surface, general, inside, outside respectively, ft2, AL = free area of longitudinal flow of fluid, ft2, Am = mean heat transfer surface, ft2, Ax = free area of cross flow of fluid across tubes, ft2, as = flow area, ft2, Bo = box loss, psi, B = baffle spacing, in., C = wall correction factor (Figure 56, Part V), CL = clearance between tubes (ligament), in., Co = discharge coefficient for an orifice, Cp = specific heat of hot fluid, Btu/lb(0F), cp = specific heat of cold fluid, Btu/lb(OF), D = inside diameter of tubes, ft, Do = outside diameter of tubes, ft, De = equivalent diameter for heat transfer and pressure drop, ft, Ds = inside diameter of shell, ft. ID,d = inside diameter of tubes, in., de = equivalent diameter for heat transfer and pressure drop, in., do,OD = outside diameter of tubes, in., ds = inside diameter of shell, in., Fc = caloric fraction, F,Fk,Fo,Fp = heat transfer or pressure drop correction factors —as specified in respective curves, 21

Ft = temperature difference factor, At = Ft x LMTD, dimensionless, Fx = LMTD correction factor, f = friction factor ft2/in.2, G = mass velocity lbs/(hr)(ft2), G' = mass velocity defined as lbs/(sec)(ft2), Gr = Grashof number, GL = mass velocity in shell, longitudinal flow, defined as lb/(hr)(ft)~ Gm = tubeside mass flow rate defined as lbs/tube x hr, Gx = mass velocity in shell, cross tube flow defined as lb/(hr)(ft)2, g = acceleration due to gravity ft/sec2, h,hiho = heat transfer coefficient, general, for fluids inside tubes, and for fluids outside tubes respectively, Btu/(hr)(ft2)(OF), hio = value of hi when referred to the outside diameter of the tube, Btu/(hr)(ft2)(~F), JH = factor for heat transfer, dimensionless, Kc = caloric constant, dimensionless, k = thermal conductivity, Btu/(hr)(ft2)(~F/ft), L = tube length, also length in direction of heat flow, ft, LH = tube length-horizontal, ft Lv = tube length - vertical, ft, LMTD = log mean temperature difference, OF, M = mass in lbs/hr, m = 103 lbs/hr, n = number of tube passes, N = number of shell-side baffles, Nb = number of tube rows past center line, ND = number of tubes on horizontal diameter, Nt = number of tubes, Nv = number of tube rows in a vertical tier, 22

P = pressure in atmospheres, AP = pressure drop, psi,,PTYPttP p = total, tube and return pressure drop, psi, Pr = tube pitch, in., p = tube loss defined as lbs/lO0 linear feet, Q = heat flow, Btu/hr, q = heat flow per unit area, Btu/hr x sq ft, r = radius of exchanger shell, in., R = resistance to heat flow, Rt = temperature group (T1 - T2)/(t2 - tl) dimensionless, Rd = combined dirt or fouling factor, (hr)(ft2)~F/Btu, Re = Reynolds' number, dimensionless, S2 = temperature group (t2 - tl)/(Tl - T2) dimensionless, s = liquid specific gravity (referred to water = 1.0), T,T1,T2 = temperature in general, inlet and outlet of hot fluid, OF, Ta = average temperature of the hot fluid, OF, Tc = caloric temperature of hot fluid, OF, Tx = temperature of shell fluid between first and second passes, OF, tlt2 = inlet and outlet temperature of cold fluid, OF, ta = average temperature of cold fluid, OF, tc = caloric temperature of cold fluid, OF, ti = temperature at the end of first pass, OF, tw = tube wall temperature, OF, ty = temperature of tube fluid between second and third passes, OF, At = the temperature difference in Q = UCAAt, OF, Atc'Ath = temperature difference at the cold and hot terminals, OF, Uc,Uf = clean and design or fouled overall coefficients of heat transfer, Btu/(hr)(ft2)(0F), 23

V = velocity, ft/sec, W = weight flow of hot fluid, lbs/hr, Wt = modified rate of flow lbs/hr/tube, Z = height in ft, w = weight flow of cold fluid, lbs/hr, A = viscosity, centipoises x 2.42 lb/(ft)(hr), ci = viscosity at tube wall temperature, centipoises x 2.42 lbs/(ft x hr), p = density, lb/ft3, f = (4/1)o. 14 If= correction factor for convection —flow in tubes at low Re, dimensionless, = coefficient of thermal expansion 1/~F, X = latent heat of condensation, Btu/lb, = mass velocity of condensing vapor, lbs/ft of total circumferential periphery per hour. Subscripts (except as noted above): S = shell side, t = tube side, v = vapor, a,b,c,etc. = designated material, a, b, c, etc., c = condensate, 1 = liquid, x = cross tube flow (shell side), L = longitudinal tube flow (shell side) or liquid, m = mean value, f = film, film temperature, or fouled condition. 24

B. Heat Exchange Terminology 1. General The terminology for heat exchanger parts is indicated in Figure II-1 and II-2 illustrating typical single and two shell-pass exchangers respectively. The ASME and API-ASME have established a safety code for the design specifications of various exchanger parts and these specifications are presented in the Standards of TEMA, New York. 2. Heat Exchanger Shell The two major parts of this type of heat exchanger are (i) the shell and (ii) the tube-bundle or tube-bank. The shell size is goverened by the size of the tube-bank and the nature of the performance of the equipment; for example, a larger modified shell is required if the fluid vaporizes as in reboilers. Shell diameter and shell thickness are specified according to the duty and the material of construction. Shell-nozzle connections and materials of constructions are specified by TEMA. A nomograph for the size of nozzles is given on Figure 1 of Part V*for steam, with steam gauge pressure as parameter. Knowing the steam flow, the size of nozzle can be obtained for predetermined velocity. Following is a table (Table-II-l) which gives nozzle capacities for various fluids. Maximum steam velocities are recommended as given in Table II-2. TABLE II-1 NOZZLE CAPACITIES lbs/hr Area Oil Oil Water Condensate Size Sq In >150 S.S.U.'150 S.S.U. (AP = 11.2'/100') (at l'/sec) (at 21/sec) (at 4'/sec) 1/2" 0.304 858 1,715 630 475 3/4" 0.533 1,500 3,000 1,500 833 1 " 0.864 2,400 6,880 2,900 1,350 1-1/2" 2.036 5,740 11,480 9,000 3,181 2 " 3.355 9,460 18,920 19,000 5,242 2-1/2" 4.788 13,500 27,000 30,000 7,481 3 " 7.393 20,900 41,800 50,000 11,550 4 " 12.730 35,900 71,800 110,000 19,889 5 " 20.000 56,400 112,800 210,000 31,248 6 " 28.890 81,500 163,000 325,000 45,138 8 " 50.030 141,000 282,000 700,000 78,167 10 " 78.850 222,000 444,000 1,500,000 123,194 12 " 113.090 319,000 638,000 1,900,000 176,691 TABLE II-2 MAXIMUM STEAM VELOCITIES OF, Super Heat 0 50 100 150 ft/sec 133.5 162.0 150.0 158.4 *Figures designated by Arabic numerals appear only in Part V. 25

Gwe L2N OMEN CLATURE OF TYPICAL WIEAT EXCIIANGEI. PAQRTS 1. SWELL 9. FLOATINC1 WEAD BACKING. DEVICE 17. LONJCo\TTUDIMAL BAFFLE Z SW ELL COVER 10. STATI ONA1RV TU [ESE UET 18. VENT COO N N ELCT ION 3. 51-IELL CI-AIEhJL END FLANCE I. CWANkJEL 19. DRAIN COKNECtTION 4. 514ELL COVER END FLANGE IZ. C4ANNEL COVER 20. TEST CONNECTION 5. SlELL, NOZZLE 13. CI-ANJEL NOZZLE 21. SUPPORT SADDLE5s 6. FLONATINJQ TUBES.WEET 14. TIE RODS AND 5SPPCERS 2Z. LIFTI MG RIk IC1 7 FLOATI kJC I-lEAD 15. TRA.SVEZSE. BAFFLES OR SUPPORT PLATES 8. FLOAT I NC1. W-EAD FLANGE 16. IMPIJCIEMENT AFFLE Figure Figure ]:[-I

NOMEN.CLATUPE. OF TYPICAL WEAT EXCAIANQ(E. Pt,.T5 i. 5WELL 9.FLOATINl4 WEAD BACKIkClG DEVICE. 17. LONkCrITUDIMAL 5AFFLE. Z. SWELL COVER 10. 5TATIONARY TUbESWEET 18 VF.WT COWNECTION 3. SlELL CHANNEL EFAD FLANCiE 1I. CWANMEL 19 DRAIN CONkE.CTIOJ 4.. SWE.LL COVER. EK/D FLANIC4E 12. CWAJMEL COVEAR 20. TE5T COKIMECTIO4 5. SWFELL NIOZZLE 13. Cl4A MJME.L NJOZZLE 21. SUPPORT S5ADDLE 5 Figure D-2 6. FLOATIMCi TUBESWEET 14 TIE QODS AIND 5PACER5 2Z. LIFTIkQ C. qlUCI _ 7. FLOATIJMCa WEAD 15. TRANSVERSE 13AFFLE5 oR SUPPORT PLATES 6. FLOATINCi WIEAD FLANC1iE. 16. IMPIM CtEMENT BAFFLE I

3. Heat Exchanger Tube-Bundles a. Heat Exchanger Tubes. Heat transfer surface required for a given duty, the tube diameter and tube length fix the number of tubes required for given duty. Standard overall tube lengths are 8, 12 and 16 feet. Heat exchanger tubes or condenser tubes differ from iron pipes in that the outside diameter of heat exchanger tubes is the same as the specified tube diameter in inches. The wall thickness is based on Birmingham wire gauge, that is, the BWG of the tube. The most common sizes of tubes used in heat exchangers are 3/4 in. and 1 in. OD tubes. Other tube sizes available are listed in Table II of Part V. Tubes of 12, 14 and 16 BWG are readily obtainable. b. Tube Pitch. In laying out tube arrangement, the word pitch is used to designate the shortest center-to-center distance between adjacent tubes. This is the case for square or triangular tube layouts. The shortest distance between two adjacent holes in the tube sheet is termed clearance or ligament. The table below (Table II-3) gives common pitches for various tube arrangements when tubes are rolled into tube sheets. When tubes are to be backwelded, sufficient allowances must be made for the weld passes. The square and triangular pitch dimensions are shown in Figure II-3. PT FI i Figure II-3. Pitch and Ligament. TABLE II-3 COMMON PITCHES FOR VARIOUS TUBE ARRANGEMENTS WHEN TUBES ARE ROLLED INTO TUBE SHEETS No. Tube Layout Tube Size Pitch OD 1 Square 3/4" 1 " 2 Square 1 " 1-1/4" 3 Triangular 3/4" 15/16"? 4 Triangular 3/4" 1 " 5 Triangular 1 " 1-1/4" 28

c. Tube-Bundle Layout. A bundle is formed by either expanding or welding tubes in tube sheets or by packing the tubes in the tube sheets by means of ferrules. Tubes are arranged in bundles in several ways. Four of the most common arrangements are shown in Figures II-4, 5, 6, and 7. Figure II-4 shows an in-line square tube pitch. The direction of the fluid flow across the tubes is shown by the arrow. Staggered square tube pitch arrangement is shown in Figure II-5. Figures II-6 and II-7 show staggered arrangements with triangular pitches. Exchangers with a square tube pitch arrangement are most easily cleaned on the shell-side than those which have a triangular pitch. However, the heat transfer coefficient is lower with the square pitch arrangement. TEMA has specified that the clearance between tubes should be at least one-fourth the outside diameter of the tubes and in no case less than one-fourth of an inch in order to facilitate cleaning. d. Tube-Sheet Layout and Tube-Count. Except in single pass heat exchangers the tube sheet layout is not usually symmetric. For multipass construction, space must be provided in the layout for partitions in the channels and the head covers. Outer tube limit is the diameter free of obstruction. Tubes are laid out within outer tube limit with minimum allowance of space between the partition and adjoining tubes. The number of tubes in such a layout is called the tube count. Tube counts for various tube-sheet layouts and pitch arrangements are given in Table II-V of Part V. For a given shell diameter and a given tube pitch more tubes can be put in a single tube pass exchanger than in a multitube pass exchanger. 29

I I I I 1 1 I! I I I I I I | e-e-e-ee-e-e_ I I I I I I I I I I I - - e-e- e-e-e -e-e-e-e- - -~-el I l l l l l ~-E ED-O-O-E-E-,o o-o —I i1-4 8~~I-LIN SQAR TUE-PTC 30

000 /o N@ /'~ FI. I -5 STAGGERED SQUARE TUBE-PITCH /~~ 0\ 00 FIG. 1 1-5 STA GG EREDO S QUA RE T UB8E -PITCH

0~ ON ON>:0 FIG. 11-6 TRIANGULAR TUBE-PITCH =o:~~~~~3

\ / \1/\/ /'\1/\ / o`on'''@''@ 00/000 / \/\//\/\/\. e e eFIG e1\/~ TRAQATBPT eee'~`d ee'~3

III. CORRELATIONS OF HEAT TRANSFER AND PRESSURE DROP DATA A. General Considerations 1. Heat Transfers through Solid Conductors a. Resistance Concept. Heat transfer through a solid wall is illustrated in Figure III-1. Mathematically, it can be shown, by the integrated form of the steady state heat conductance equation, as kAAt Q =- (1) A'- T -T= At Figure III-1. Thermal Resistance. This equation is similar to the equation for the conductance of electricity through a solid, if the reciprocal of kA is called the resistance R. The equation then becomes, iAt Q = (2) where At is the driving force and R is resistance. If heat flows through a wall consisting of different thicknesses as shown in Figure 111-2, the rate of heat conductance through each material will be proportional to the resistance of each material. That is, the ratio of the total temperature across each material to its resistance must be the ratio of the total temperature difference to the total resistance or Q At = Ata = t c = t). (3) ZR Ra Rb Rc For a system, using actual temperatures.at interface and surface, =Q T T1- tl t - t2 _ t2 - T2 ZR Ra Rb Rc 34

T1 Ato Atb C T2 -Ra Rb -- - H Figure III-2. Resistances in Series where tl and t2 are temperatures at the interface of a-b and b-c, respectively. Rearranging and substituting R = L/KA into equation (4), AT T1 - T2 () La + Lc RaA RbA RcA b. Area of the Heating Surface. When heat flows through the walls of a cylinder, such as a pipe, as illustrated in Figure III-3, the area at right angles to the flow of heat decreases. It can be shown mathematically that that the logarithmic mean area, Am, is the correct average value to use. The logarithmic mean area is Am A2 - A1 (6) 2.3 log (A2/A1) where Al and A2 are areas for surface having radius rl and r2, respectively. In terms of the radii of the two areas, the log mean area is Am 2vr2 - 2vrl (7) 2.3 log (2rCr2/2trlj) r Kb TFigure III-3. Cylindrical Figure III-4. Cylindrical Thermal Resistance. Resistances in Series. 35

When heat is transferred through the walls of concentric cylindrical surfaces of varying composition and thickness, as shown in Figure III-4, the amount of heat transferred per unit length of cylinder is At T1- T2 Q = = (l/kaAam) + (l/kbAbm) 2. Mean Temperature Difference The temperature difference between a heat source and a heat receiver is the driving force by which heat is transferred. The rate of heat transfer is directly proportional to this driving force; therefore, the determination of the correct temperature difference existing for a given set of heat transfer conditions is important, when calculating the required heat transfer surface. In the case of counter or parallel flow of both liquids, the correct mean temperature difference is the logarithmic mean temperature difference. This term is commonly abbreviated as the LMTD, and is defined as LMTD = At2 - Atl 2.3 log (At2/t 1 ) where tl and t2 are defined as T1 hot fluid T2 t2 cold fluid tj At1 = T2 - tl; At2 = T1 - t2 The true temperature difference in a 1-2 exchanger, however, is not given by equation (9). This situation arises because the flow in such an exchanger is a combination of counter current and parallel flows. It becomes even more complicated when more tube-passes and multiple shell-passes are used. Curves on Figures 2-7 in Part V give factors for correcting the LITTD for various types of tube-side and shell-side flows. 3. Film and Overall Transfer Coefficients The summation of individual resistances is called the overall resistance. In an exchanger heat is transferred from hot fluid to the cold fluid through the tube-wall. The coefficient of heat transfer from tube-surface to a fluid or the film coefficient is defined as h in the equation Q = hA (tw - ta). (10) Taking into consideration the film coefficients of fluids inside and outside the tube the total resistance can be obtained as ZR 1 + 1 (11) hiAi KmAm hoA 36

The clean overall coefficient of heat transfer, Uc, is defined as 1 = = - 1 Tm 1 UcAO ~R 1 (12) UcAo hiAi KmAm hoAo or approximately, 1 = 1 + Lm + 1 (13) Uc hi Km ho For steady state heat transfer equation (3) gives At Equation (13) can be substituted in equation (3) so that q = Ut (14) where q is heat transferred per unit time per unit area, or Q = UcAtt. (14a) In most heat transfer work the resistance due to pipe wall is negligible and equation (12) reduces to 1 1 1 Uc = hi (Ai/AO) +o (15) Inasmuch as the areas of the inside and the outside, of an exchanger tube are different, hi and ho must be referred to the same heat flow area. If the outside area Ao of the pipe or tube is used, hi must be multiplied by (Ai/Ao) to give the value that hi would have, if it were calculated originally on the basis of the larger area, Ao. 4. Heat Balance The total amount of heat transferred through the surface of a heat exchanger is Q = WCp (T1 - T2) = Wcp (t2 - tl), Btu/hr (16) or combining with equation (14a) Q = WCp (T1 - T2) = wcp (t2 - t1) = UcAtt. (16a) 5. Shell-Side Mass Velocity In shell and tube-type heat exchangers, both the fluids are confined. One flows through the tubes and the other flows outside the tube through the shell of the exchanger. Most of the film coefficient and pressure drop correlations are based on the mass velocity of the fluids on the tube side or on the shell side. While only one mass velocity is encountered on the tube-side, two different mass velocities exist on the shell-side of an exchanger. One mass velocity is based on the flow of fluid across the tubes between the baffles and 37

the other is based on the flow longitudinal to the tubes through the segmented baffle openings. These flows are called cross and longitudinal flows respectively. On this basis the cross area, Ax, is given by Ax = ds (PT- do) B sq ft (17) l44PT Therefore, the mass velocity for cross flow is Gx = w. (18) The curves plotted with shell diameter as parameter on Figures 37-41 of Part V, give values of Ax per inch of baffle pitch. These curves, based on equations (19, 20, 22, 23) adopted from private communications, make slightly different assumptions than equation (17); however, they appear to give comparable values. Figures 37-39 are based on equation Ax = K1/2 [( - t/2) - 1/2 sine 2Q] - K2 cos (19) Nb where A = free area per inch of baffle pitch - sq in., G = arc cos [0.866 (PT - do)/ r], PT = tube-pitch - in., Nb = number of tube rows past condenser CL, K1 = [-1.732r2 (PT - do)]/(O.866PT)2; K2 = rdo/O.866PT r = radius of exchanger shell, in., do = outer tube diameter, in. Figures 40 and 41 are based on equation Ax = N (i - 20 + sin 2Q) (20) where 0 = arc cos [0.866 (PTNb)]/r, K1 = [4r2 (PT - do)YPT-~ AX,Nb,PT,do and r have the same significance as above. The longitudinal free area AL is the total cross-sectional area of the tubes in the segmented baffle cut, subtracted from the area of the segmented baffle cut. The curves on Figures 42 to 55 of Part V give approximate values for these areas for different baffle cuts and shell diameters. 38

Therefore, the mass velocity of longitudinal flow is GL = E ~ (21) Figures 42-52 are based on the geometry of the tube arrangements, for horizontal baffle cuts and vertical flow and vice versa for an exchanger having full floating head. Figure 53 has curves for approximate free area for longitudinal flow for triangular pitch based on equation AL =r2(O1 sin 29 G d r sin 281 - sin 222) o.866P_ 2 -(2 - 0.866PT- Nb (22) where AL = net free area for longitudinal flow - in.2, Q1 = arc cos (0.866 PTNb)/r, 92 = arc cos (1 - cos 81)/Nb, do,r,PT and Nb have same significance as in Part II-A. Figures 54 and 55 are for square pitch and are based on equation AL = r2 i("l1 - sin1) _ it ( sin Qi) ( sin 22j (2 2.T 2 2 where 1 = arc cos 0.707 PTNb) e2 = arc Cos 1cos ( C ) Nb AL, r,do,PT, and Nb have the same significance as in Part II. Curves on Figures 53-55 have shell diameter as parameter. 6. Shell Side Equivalent Diameter Where the range of baffle pitch is restricted between the inside diameter and one-fifth the inside diameter of the shell, excellent correlation of flow in an exchanger is obtained if the hydraulic radius is calculated parallel with instead of at right angles to the long axis of the tubes. The equivalent diameter of the shell is then taken as four times the hydraulic radius. Figure III-5 shows a diagram of a square tube pitch. The crosshatched area represents the cross-sectional flow area and the heavy lines on the tubes represents the wetted perimeter. 59

I I C Figure III-5. Wetted Perimeter for Square Tube Pitch. Inspection of this sketch shows that De = 4X free area wetted perimeter or D = (24) ido A 600 triangular V-pitch tube arrangement is shown in Figure III-6. The crosshatch area represents the cross-sectional flow, while the heavy lines on the tube perimeter represents the wetted perimeter. 00 Figure III-6. Wetted Perimeter for 600 Triangular V-Pitch. As before, 4X free area De = wetted perimeter or orDe = 8 (o.43 PT -.) (25) 4do 40

B. Correlations for Film Coefficients 1. Shell-Side Film Coefficients Kern,35* has given an equation for calculating shell side film coefficients based on the cross-flow only, using the maximum area corresponding to the center of the shell. This equation is based on the correlation of industrial data and gives satisfactory results for hydrocarbons, organic compounds, water, aqueous solutions and gases when baffles, with clearances between baffles and tubes and baffles and shells as specified in the Standards of TEMA, are employed. For Reynolds' number from 2,000 to 1,000,000, the data are closely represented by the equation hD~~(DeGx 0-55 t1/3 0.14 hLO~ek =0.56 (DeGx)0 55 kc~2 {-J (26) This correlation is represented in Figure 8 of Part V. Figures 9-18 except Figure 12 in Part V are plots of correlation of industrial data on heat transfer coefficients. Following Table III-1 indicates the use of these plots in respective cases. Figure 12 is a nomograph for heat transfe 7coefficients for gases across banks of tubes based on the equation by Colburn.7 h = (constants) (CP1/3 k2/3 Go.8 (27) 0.27 (do).4 2. Tube-Side Film Coefficients The recommended equations for calculating tube film coefficients for both heating and cooling against liquids, aqueous solutions and gases are given below. a. Stream-Line Flow (Re < 2100). LD 10.186 (>.14 ( DG\ Cpp (D\ 1/3 (28) b. Turbulent Flow (Re > 10,000). L) It 0.16 /DG 0.8 C\ 1/3 k= 0.027 ( -) K) (wt) (29) These equations are represented graphically on a single pair of co-ordinates by plotting Jp. h = 2 (w)o.14 against (DG/p.). Figure 19, Part V is such a plot with L/D ratio as parameter for streamline zone. Curves in transition zone are based on observed data. *Superscribed numerals refer to serial numbers in the Bibliography.

TABLE III-1 TABLE OF PLOTS ON SHELL-SIDE FILM COEFFICIENTS BASED ON INDUSTRIAL DATA ADOPTED FROM PRIVATE COMMUNICATIONS TO AUTHORS Fig. Nature of Plot Equation for Title Correction Factors Remarks Nos. and Parameters Actual Rate 9 Heat transfer rate Gx against h, For specific heat, FChx = h x FCp F 0.780 for liquids across with p in C.P. For conductivity, Fk F Ffor stagbanks of tubes. as parameter. For tube diameter, FD k D gered tube For staggered tube ar- x Fp x arrangerangement, Fp ment. For viscosity, (4/4lW)o'14 ( /pW)014 p. at average Correction factors from fluid temFigure 9a. perature. R) 10 Heat transfer rate Gx against h, FCp, Fk, Fi. given on Fig- hx = h x FCp for gases across for triangular -ure 10-a. banks of tubes. and rectangu- 4 lar pitch. 11 Heat transfer rate Gx against h, FC, Fk, FD given on Fig- hx = h x FC for gases and vap- with p in C.P. Pure 11-a. F ors in cross flow. as parameter. k x D 13 Heat transfer rates Gx against h, Tube diameter and tube hx = h x FD for water in trans- with average pitch as tabulated on x F verse flow in banks fluid temper- the Figure 13-a. P of tubes. ature as parameter. 14 Heat transfer rates GL against h, F as plotted in the h = h x FD D s plotted in the x e for water in longi- with mean bulk inset on Figure 14. tudinal flow on the temperature as shell side. parameter.

TABLE III-1 (cont.) Fig. Nature of Plot Equation for Title Correction Factors Remarks Nos. and Parameters Actual Rate 15 Heat transfer coef- Vo (velocity For baffle spacing as hx = h x FB ficients for water ft/sec through tabulated on Figure in shell with ori- orifice) against 15. fice type of baf- h with mean bulk fles. temperature as parameter. 16 Heat transfer rates Gx against h, FChp Fk, FD' Fp hx = h x FCp FP=.780 for oils in cross with i in C.P. (/w))01 Cor for stagflow. as parameter. D gered arrection factors x Fp x rangement. are plotted on (/0. 14 4 at average Figure 16a. fluid temperature. 17 Heat transfer rates Gx against h, FC, Fk, FD hL = h x FC at average for oils in longi- with gi in C.P. fluid temtudinal flow. as parameter. x /4w)0.4 x FK x FD X erature. Correction factors (4/LW)0*14 are plotted on Figure 17a. 18 Heat transfer rates G against h FB, tabulated on the ho = h x FB for oils in shells with 4 in C.P. Figure 18. with orifice baffles. as parameter.

Figures 20-30 except Figure 23 are curves for tube side heat transfer rates based on industrial data. Following, Table TI-2 indicates the uses of these curves in respective cases. Chilton, et al., suggests that for gases in tubes a dimensional equation gives the heat transfer rates for forced convection. ht = 13.3 Cp'0.2 60.8 (30) Figure 23 is a nomograph based on this equation. Following example illustrates the use of this nomograph. Example: 16,300 lbs/sq ft x hr. S02 at 1000C flowing through 1.06 in. ID tubes. Align 1.06 on D-line with 16.3 on G-line to intersect reference line. The crossing on M-line gives weight flow per hour. Along 1000d on T-line with Cp10.2-line; connect this with the point of intersection of first line with reference line. The intersection on h'line will give the film coefficient h = 9.4 (pound-calorie unit)/sq ft x hr. 3. Free Convection Heat Transfer Rates At very low Reynolds' numbers the effects of convection become important when calculating film coefficient for flow inside tubes. A correction for free convection can be applied to equation (28) by multiplying with ~- = 2.25 (1 + 0.01 Gr1/3) (31) log Re for horizontal flow, only where Gr = (D3p2gpAt)/~l2, the Grashof number. Grashof jlumber is calculated from properties taken at the average fluid temperature. Rice suggested that the data on heat transfer rates for free convection can be represented by the correlation, hc =k Ct 0.25 /D3p2gAt)25 (32) b k/2 It reputedly holds for all fluids, for both vertical and horizontal tubes, inside and outside. Figure 31 is a plot of h against At based on Rice's equation with viscosity as parameter. h is corrected for thermal conductivity, specific heat, density, tube diameter and thermal expansion. The actual rate is then obtained as hc = h x Fk x FCp x Fp x FD x FB. (33) The correction factors are plotted on Figures 31a and 31b. Figure 32 represents free convection heat transfer rates for water at various temperatures and oil of different viscosities.

TABLE III-2 TABLE OF PLOTS ON TUBE-SIDE FILM COEFFICIENTS BASED ON INDUSTRIAL DATA ADOPTED FROM PRIVATE COMMUNICATIONS FROM PROFESSOR H. A. OHLGREN Fig. Nature of Plot Equation for Nos. and Parameter Actual Rate Remarks 20 Heat transfer Re against h, L/D For Reynold's number, ht = h x FRe rate for liquids as parameter. FRe x Fr X in tubes. For Grashof number, FGr A factor (R/D)(Cp[/R)1/3 (Cp4/R)1/3 ((J~/ JtW) 0 14(C/C)O.14 Correction factors are plotted on Figure 20a. 21 Overall transfer Water velocity For water inlet tempera- ht = h x Ftl rate for methyl Vt, ft/sec ture, Ftl as plotted chloride-water against Uc. on Figure 21a. and Freon-water coolers. 22 Heat transfer G't against For equivalent diameter, ht = (hv/Cp) Curves coefficients hv/Cp with FDe as plotted in the x F (d./d.) can be for gases inside mean film inset on Figure 22. De iextrapopipe or annular temperature lated. spaces. as parameter. 24 Heat transfer rates Velocity, ft/sec For BWG - F and (/iw)0' 14 ht = h x F ifor water in tubes against h, with F is tabulated on each x (4/4w)0~'4 25 ]of different sizes mean water tem- figure. 26 and "BWG's" perature as parameter.

TABLE III-2 (cont.) Fig. Title Nature of Plot Correction Factors quaton for Nos. and Parameter Actual Rate 27 Heat transfer rates Vt against h with For mean bulk tempera- ht = h x Ft Correzfor water in 3/8 number of tube ture, Ft tion facin. OD and 18 BWG pass as parameter. tors plottubes. ted on Figure 26. 28 Heat transfer rates G against h with Fk, FCp, (4//4w)0~14 ht = h x Fk ~ in oil for oil in tubes of p in C.P. as and for different X FC F velocity 29 various sizes and parameter BWG's,correction 14 ft/ 30 t"BWG' s" factors, FD, x (/w) ~'14 sec. FD for "BWG" is Practical given on respec- value = tive figures. 8 ft/sec. The rest are Recommendplotted on Fig- ed value = ure 28a. 6 ft/sec.

For free convection to air outside of tubes and pipes as well as other surfaces, McAdams58 has summarized a number of simplified dimensionless equations Horizontal pipes: h = 0.42 (t 25 (34) Long vertical pipes: h = 0.4 At3o.25 D/ Vertical plates less h = 0.28 /At' 0.25 (36) than 2 ft high: "Z Vertical plates more h = 0.3 (At)0 25 (37) than 2 ft high: Horizontal plates h = 0.38 (At)2 (8) facing upward: Facing downward: h = 0.2 (At)0.25 (39) The data for free convection design are somewhat inaccurate and an ample safety factor should be included when designing equipment of this type. Chilton, et al., has developed an equation which gives conservative coefficients for a single pipe. Small error is encountered if it is used to calculate coefficients for convection outside horizontal banks of tubes. The use of this equation places restrictions on pipe spacing in relation to one another, and to the vessel bottom. In the former case, no less than one tube diameter must be used, and in the latter no less than several tube diameters must be used. This equation is as follows: ksp2Cp ) iAt \ 0.25 h: 116 11 (40) Figure 32a is a nomograph based on this equation. 4. Film Coefficients for Gravity Flow of Liquids in Layer Form (Falling Films) The coefficient for water in gravity flow in layer form inside tube is given by the equation h = 120r'1!3 = 120 ( )1/3(41) Data for other liquids are not available, but the following dimensionless equation may be used for estimating h: h = 0.01(C )1/3j 4 r3 k3pg /3 (42) R 2 5. Film Coefficients for Condensing Vapors a. Horizontal Tubes. For film-type condensation of a pure saturated vapor outside of a vertical tier of Nt horizontal tubes 47

h = 7(Nk3pDgX\o3t)J' = 0.05 7kpgirdoD3 (45) ~ NvDpAt I Lw / b. Vertical Tubes. For vertical tubes, where 41t / is less than 2100 the following equation is recommended. h 13P 11 k3p2gD__/ (44) \ryLVPnt \ w i Figures 33, 34, and 35 give heat transfer rates for film-type single phase condensation. Figures 33 and 34 are based on Nusselt's equations mentioned above. Figure 34a gives correction factors for these plots. Figure 33 is a plot of Wt, a rate defined on the graph, for various tube arrangements against h for horizontal tubes. The curve reading has to be multiplied by correction factors for conductivity, specific heat, tube length and number of tubes in horizontal row as given in Figure 34a. Figure 34 gives heat transfer rates for condensation inside or outside vertical tubes. The actual rate is obtained after applying correction factors for conductivity, specific heat, and stream line or turbulent flow factors for tube diameter as given on Figure 34a. Kirkbride and Colburn37 have correlated data on condensation of vapors on vertical tubes respectively. Figure 35 is a plot of h against 4 r/ based on their data, so that h = hc [12/k3p2g]1/3 where hc is condensing coefficient. 6. The Caloric Fluid Temperature The derivation of the equation for calculating the LMTD is based on a number of assumptions. One of these assumptions is that the overall heat transfer coefficient Uc, is constant over the length of the transfer surface. This may be in error, since significant changes of fluid properties with temperature must be considered. Such a change causes the values of ho and Oi Ai/Ao) to vary over the length of pipe to produce a larger Uc at the hot terminal than at the cold terminal. If the temperature drop for each fluid going through the exchanger is sufficiently low, hi and ho can be calculated on the properties at the arithmetic average fluid temperature. The resulting Uc can then be used with the LMTD to determine A, or Q. If the temperature drop is too great, the fluid properties change enough from entrance to exit so that hi and ho must be calculated from fluid properties based on a true mean temperature. The resulting Uc can then be used with the LMTD. Colburn has derived the following equations for giving a true mean temperature, or the caloric fluid temperature: 1 1 11 Fc -Tr Vj~~l' (45) 1.+ in (k + 1) kc in 1/R 48

where 1 At = atA; R = th (46) R At2 Ath At c and kc = U2 - U1 (47) U1 where U2 = overall heat transfer coefficient with respect to outer surface, U1 = overall heat transfer coefficient with respect to inner surface. The caloric value for the hot fluid, Tc, is Tc = T2 + Fc (T1 - T2) (48) and for the cold fluid, tc, is tc = tl + Fc (t2 - tl) ~ (49) Factor Fc can be obtained from the curves on Figure 36. The pipe wall temperature on the outside, tw, can be calculated if calorific temperatures tc and Tc are known. For hot fluid on the outside of the tube tw = to + ho (To - tc) (50) hio + ho and tw Tc- h~o (Tc- t). (51) hi0 + ho For hot fluid on the inside of the tube tw = to + hio (Tc - tc) (52) hio + ho and tw = Tc - h (Tc - tc). (53) hio + ho 7. Fouling Factors The change in surface condition due to deposition of dirt or scale on either side of pipe offer more resistance to the heat flux. Hence the value of the overall heat transfer coefficient calculated on the basis of clean surface is reduced considerably and the performance of the exchanger does not come up to expectations. In order to avoid this discrepancy, a resistance called the fouling or dirt factor is introduced in anticipation of the fouling of the heat-transfer surface. The design or fouled overall heat transfer coefficient Uf on which the calculations for heating surface should be based is obtained by the relation U+ Rd. (54) 49

Standards of TubularExchanger Manufacturers' Association, New York, (2nd Edition, 1949) include a table of fouling factors for cases commonly encountered in industry. They are given in Table I of Part V. For cases not included in the tables it is recommended that these tables may be made a basis of comparison. Quite often, a designer would set up his own tables of fouling factors based on experience. C. Correlations of Pressure Drop Data 1. Tube-Side Pressure Drop The frictional pressure drop due to flow through tubes can be calculated by an equation similar to Fanning's equation. The equation is APt x = f x x L x n f x x L x n 2 x gx P x d x Ot 5.22 x 1010 x D x, x Ot where f is a dimensional friction factor based on the Fanning friction factor, and Ot = ( )o.14 for Re = 2100 (t = ( 0)o.25 for Re < 2100 The friction factors are dimensional, sq ft/sq in. to give APt in psi directly. A plot of f versus Ret is given on Figure 56, Part V. To obtain dimensionless friction factors ordinate should be multiplied by 144. When the fluid changes direction in an exchanger head at the end of each tube pass, an additional pressure drop APr is encountered. This pressure drop is called the return pressure drop, and is accounted for by allowing four velocity heads per tube pass. Therefore, the return losses for any fluid is Apr = 4 x 62.4 x n x v2psi (56) Figure 57 is a plot of one velocity head (V2/2g)(62.4/144) psi for S = 1 (i.e., water) against mass velocity. APr then can be obtained by multiplying the curve reading by a factor (4n/S). Figure 58 is a plot of a friction factor against Reynolds' number based on an equation which accounts for box-loss per pass: f xfx x V2 x L 0.0202 x n x V2 x Apt= + (57) d x Ot (57 where wt = ( ) for Re < 17 =t =(__)E04 for Re > 17. 5o

A correlation for pressure drops for liquids in tubes under turbulent flow based on Fanning equation for S.H. and C.I. pipes is given by APPt = L C (58) 10 i Sxt where At = 0.14 The Figures 59 and 60 give curves of mass velocity per tube against p, tube loss per ten linear feet for two different tube sizes with viscosity in centipoises as a parameter and also of Bo against the mass velocities. The correction factor C for wall thickness are tabulated on the graph. The p-curves contain 20% safety factor. Figures 61, 62, and 63 are curves of pressure drops through tubes for gases and water respectively. Correction factors for Figure 61 are on Figure 61a, while those for Figure 62 are on the graph itself. Figure 63 has curves based on the equation Apt = (L + 55d) np (59) d.24 where p is the curve reading. p is plotted in Figure 63 against velocity in ft/sec. The curves are useful for tubes of diameter 5/8 in. to 1-1/2 in. The curves are given for average temperature of water given by the relation: Average Temperature OF = [(Steam Sat. Temp.) —(M.T.D.)] OF (60) changes in velocity cause pressure drop. 1. Enlargement APe = (V1 - V2)2 (61) 2g 2. Contraction APc KV12 (62) 2g 3. Bends AP = K2V2 (63) 2g Values of K1 and K2 can be obtained from Figure 64. Subscripts 1 and 2 refer to smaller and larger sections. 2. Shell-Side Pressure Drop A correlation has been obtained for determining the pressure drop in the shell side of a heat exchanger, by using the product of the inside diameter of the shell in Feet Ds and the number of times the tube bundle is crossed (N + 1). The equivalent diameter is the same as that used in calculating heat transfer coefficients on the shell-side. The pressure drop of a fluid being heated or cooled including entrance and exit losses is Ar fG2 Ds (N + 1) fG2 Ds (N + 1) (64) 2g x p x De x ~ 5.22 x 1010~ De x s x 51

f is a dimensional friction factor. It is plotted on Figure 65, Part V. To obtain consistent friction factors multiply the ordinate by 144. Figures 66, 67, and 68 are plots of pressure drop for fluids in cross flow on the shell side. Figure 66 is a plot of pressure drop per ten rows of tubes per ten cross bank passes against cross-flow mass velocity. Actual pressure drop is obtained by applying necessary correction factors. The pressure drop is obtained by the relation: curve reading rows of tubes No. of passes Correction (65) x x x (65) sp gr 10 10 Factors The correction factors are tabulated in the figure. Figure 67 is a curve of pressure drop for liquids in cross-flow on the shell-side. It also is a plot of pressure drop per ten rows per ten passes. The actual pressure drop is obtained by applying necessary correction factors. The pressure drop is then given by the relation: P curve reading x rows xNo. of passes x m )-x (66) sp gr 10 10 P-W x correction factors Correction factors are tabulated on the figure itself. The curves on Figure 68 are based on = 1/2 fAGX2 N (67) p (ds) (dp) with ds/de as parameter. Pressure drop for liquids in longitudinal flow across a tube bundle baffle in the form of a segment of a circle can be obtained by equation kP = (GT) x N. (68) 640 x p Figure 69 gives a curve of GL against a factor F based on the equation (68) such that -p Fx (69) s Professor 0. P. Bergelin et al.21,22'23 at the University of Delaware are conducting investigations on heat transfer and pressure drop data for flow across tube banks. It is hoped that these investigations will lead to general correlations covering all variables involved. 3. Pressure Drop for Condensing Vapors a. Tube Side Condensation. 52

b. Shell-Side Condensation. LPs = 1/2 f x Gt x D, x (N +1) (71) 522 x 1010 x De x S Figure 70 gives correction factors for tube side condensation in horizontal tubes. The pressure drop is first calculated considering only the uncondensed vapors. The actual pressure drop is obtained by applying the correction factors. 53

IV. ILLUSTRATIVE HEAT EXCHANGER CALCULATIONS A. Procedure A convenient way of setting up heat exchanger calculations is outlined below. 1. Services The services for each heat exchanger should be mentioned. All the process variables should be listed. 2. Data All the available data on the process variables are listed and pertinent calculations to adapt the data to the design requirements should be made. 3. Determination of Inlet and Outlet Temperature Frequently it is necessary to determine the inlet and outlet temperatures of the hot and cold fluids. This may involve a complete heat balance in cases of condensers. Also, dew-point and bubble-point calculations must be made and a condensing curve plotted. When water is used as one of the fluids a rise in temperature must be assumed. Usually, 110OF is the maximum water outlet temperature used. 4. Duty This includes the total heat load on the exchanger. It may be the sensible heat of the liquid or gas and the latent heat of phase change. All three may be involved in a single piece of equipment. The total heat duty should be summarized here. 5. Log Mean Temperature Difference (LMTD) Knowing the inlet and outlet temperatures of the fluids involved theoretical LMTD is determined by equation (9). A correction factor for multitube passes -multishell passes should be applied using Figures 2-7 in Part V. 6.i. Estimated Surface Calculate the required heat transfer surface based on the calculated duty, the LMTD, and an assumed overall heat transfer coefficient. To begin with, assumption of overall transfer coefficient can be based on the tables of miscellaneous overall coefficients given in Table X, Part V. They are adopted from Perry's Chemical Engineer's Handbook (3rd edition), pp. 480482. 54

After choosing a unit which appears to be satisfactory, a check on transfer rate should be made considering tube and shell side film coefficients. Tables II to IX in Part V are used to select a standard satisfactory unit. 6.ii. Check on Transfer Rate a. Tube-Side Film Coefficient. The mass velocity, Gt, as lbs per hour per square foot of flow area for the tube side of the exchanger is calculated. On referring to the appropriate curves in Part V, the tube-side clean heat transfer rate can be determined after applying correction factors wherever necessary as mentioned in Part III. To account for fouling, a fouling factor given in Table I, Part V is used to convert the clean rate to the fouled rate. However, a factor of 0.8 is normally used. b. Shell-Side Transfer Rate. The transfer rate in the shell is based on cross tube flow and longitudinal or long flow". A coefficient is calculated for both, the cross flow and "long flow". An average coefficient, based on cross flow and long flow is used for design. The mass velocities for cross flow and long flow are determined from equations (18) and (21) using appropriate curves for determining flow area. Again a fouling factor, obtained from Table I, Part V, is used to convert the clean rate to fouled rate. A normal value of the factor used is. 0.8. c. The Overall Transfer Rate. The overall transfer rate is calculated using equation (12) or (13). 7. The Optimum Overall Transfer Rate The procedure described in the previous paragraph involves the assumption of overall heat transfer coefficient and involves a trial and error solution. Another approach would be to make a guess based on experience regarding the tube side and shell side velocities. Maximum velocity on the tube side is, generally, taken as 10 ft/sec. The shell side mass velocity should not exceed about 180 lbs/sq ft/hr. If the pressure drop on the shell side is negligible, say less than 0.5 psi and the tube side film coefficient is controlling the heat transfer the unit should be optimized on the basis of the tube side velocity and the film coefficients calculated. If shell side film coefficient is controlling, the unit should be optimized for shell side pressure drop. As far as possible a pressure drop of 10 psi should not be exceeded. If the film coefficients on both sides are controlling however, an assumption of overall transfer rate will be in order for calculating heat transfer surface and a check made as outlined in previous paragraphs. 8. Pressure Drop Calculations At this point the pressure drops for both sides of the exchanger should be calculated. The allowable pressure drops for liquids flowing through an exchanger should be consistent with the available head, and a balance between the cost of increasing this head and the additional heat transfer should be obtained. When a heat exchanger is used in a system operating under vacuum, the pressure drop through the exchanger must be carefully analyzed. Under a vacuum, the pressure drop for a given mass velocity becomes greater as the pressure is reduced. 55

However, when a gas is operated at a high pressure, a large mass velocity can be used without obtaining impossible pressure drops. If the resulting pressure drops are too high the design should be revised to get adequate heat transfer surface as well as allowable pressure drops. 9. Summary of Design A complete summary of the exchanger design is made as in Table IV-1 and a specifications sheet prepared as given in Figure 71, Part V. B. Illustrative Problems Five illustrative problems are presented. Most of the problems are based on specific cases and the exchangers were actually built as detailed in this problem. These problems are presented to illustrate the method of designing heat exchangers for some of the more typical heat transfer problems in industry. In addition, methods are shown for using the curves, charts and tables in Part V. The types of heat transfer problems presented are: 1. liquid to liquid, 2. condensing vapor to a liquid, 3. condensing a mixture of vapors containing a noncondensable gas, 4. falling film evaporator, 5. thermosyphon evaporator. There are many other special cases which are not covered by these illustrative problems. It is believed} however, that the illustrative problems will help indicate what variables are involved in any design proposition and will point to required data. Once pertinent data is obtained, the actual design can be worked out in the manner illustrated hereafter. Problem No. 1 - Liquid to Liquid Heat Transfer 1. Statement of the Problem It is required to heat 508,496.9 lbs/hr of rich absorber oil from an inlet temperature of 850F to an outlet temperature of 2280F, by using lean absorber oil available at the rate of 1190 gal/min and the temperature of 3300F. Design a heat exchanger which will give the necessary performance. 2. Data a. Lean Absorber Oil (Hot). Inlet temperature, T1 330~F Sp gr at 85~F 0.85 gm/cc 56

TABLE IV-1 SUMMARY OF EXCHANGER DESIGN Specifications Hot Fluid Cold Fluid Material Inlet Temperature Outlet Temperature Duty LMTD U-Clean Fouling Factor U-Fouled U-Required No. of Passes per Unit No. of Units Surface per Unit Total Surface Shell Size Shell Type No. of Tubes per Unit Total No. of Tubes Tube Length Tube Size Tube Pitch Baffles Special Modifications 57

b. Rich Absorber Oil (Cold). 85~F Inlet temperature, tl 228~F Outlet temperature, t2 156.5~F Average temperature 0.77 gm/cc Sp gr at average temperature 0.52 Btu/lb~F Sp ht at average temperature Viscosity at average temperature 1.75 cp Thermal conductivity at average temperature 0.81 Btu/(hr)(ft2) (~F/ft) 3. Calculated Data a. Lean Absorber Oil (Hot). W = 1190 x 8.34 x 60 x 0.82 = 487,895.8 lbs/hr. Calculations for outlet temperature [W Cp (T1 - T2)]hot = [w cp (t2 - tl)]cold. T - T2 = 508,496,9 x 0.52 x 143 139OF 487,895 x 0.555 Outlet temperature T2 = 330 - 139 = 191~F.. Average temperature = 330 + 191 = 260.50F sp gr at 260.50F = 0.75 gm/cc sp ht at 260.50F = 0.555 Btu/lb~F Viscosity at 260.50F = 0.77 cp Thermal conductivity at 260.5 = 0.0765 Btu (hr)(ft2) (0F/ft) gal/min at average temperature = 487,895.8 - 1300 gpm. 500 x 0.77 b. Rich Absorber Oil (Cold). gal/min at average temperature = 508496.2 500 x 0.77 = 1320 gpm 4. Solution a. Duty (Heat Load). Q = w cp (tl - t2) = (508,496.9)(0.52)(228 - 85) 37,800,000 Btu/hr. 58

b. Calculated LMTD. 330 191 228 - 85 102 106 LMTD = At2 - Atl In /Lt2 At 1 106 - 102 104 F 2.3 log 106 102 For this case let us choose a two-shell pass exchanger. The LMTD calculated above is then corrected by an LMTD correction factor as obtained from Figure 3, Part V. S - t2 - tl Rt = T1 - T2 T1 - tl t2 - tl S = 228- 85 Rt = 330- 191 330- 85 228- 85 = 0.583 = 0.973 From Figure 3, Fx = 0.918. Corrected LMTD = 104 x 0.918 = 95.50F. c. Assumed Exchanger. Assume U = 70, Table X, Part V. Required transfer surface = Q UAt, = 37,800,000 = 5660 sq ft. 70 x 95.5 For a duty involving such large heating surface, use two units of equal capacity in series. Taking the normal specifications of tubes as 3/4-inch OD, 16 BWG and 16 ft in length, we have the surface area per foot of tube = 0.1963 sq ft/ft (Table II, Part V). Number of tubes per unit = 5660 900 2 x (0.1963) x (16) From tube sheet layouts, Section 4 of Table IV, Part V for 3/4-inch OD tube on 1 in. sq pitch for four tube passes a 36-inch OD shell has 860 tubes. Choose two such units. 59

Surface per unit = (860)(0.1963)(16) = 2700 ft2 Total surface = 2 x 2700 = 5400 ft2. Therefore, overall transfer coefficient required = 37,800,000/(5400)(95.5) = 73.3 Btu/hr. d. Mass Velocity. i. Shell Side Hot Oil: Cross flow: Gx - lbs/hr x 0.04 baffle pitch x free distance For segmental baffles a pitch of 11 inches is normal. Cut 11 rows pass centerline. Free distance is obtained from Table IXa, Part V Gk - (487,895.8)(o.0o4) (ll)(l40.5)o = 169 lbs/ft2 x sec Longitudinal flow: GL lbsZhr x 0.04 net free area in sq in.2 Net free area is determined from Figure 45, Part V G, 487,895.8 x 0.04 G8L 104 - ~4 188 lbs/ft2 x sec. ii. Tube Side: G' = lbs/hr x 0.04 No. of tubes x tube area in sq in. Since curves for determining tube side pressure drop and heat transfer coefficients are based on the tube side mass flow rate as lbs/tube/hour is used in place of GI. Gm _ _(508,496.9)(4) = 2370 lbs/tube x hr. 86o A factor of four is used because each unit has four tube passes. e. Calculated Transfer Rate. i. Tube Side: From Figure 29, ht = h x Fc x Fk - FD x (/w)0-O.14. Knowing tw, a value of [iw is obtained. However, in this particular case (I/gw) = 1; therefore, this factor is neglected in this problem ht = (195)(1.01)(1.01)(1) = 199 Btu hr x sq ft x OF ii. Shell Side: From Figure 16, hx = h x Fcp x Fk x FD X Fp x (L/w)~0'14 = 365 x 1.00 x 0.97 x 1.00 x 0.78 = 276 Btu U hr x sq ft x F 60

From Figure 17 hL = h x Fcp x FD x Fk x (1/1w)~'14 hL = 215 x 1.00 x 0.96 x 1.01 = 208.5 Btu hr x sq ft x UF hS = hx+hL = 276 + 208.5 = 242 Btu 2 2 hr x sq ft x OF iii. Overall Coefficient: U = (199)(262) = 109 Btu 441 hr x sq ft x OF The fouling factors from Table I, Part V are For lean oil 0.002 For rich oil 0.001 Overall factor 0.003 U = 109 x 333 = 82 Btu 442 hr x sq ft x OF Since the required U = 73.3, the assumed units have sufficient surface. f. Pressure Drop. i. Shell Side: APs = APx + APL From equation (66) and Figure 67 AP A - LP rows cross flow cross bank passes Lap= x x x Fr x FD x Fp psi sp gr 10 10 Since there are two units in series aPx = 2 (2.6)(2.8)(1.7)(10)(1.o)(o.44) = 14.5 psi 0.75 From equation (67a) and Figure 69 APL AP x No. of baffles psi Since there are two units in series APL = 2 x 0.1 x 17 = 4.2 psi. 0.82 61

HEAT EXCHANGER SPECIFICATIONS ITEM NO. NO. REQ'D. B. M. NO. DESCRIPTION | Heat recovery unit for absorption section TYPE Four tube-pass, two shell-pass, floating head, shell and tube type SIZE 36 in. OD SECTIONS PER BANK ---- CONNECTED IN BANKS PER UNIT four CONNECTED IN series SURFACE PER SECTION 2700 SQ. FT. TOTAL SURFACE 5400 SQ. FT. PERFORMANCE SHELL SIDE TUBE SIDE SHELL SIDE _ _ TUBE SIDE lean oil FLUID rich oil GRAVITY-LIQUID __0.85_ _/CC @ INLET TEMP. TOTAL FLUID IN: _:_ L0.75 /cc avg. temp. I0.77 gm/cc........ - VAPOR O.77 cp VISCOSITY @ 260.5 ~F 1300 gpm - LQUID - | 1320 rpm IQUD VISCOSITY @ 456 ~F 1.75 cp STEAM - - - - MOL. WT. - VAPOR ---- NON CONDENSABLES ) 7. 555 x SP. HEAT - LIQUID 0. 5i2 a x 1i FLUID VAPORED OR CONDENSED - -- LATENT HEAT - VAPOR........ STEAM CONDENSED i Two NO. OF PASSES Four 330 OF INLET TEMPERATURE 85 ~F i8 lb/sq ft VELOCITY 370 lb/tube 191 OF OUTLET TEMPERATURE 228 F. 20 psi PRESS. DROP 2 si OPERATING PRESSURE O. 002 FOULING FACTOR 0.001 HEAT EXCHANGED- BTU/HR 37,800,000 L.M.T.D. (CORRECTED) 95 5~F |"U" CLEAN 109 Btu/hr x sq ft x OF "Us REQUIRED 73.3 Btu/hr x sq ft x OF CONSTRUCTION SHELL SIDE TUBE SIDE CODE ASME, Paragraph U-69 380 ~F DESIGN TEMPERATURE 300 OF MATERIALS OF CONSTRUCTION 380 DESIGN PRESSURE 300 SHELL rolled steel plates 450 TEST PRESSURE 450 psi TUBES carbon steel 1/4 in. CORROSION ALLOWANCE BWG' s Less TUBE SUPPORTS rolled steel plate TUBES BAFFLES rolled steel plate NUMBER 860 SIZE 3/4 in. O.D. TUBE SHEETS carbon steel PITCH 1 in. sq THICKNESS 16 BWG. CHANNEL carbon steel LENGTH 16 ft CHANNEL COVER carbon steel REMARKS SHELL COVER carbon steel SHELL 36 in. DIA. THICKNESS 16 IN. FLOATING COVER carbon steel TUBE SUPPORTS-SPACING 48 in. THICK. 3/4 IN. GASKETS soft iron TRANSVERSE BAFFLES TYPE cross flow SPACING 11 in. CUT 11 rows pass CT THICKNESS 5N. I WEIGHTS LONGITUDINAL BAFFLE EA.SHELL 2582 LB.: BUNDLE 8000 LB. TYPE THICKNESS 1/4 IN. i FULL OF WATER 18,173 LB. CONNECTIONS: SEE FLOW SHEET OR DRAWING NO - attached hereto,. FUNCTION OF ITEM AND REMARKS: This unit is designed to recover heat from the lean oil leaving absorption column of a petroleum re- ___ _ finery. CHK'D MADE DATE NO. REVISIONS APPR. I PROJECT NO. TYPED CHK'D. MADE l PAGE OF 62

APs = APx + APL = 14.5 + 4.2 = 18.7 psi; say, 20 psi ii. Tube Side: From equation (58) and Figure 59 Pt = P x L + Bo c 10 s x Ot Since there are four tube passes, tube length L should be multiplied by four. APt = 2 (1.34)(16)(4) + 1.7 1.0 = 26.7 psi, say 27 psi. 10 0.77 Problem No. 2 - Heat Transfer from a Condensing Vapor to a Liquid 1. Statement of the Problem It is required to preheat 15,000 lbs/hr of air-alcohol-oleic acid mixture containing 2000 lbs of acid from an alcohol recovery system by means of alcohol vapors at the rate of 16,000 lbs/hr from a distillation column. Design a preheater which will give the required performance. 2. Data a. Hot Fluid - Shell Side. 16,000 lbs/hr alcohol vapors: Inlet temperature 165 OF Condensing temperature 165 OF Latent heat of vaporization 522 Btu/lb Density at 165~F 48.6 lb/ft3 (approx.) Specific heat at 1650F 0.76 Btu/lb x OF Viscosity at 1650F 0.45 C.P. Thermal conductivity 1.09 lb/ft x hr 0.093 Btu/hr x ft2 x OF/ft. b. Cold Fluid - Tube Side. 15,000 lbs/hr of vapor with 13,000 lb/hr alcohol and 2,000 lb/hr oleic acid: Inlet temperature 78.4 OF Outlet temperature 150 OF Average temperature 114 OF Specific heat at 114~F 0.64 Btu/lb x OF Density at 1140F 52.4 lb/ft3 Viscosity at 114~F 0.87 C.P. 2.11 lb/ft x hr Thermal conductivity at 114~F (assumed)o 11 Btu/hr x sq ft x F/ft. 63

3. Solution a. Duty. Q = w cp At = (15,000)(0.64)(71.6) = 687,500 Btu/hr Latent heat of condensation of alcohol = 522 Btu/lb Alcohol vapor condensed = 687,500 = 1315 lbs/hr 522 b. LMTD. 165~F - 165 OF 1500F _ 78.40~F 15 OF 86.60F Therefore, Therefore, = 86.6 -15 = 71.6 = 41~F. 2.3 log 86.6 (2.3)(0.761) 15 For LMTD correction, we need, Rt = T1 - T2 = 165 - 165 = O t2 - tl 150 - 78.4 Therefore, for Rt = 0, correction factor approaches unity as observed from Figure 2, Part V. Therefore, corrected LMTD is the same as calculated LMID. c. Assumed Unit. Assume an overall coefficient of 100 Btu/hr x ft2 x OF. Then, heat transfer surface A = Q = 687,500 = 168 ft2 U Atm 41 x 100 Try a unit with 3/4 in. OD, 16 BWG tubes of 16 ft length and square pitch employing six tube passes and a full floating head. Surface area per foot of tube = 0.1963 sq ft/ft (Table II, Part V). No. of tubes = 168 = 54 0.1963 x 16 From Tables IV, Section 4 of Part V, for six tube passes 52 tubes are required for 10 in. diameter shell and 76 tubes are required for 12 in. diameter shell. Therefore, shell diameter will be 12 in. Since six Libe passes have been chosen, the same number of tubes must be used in each pass; if 12 tubes are used in each pass, the required number of tubes will be 72. Total transfer surface = 72 x 16 x 0.1963 = 226 ft2 d. Mass Rates. i. Tube Side: Since six tube passes are used all of the fluid passes through 12 tubes. The curves for determining the tube side pressure drop and heat transfer coefficients are based on the tube side mass flow rate as lbs per tube per hour, the rate is:

Gm 15,000 = 1250 lb/tube x hr 12 ii. Shell Side: Only 1350 lbs/hr of alcohol vapor is condensed. Therefore, an average mass flow rate is calculated. Entrance flow rate + Exit flow rate Average flow rate = WaV = 2 2 16,000 + (16,000- 1,350) = 15,325 lb/hr. Shell side mass velocity in cross flow is: Gx = Way free area of cross section where free area of cross section is the difference between shell and total outside tubular cross sections. Gx = 15,325 = 27,200 lb 27,200 [LX (1)2 (0.441)(72)] hr x ft2 4 144.,= 27000 7.55 lb 3,600 ft2 x sec e. Calculated Transfer Rates. i. Shell Side: For heat transfer rate'hc' of condensing vapors, Figure 35, Part V is a plot of h against 4rk/C, such that h = hc (p2/k3p2g) 1/3 Avg wt of vapor condensing per tube = 115 = 18.3 lbs 72 hr x tube Then, 18.3 18.3 = 93 lb iD R (0.0625) ft x hr From Figure 35, h = 0.247, hc 0.247 = 217 Btu c (1'09)2 1/ (1. 09)2 ) 1/3 hr x ft2 x OF (o.o93)3 (48.6)2 (4.18 x 10o )8 ii. Tube Side: Using properties evaluated at an average temperature of 114~F and Figure 19, Part V, the tube side film coefficient is calculated. Assume 65

a wall temperature of 1350F, a little less than mean between average hot and cold fluid temperatures. Iw = 0.70C.P. 1.69 lb Cw135oF = 7CP. = 1.69 ft x hr Reynold's number, Re = DGt = (0.0516)(596,000) 14,570 i]1 2.11 From Figure 19, Part V, Jh \/C 23 0[00393 ( CG) k) ( =. ht (0.00393)(0.64)(596,0oo) 291 Btu [(.64)(2.11)2/3 [1.69] 0.14 hr x ft2 x OF 0-.11 2.11 4 Check on wall temperature. From the resistance concept, for any given flow of heat, the temperature drop through an object is directly proportional to the thermal resistance, or q = t Atl + At2 + At3 +... R R1 + R2 + R3 +..R = 1/h for films and R = L/k for solids, Rcondensing 217 = 00460, O. 0054 0. 00021 Rtube wall = -- = 0.00021 Rfluid = 1 = 0.03344 2 Rtotal = 0.00825 Atm = 41~F. The temperature at the inside tube wall is due to the temperature drop caused by the combined resistances of the condensate film and tube wall, or Rc + Rw = 0.0046 + 0.00021 = 0.00481 This resistance caused a temperature drop = (165 - tw) 41 _ 165 - tw 0.00825 0.00481 66

or = 165 41 x 0.00481 141F 165 o0.00825 Because the viscosity of alcohol-oleic acid mixture at 1410F approaches that at 135~F a small change in h at the tube side would result from a new calculation using a new value for pw' Further, the value of (4/1tw)~'14 is 0.99 and it is obvious no significant difference in the value of ht is noted by using correct wall temperature... clean ht = 291 Btu/hr x ft2 x OF Using a fouling factor = 0.001, we get, ht = (1000)(291) 225 Btu/hr x ft2 x OF f ~ 1291 f. Overall Transfer Coefficient (Fouled). Uf = (225)(217) 110 Btu/hr x ft2 x OF 442 The proposed exchanger has a transfer surface of 226 sq ft. At the required heat load the overall transfer coefficient must be at least _ Q 687,500 = 74.2 Btu/hr x ft2 x OF A Atm (226)(41) We note that by employing Uf = 110 we have a safety factor of 110/74.2 = 1.48 which is reasonable. g. Pressure Drop. i. Shell Side: The pressure drop caused by uncondensed alcohol vapors flowing through the shell-side of the condenser may be treated the same as flow through an annular space. 1. Wetted Perimeter Perimeter of shell = TDs = i(1) = 3.141 ft, Perimeter of tubes = (72 )(0 75) = 1.697 ft, 144 Total wetted perimeter = 3141 + 1.697 = 4.838 ft 2. Free Area of Cross Section = cross section of shell - total tubular cross section 0.7854 - (0.441)(72) = 0.5650 ft2 144. Hydraulic radius = 0.5650 = 0.1168 ft 4.8380 67

Equivalent diameter = De = (4)(0.1168) = 0.4675 ft 3. Properties of Alcohol Vapor at 1650F Viscosity 0.0105 C.P. Density 0.105 lb/ft3. Re = DeG = (0. 4675)(27200) 501,000 I-1 0.0254 From Figure 65 f = 0.001 * -P f x G2 x D x (N + 1) AP d x g x p x De X (0.001)(27,200)(1)(1) = 0.018 lb/in. 2 (2)(4.17 x 108)(0.105)(o.4675) assuming. = 1. ii. Tube Side: APt = Px L+B C 10 0 s x From Figure 59 we get, PI Bo and C t = (0.35)(16)(6) + 0.7 ( 1 (1.03) = 4.96 lbs/in.2 or 5 psi. 10 \84k/ 4. Summary of Exchanger Design Hot Fluid Cold Fluid Specifications (Shell Side) (Tube Side) Material Alcohol Vapor Alcohol-Oleic Acid Mixture Inlet Temperature 165~F 78.40F Outlet Temperature 1650F 150 OF Duty 687,500 Btu/hr LMTD 41~F U-Clean Fouling Factor 0.001 68

Hot Fluid Cold Fluid Specifications (Shell Side) (Tube Side) U-Fouled 110 Btu/(hr) (ft2 ) (OF) U-Required 74.2 Btu/(hr )(ft2) (OF) No. of passes/unit 1 6 No. of Units 1 Surface Unit 226 ft2 Total Surface 226 ft2 Shell Size 12" OD Shell Type Expansion Joint, Fixed Head No. of tubes/unit 72 Total No. of Tubes 72 Tube Length 16 ft Tube Size 3/4" OD 16 BWG Tube Pitch 1" square Baffles 1 Pressure Drop negligible 5 psi Special Modifications Problem No. 3 - Condensing a Vapor Mixture Containing a Noncondensable Gas —An Example of Liquid to Vapor, Liquid to Condensing Vapor, and Liquid to Liquid Heat Transfer 1. Statement of the Problem In the design of an oil extraction plant it is required to condense the vapors vented from various equipment throughout the plant. These vapors consist of a mixture of air, hexane, and water. Cooling water is available at 600F. The following information is available as to the quantities of material entering the condenser: Water from stripper condenser at 130~F 2.7 lb/hr from deoderizer condenser at 132~F 60.0 lb/hr from extractor at 115~F 34.2 lb/hr Total H20 96.9 lb hr 69

Hexane from stripper condenser at 1300F 57.9 lb/hr from deoderizer condenser at 1320F 914.0 lb/hr from extractor at 1150F 1252.0 lb/hr Total Hexane 2223.9 lb/hr Air from stripper condenser at 1300F 5.0 lb/hr from deoderizer condenser at 1320F 208.0 lb/hr from extractor at 1150F 342.0 lb/hr Total Air 555.0 lb/hr a. Given Data. Cooling Water temperature rise allowed 10~F inlet temperature 60~F outlet temperature 70~F average temperature 65~F viscosity at 650F 2.5 C.P. thermal conductivity at 650F 0.347 Btu/(hr)(ft2)(OF/ft) specific heat 1.0 Btu/(lb)(~F). b. Calculated Data. i. Temperature of Vapor to Condenser: By inspecting the quantities of vapor entering the condenser it is evident that the temperature of the mixture will be at some value t'in between 1150F and 1300F. It is assumed that the vapors are mixed completely before they enter the condenser. Thus, the vapors warmer than the temperature of the mixture will give up heat to the vapors cooler than the mixture. 1. Heat Lost in Cooling Vapors to t ( 2.7)(130 - t)(.46) = 161.5 - ( 1.24)t ( 60.0)(132 - t)(.46) = 3,643.0 - ( 27.60)t ( 57.9)(130 - t)(.40) = 3,010.0 - ( 23.16)t (914.0)(132 - t)(.40) = 48,259.0 - (365.6 )t ( 5.0)(130 - t)(.24) = 156.0 - ( 1.2 )t (208.0)(132 - t)(.24) = 6,859.0 - ( 49.9 )t 61,818.5 - (468.7 )t. (i) 2. Heat Gained in Heating Vapors to t ( 34.2)(t - 115)(.46) = ( 15.73)t - 1,808 (252.0)(t - 115)(.40) = (100.8 )t - 11,592 (342.0)(t - 115)(.24) = ( 82.1 )t - 9,441 (198.6-)t - 22,841. (ii) Since the amount of heat lost by the cooled vapors equals the amount of heat gained by the warmed vapors on equating (i) and (ii) above,.. 61,818 - 469t = 199t - 22,841, 70

668t = 84,659, t = 127~F. ii. Composition of Vapors Entering at 1270F, 760 mm: Component lb/hr mols/hr mol fraction water vapor 96.9 5.38 0.1069 hexane vapor 2223.9 25.8 0.5128 air 555.0 19.13 0.3803 Total 2875.8 50.31 1.0000 iii. Calculation of Dew Point: Partial pressure of water vapor = (0.1069)(760) = 81.2 mm Hg. The dew point for water vapor therefore is the temperature at which water has a vapor pressure of 81.2 mm Hg. This value is 114~F from Figure IV-1. Partial pressure hexane vapor at 1140F = (0.5128)(760) = 390 mm Hg. The dew point for hexane vapor, therefore, is the temperature at which hexane has a vapor pressure of 390 mm Hg. This value is also 1140F. This mixture, therefore, is azeotropic and has a dew point of 1140F (Figure IV-1). iv. Composition of Streams Leaving Condenser at 650F: Partial pressure of azeotrope at 650F = 140 mm Hg. Therefore, the partial pressure of air — 760 - 140 = 620 mm Hg, and since there are 19.13 mols of air, the total mols of vapor leaving condenser will be (19.13) (760) = 23.44 mols hr 620 Therefore, the quantity of azeotrope in the vapor leaving condenser is 23.44 - 19.13 = 4.31 mols/hr 1. Composition of Azeotrope in Vapor Partial pressure of water vapor at 650F = 16.3 mm Hg. Therefore, mols of water vapor in azeotrope = (16.3)(4.31)/140 = 0.5018 mols/hr of water vapor or (0.5018)(18) = 9.03 lb/hr water vapor. mols of hexane vapor = 4.31 - 0.5018 = 3.808 mols hexane vapor or (3.808)(86.17) = 328 lb/hr hexane vapor. 2. Quantity of Hexane and Water Leaving Condenser as Condensate Water 96.9 - 9.03 = 87.87 lb/hr Hexane: 223.9 - 328 = 1896 lb/hr 71

0 A R I I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~l I I I I I I II N IIIIIIIIIII I K I X~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~b w o~~~ w i~~~~i - ~ ~ a I I fill III L N, il I I II I III I Hill I~~~c IL ) III fil II V l f e I I IX M I I. III I II I il I i P I 1 I I1 I I 1 I l w cIII IIIV I I JIJ 0 I OL~~W 1 1 N I~~~3 E:a:5 4. 0I N 0 111 H WW-. 3II II I SI O1 00 h (O LC) ~4 (rW4 \ BH urlu -~~~ III Jill I

v. Summary of Calculated Data, Hot Fluid (Tube Side): Material In lb/hr H20 96.9 Hexane 2223.9 Air 555 Total 2875.8 1. Condensing Curve For heat transfer calculations of condensing vapors it is always necessary to divide the heat exchanger into zones of different degrees of condensation, as condensation will not be uniform throughout. In this particular case the heat exchanger is divided in four zones. For better results and where expediency needs it, it is advisable t'o take smaller zones. The first zone is for cooling the incoming vapors from their entrance temperature to that of the dew point (114~F). The second zone is for cooling vapors, condensing and cooling the condensate, as are the third and fourth zones. In the zones where vapor cooling, condensing and condensate cooling takes place simultaneously, it is assumed that half of the total quantity of vapor that condenses is cooled in liquid state and half in the vapor state. Temperature drops of each zone are assumed to be as under Zone Inlet Outlet No. Temperature Temperature 1 127~F 1140F Vapor Cooling 2 114~F 1000F Cooling and Condensing 3 1000F 800F Cooling and Condensing 800F 600F Cooling and Condensing. For plotting a condensing curve the percent condensation in zones 2 and 3 have to be calculated. a. at 100~F Vapor pressure of azeotrope = 340 mm Hg. Therefore, the mol fraction of azeotrope in vapor will be 340/760 = 0.447 and mols of azeotrope in vapor will be (0.447)(19.13)/(0.554) = 15.43 mols/hr. Vapor pressure of hexane = 281 mm Hg. Therefore, mols of hexane in vapor will be (281)(15.43)/(34o) = 12.75 mols/hr and mols of water in vapor will be 15.43 - 12.75 = 2.68 mols/hr. Pounds of water in vapor = (2.68)(18) = 48.24 lb/hr and pounds of hexane in vapor = (12.75)(86.17) = 1099 lb/hr. b. at 800F Vapor pressure of azeotrope = 204 mm Hg. 73

Mol fraction of azeotrope in vapor = 204 0.2684 760 Mols per hour of azeotrope = (0.2684)(19.13) = 7.02 mol/hr 0.7316 Vapor pressure of hexane = 177 mm Hg. Mol fraction of hexane in azeotrope = 177 = 0.8676 204 Mols per hour of hexane in vapor = (.8676)(7.02) = 6.09 mols/hr Mols per hour of water in vapor = 7.02 - 6.09 = 0.93 mols/hr Pounds water in vapor = (0.93)(18) = 16.74 lb/hr. Pounds hexane in vapor = (6.09)(86.17) = 525 lb/hr A condensing curve is shown in Figure IV-2, page 75. 2. Duty: Duty is calculated for each zone a. Zone 1 - Vapor cooling from 127~F to 114~0F, At = 13~F H20 - (96.9)(0.5)(13) = 640 Btu/hr Hexane - (2223.9)(0.4)(13) = 11,564 Btu/hr Air - (555)(0.25)(13) = 1,803 Btu/hr Total 14,007 Btu/hr b. Zone 2 - Vapor cooling from 114~F to 1000F, At = 14~F Amount of water condensed = 96.9 - 48.24 = 148.66 lb/hr Amount of hexane condensed = 2223.9 - 1099 = 1124.9 lb/hr (i) Condensing H20 (48.66)(1033) = 50,265 Btu/hr Hexane (1124.9)(153.2) = 172,334 Btu/hr 222,599 Btu/hr. (ii) Vapor cooling H20 (72.6)(0.5)(14) = 508 Btu/hr Hexane (1661.4)(0.4)(14) = 9,303 Btu/hr Air (555 )(0.25)(14) = 1,942.5 Btu/hr 11,753 5 Btu/hr. 74

120 _ _ _ Tl I I A! I I I I_ 114 x L1 III: I I I I I 111<1 1 I L L I I 1111 I L I I I I ~ I I I I I I I 114 I00 I 50 70 I 60 - 0 19 20 30 40 50 60 70 80 U~~~~~~~~~~~... ~~~~~~~~~COENIN CURVE

(iii) Liquid cooling H20 (26.33)(1) (14) 340.0 Btu/hr Hexane (562.4)(0.625)(14) = 4921.0 Btu/hr 5261.0 Btu/hr c. Zone 3 - Vapor cooling from 1000F to 800F, At = 20~F Amount of water condensed = 48.24 - 16.74 = 31.50 lb/hr. Amount of hexane condensed = 1099 - 525 = 574 lb/hr (i) Condensing H20 (31.49)(1042.9) = 32,841 Btu/hr Hexane (574)(157.2) = 90,233 Btu/hr 123,074 Btu/hr. (ii) Vapor cooling H20 (32.49)(20)(.5) = 325 Btu/hr Hexane (812)(20)(.4) = 6496 Btu/hr Air (555)(20)(.25) = 2775 Btu/hr 95~6 Btu/hr. (iii) Liquid cooling H20 (64.50)(20)(1) = 1,290 Btu/hr Hexane (1411.9)(20)(.625) = 17,648 Btu/hr 1i8,938 Btu/hr d. Zone 4 - Vapor cooling from 800F to 650F, At = 15~F (i) Condensing H20 (7.27)(1050) = 7,633 Btu/hr Hexane (197)(159.8) = 31,480 Btu/hr 39,113 Btu/hr (ii) Vapor cooling H20 (12.89)(15)(.5) = 97 Btu/hr Hexane (426.5)(15)(.4) = 2559 Btu/hr Air (555.0)(15)(.25) = 2081 Btu/hr 4737 Btu/hr (iii) Liquid cooling H20 (84)(1)(15) = 1,260 Btu/hr Hexane (1797)(.62)(15) = 16,711 Btu/hr 17,971 Btu/hr. 76

e. Summary (i) Zone 1 14,007 Btu/hr (ii) Zone 2 Condensing 222,599 Vapor cooling 11,753 Liquid cooling 5,261 Total 239,613 Btu/hr (iii) Zone 3 Condensing 123,074 Vapor cooling 9,596 Liquid cooling 18,938 Total 151,608 Btu/hr (iv) Zone 4 Condensing 39,113 Vapor cooling 4,737 Liquid cooling 17,971 Total 61,521 Btu/hr. Total heat load for 4 zones = 467,049 Btu/hr Required cooling water W = Q = 467,049 = 46,705 lb/hr CpAt (10)(1.0) 3. LMTD a. Calculation of temperature drop of cooling water in each zone In order to get the LMTD over each zone, the temperature drop of the cooling water in each zone must be determined. It is assumed that the temperature drop over any given zone is proportional to the heat load of that zone. The total At is 100F. (i) Zone 1 At (1) = 14,007 (10) 0 50F 467,049 (ii) Zone 2 At (2) = 239,613 (10) = 5.13F 467,049 (iii) Zone 3 At() (3151,608)(10) = 3.240F 467,049 77

(iv) Zone 4 At (4) (61,821)(10) = 1.325o F 467,049 b. Calculation of LMTD for each zone 4-zone 1 -- I zone 2 -, -zone 3 v-zone 4 - 124 — A —, 117 -, 100 - _ - 80 --- --- 65 70 ------ 69.7 -. 64.5 - 61.3 --- 60 54 47.3 35.5 18.7 5 Zone 1 LMD = 54 -4753 = 6.7 = 6.7 = 500F. 2.3 log 54 2.3 log 1.144 (2.3) 47.5 Zone 2!MTD = 47.3 - 35.5 11.8 11.8 1 IMTD - - 41OF 2.3 log 47'3.3 2.3 log 1.329 (2.3)(0.124) 35.5 Zone 3 35.5 - 18.7 16.8 16.8 26.2 2.3 log 3.5 2.3 log (1.898) (2.3)(.278) 18.7 Zone 4 LMTD = 18.7 - 5 = 13.7 = 13.7 = 10.4F 2.3 log 187 23 log 3.74 (2.3)(.573) 5 Overall LMTD LMTD = 54 - 5 = 49 49 20.60F 2.3 log 54 2.3 log 10.8 (2.3)(1.034) 5 4. Trial No. 1 a. Estimated overall transfer coefficient Because there is a considerable amount of noncondensable gas in the mixture, the overall coefficient may be small. Assume overall U = 20 Btu/(hr)(ft2)(0F) b. Estimated surface 467,049 = 1,127 sq ft = (20)(20.6) 7 78

using 3/4 in. OD, 16 BWG tubes of 12 ft length on 15/16 in. i\ pitch the number of tubes required = 1127/(12 x 0.1963) = 480. c. Assumed unit Table III, Section (5), Part V for shell size of 22 in. OD gives a single pass unit as under: Tube size 3/4 in. 16 BWG Tube number 433 Tube total area 1020 ft2 Shell size 22 in. OD Shell pass 1 Shell type fixed tube sheet with expansion joint. Baffles 5 in. pitch cut 9 rows past centerline. d. Mass flow rate 1. Shell side (i) Cross flow The free area for this condenser is determined from Figure 39. This curve gives a value of 4.8 in per inch of baffle pitch. Gx = (46,705)(.04) = 77.84 lb/(ft2)(sec) (4.8)(5) (ii) Longitudinal flow From Figure 53 the free area is 20.0 sq in. GL =(46,705)(.4) = 93.4 lb/ft2)(sec) 20 2. Tube side (i) Condensate mass velocity 7 (1984)(12) 23.33 lb/(hr)(ft) at (0.75)(433) or (1984) or (9) = 4.58 lb/(tube)(hr) (ii) Vapor mass velocity Zone 1 From the condensation curve it is determined that no material is condensed in this zone. 79

G =(2976)(144) = 3168 lb/(hr) (ft2) (433)(.3019) or 3168 = 0.88 lb/(ft2)(sec) Zone 2 For the gas flow rate in each zone assume the flow rate as being the average of the total amount of vapor entering and the total amount leaving that zone. w 2876 + 1696 = 2286 lb/hr 2 G = (2286)(.04) - 0.699 lb/(ft2)(sec) (433)(.3019) Zone 3 W 1696 + 1099 = 1396 lb/hr 2 Gt. = (1396)(. 04) 0.427 lb/(ft2)(sec) t (433)(.3019) Zone 4 w 1099 + 898 = 998 lb/hr. 2 Gt4 = (998)(.04) 0.305 lb/(ft2)(sec). 4 (443)(.3019) e. Calculation of transfer coefficients 1. Shell side (i) Cross flow From Figure 9 hx = (175)(1.2)(2.6)(1) = 546 Btu/(hr)(ft2)(0F). Using a fouling factor of 0.8 hxf = (546)(.8) = 437 Btu/(hr)(ft2)(OF). (ii) Longitudinal flow From Figure 14 hL = (360)(1) = Btu/(hr)(ft2)(~F). 80

Using a fouling factor of 0.8 hLf = (360)(0.8) = 288 Btu/(hr)(ft2)(OF) (iii) Average of cross and longitudinal flow hsf = 437 + 288 = 362 Btu/(hr)(ft2)(OF) 2 2. Tube side Zone 1 (i) Vapor cooling From Figure 22 hv = (14.7)(.646)(.826)(1.1) = 4.9. Using a fouling factor of.8 hvf = (4.9)(.8) = 3.9 Btu/(hr)(ft2)(~F). (ii) Vapor condensation From Figure 34 hc = (280)(1)(1.0)(.9) = 252 Btu/(hr)(ft2)(OF). Using a fouling factor of.8 hcf = (252)(.8) = 202 Btu/(hr)(ft2)(OF) (iii) Liquid cooling From Equation 41, Part III, a value can be estimated. hL = 120 r 1/3 = (120)(2.86) = 343 Btu/(hr)(ft2)(OF) Using a fouling factor of.8 hLf (343)(.8) = 274 Btu/(hr)(ft2)(0F). Zone 2 (i) Vapor cooling From Figure 22 hv = (12)(.3646)(.826)(1.1) = 3.97 Btu/(hr)(ft2)(OF) 81

Use a fouling factor of.8 hvf = (3.97)(.8) = 3.17 Btu/(hr)(ft2)(OF) (ii) Condensing and liquid cooling Because these values are estimated from average conditions over the exchanger, they will be the same for each zone. hcf = 202 Btu/(hr)(ft2)(OF) hf = 274 Btu/(hr) (ft2) (OF) Zone 3 (i) Vapor cooling = (8)(.364)(.826)(1.1) = 2.65 Use a fouling factor of.8 hvf = (2.65)(.8) = 2.12 Btu/(hr)(ft2)(OF) (ii) Condensing and liquid cooling hcf = 202 Btu/(hr)(ft2)(OF) hLf = 274 Btu/(hr)(ft2)(~F). Zone 4 (i) Vapor cooling v = (6)(.3646)(.826)(1.1) = 1.98 Use a fouling factor of.8 hvf = (1.98)(.8) = 1.58 Btu/(hr)(ft2)(0F) (ii) Condensing and liquid cooling hcf = 202 Btu/(hr)(ft2)(0F) hLf = 274 Btu/(hr)(ft2)(OF) (iii) Overall coefficients Zone 1 (a) Vapor cooling (Uv)1 = (362)(3.9) = 3.85 Btu/(hr)(ft2)(0F) 365.9 82

(b) Condensing (UC)1 = (362)(202) = 130 Btu/(hr)(ft2)(OF) 564 (c) Liquid cooling (UL) = (362)(274) 156 Btu/(hr)(ft2)(OF) 636 Zone 2 (a) Vapor cooling (Uv)2 = (362)(3.17) 3.14 Btu/(hr)(ft2)(OF) 365.17 (b.) Condensing and liquid cooling These values are the same for each zone. (UC)2 = 130 Btu/(hr)(ft2)(OF) (UL)2 = 156 Btu/(hr)(ft2)(OF) Zone 3 (a) Vapor cooling (Uv)3 = (62)(2.12) =2.10 Btu/(hr)(ft2)(OF) (b) Condensing and liquid cooling (UC)3 = 130 Btu/(hr)(ft2)(OF) (UL)3 = 156 Btu/(hr)(ft2)(OF). Zone 4 (a) Vapor cooling (Uv)4 = (362)(1.58) = 1.57 Btu/(hr)(ft2)(OF) 363.58 (b) Condensing and liquid cooling (U)c)4 = 130 Btu/(hr)(ft2)(OF) (UL)4 = 156 Btu/(hr)(ft2)(~F).

f. Calculation of required tube surface area 1. Zone 1 (i) Vapor cooling (Av)l = 7356 = 38.2 ft2 (50)(3.85) 2. Zone 2 (i) Vapor cooling (A)2 = 14,302 = 111.1 ft2 (41)(3.14) (ii) Condensing 222()599 41.8 ft2 (Ao) = (41)(130) (iii) Liquid cooling (AL)2 6388 = 1.0 ft2 (41)(156) 3. Zone 3 (i) Vapor cooling (Av)3 = 9.596 174- 4 ft2 (26.2)(2.1) (ii) Condensing (Ac)3 12,074 36.1 ft2 (26.2) (130) (iii) Liquid cooling (AL)3 = 18.958 - 4.6 ft2 (26.2) (156) 4. Zone 4 (i) Vapor cooling (Av)4 = 4737 = 290.0 ft2 (10.4)(1.57) (ii) Condensing (A) = 59,115 = 28 92 ft2 (10.4) (130o) 84

(iii) Liquid cooling 17,971 = 11.1 ft2 (10.4)(156) 5. Total tube area required Zone 1 Vapor cooling 38.2 ft2 Zone 2 Vapor cooling 111.1 ft2 Condensing 41.8 ft2 Liquid cooling 1.0 ft2 Zone 3 Vapor cooling 174.4 ft2 Condensing 36.1 ft2 Liquid cooling 4.6 ft2 Zone 4 Vapor cooling 290.9 ft2 Condensing 28.9 ft2 Liquid cooling 11.1 ft2 Total area 738.2 ft2. 6. Safety factor 1020 S.F 1020 138 738.2 This condenser has a safety factor of 1.38, but since this unit is a vent condenser the excess tube area is desirable. g. Pressure drops 1. tube side Wave 2876 + 898 = 1887 lb/hr or (1887)(.04) G = (3(0 = 0.577 lb/(ft2)(hr) ave (433)(.30l9) From Figure 61 APt = (0.0033)(12)(1.51)(1.58) = 0.094 lb/in.2 Call pressure drop 0.2 psi to include box loss. 85

2. Shell side (a) From Figure 67 cross flow —use a safety factor 2.2 (0.82)(2.8)(2.2) APx = 5.043 lb/in.2 (b) Longitudinal flow From Figure 69 (.019)(28) lb/in2 PL 0.53 lb/in.2 (c) Total shell side pressure drop Longitudinal 5.043 Cross.53 Total 5.573 lb/in.2 Summary of Exchanger Design Specifications Hot Fluid Cold Fluid (Tube Side) (Shell Side) Material hexane vapor, water vapor, cooling water air Inlet temperature 1270F 600F Outlet temperature 65OF 700F Duty 467,049 Btu/hr LMTD 20.60F U-Clean 30.5 Btu/hr x ft2 x OF Fouling Factor 0.8 0.8 U-Fouled U-Required 22 Btu/ft2 x hr x OF No. of passes/unit 1 1 No. of units 1 Surface/unit 1029 sq ft Total surface 1029 sq ft Shell size 22 in. OD Shell type Expansion joint, fixed tube sheet No. of tubes/unit 433 Total number of tubes 433 Tube length 12 ft Tube size 3/4 in. OD, 16 BWG Tube pitch 15/16 in triangular V Baffles 5 in. pitch, cut 9 rows past C1 Pressure drop 0.2 psi Special modifications 86

Problem No. 4 - Design of a Falling Film Evaporator 1. Statement of the Problem It is required to evaporate 1800 lbs/hr of 22.5% Al(NO3)3 solution to a concentration of 30%. This evaporation is to be carried out in a falling film type evaporator. Steam is available at pressures up to 40 psig. The feed stream is to enter the evaporator at 750F. Information on the evaporation of Al(N03)3 in a falling film evaporator was determined by running solutions of Al(N03)3 through a small test unit. This evaporator contained three one-inch, OD, 16 BWG condenser tubes, 8 feet long. These tests indicate that the best overall results are obtained when the steam pressure in the jacket is 10 psig. At this steam pressure, and at feed rates of 30 lb/hr/tube of 22.5% Al(N03)3, overall heat transfer coefficients of 200 Btu/hr/ft2/0F are obtained. The concentrated product leaves the evaporator tubes at a temperature of 225OF. 2. Given Data a. Cold Fluid - Tube Side. Al(N03)3 feed rate 1800 lb/hr Inlet temperature 75~F Al(NO3)3 composition (inlet) 22.5% Al(N03)3 composition (outlet) 30.0% Outlet temperature 225~F Boiling point at feed composition 2180F Specific heat 0.75 Btu/(lb)(~F) Density 75 lbs/ft3. b. Hot Fluid (Steam) - Shell Side. Shell Side Pressure 10 psig Temperature 240~F Latent heat of vaporization 950 Btu/lb 3. Solution a. Heat Load. i. Preheating Section: Amount of heat required = W Cp At = (1800)(0.75)(218 - 75) = 193,050 Btu/hr. ii. Evaporating Section: Amount of 30% Al(NO3)3 produced (1800)(.225) = 1350 lbs/hr 0.3 Therefore, Amount of water evaporated = 1800 - 1350 = 450 lbs/hr Quantity of heat required = (450)(950) = 427,500 Btu/hr. 87

b. Calculated LMTD. i. Feed Preheating: 2400F < -- 240~F 218OF +-, 75~F 220F 165F. Therefore, LMTD =165 - 22 = 143 71OF 2.3 log 265 (2.3)(.875) 22 ii. Evaporating Section: 2400F -< 240~F 2250F < 218~F 15F 22F. LMD = 22 - 15 = 7 = 180F 22 2.3 log (2.3)(.164) c. Calculated Unit. Since an overall heat transfer coefficient was obtained from the test run, the coefficient as given is used with the appropriate LMTD for the boiling section and the preheating section in calculating the required transfer surface. i. Surface Required for Feed Preheating: A = 195,050 = 13.-6 ft2 (71)(200) ii. Surface Required for Evaporation: A = 427,500 = 118.7 ft2 (18)(200) iii. Total Surface Required: Preheating section 13.6 Evaporation section 118.7 Total 152.- ft2 iv. Calculation of the Number of Tubes: Use 1 in. OD, BWG 16 condenser tubes. Since the optimum evaporation rate occurred at a feed rate of 30 lb/(hr)(tube), this figure is used as a basis for design. No. of tubes = total flow 1800 60 tubes flow rate/tube 30 88

Choose a shell'size of 12 inches, with 1 in. OD, tubes on a 1-1/4 in. triangular pitch. The unit is a one-pass, fixed-tube sheet exchanger. The tube sheet layout table, Section (2), Table III, Part V, shows 68 tubes in this size shell. This unit would be satisfactory. v. Calculation of Tube Lengths: Surface area for 1 in. O.D., 16 BWG tube = 0.228 ft2/ft (Table II, Part V). Length of tubes required = 132.3 580 ft 0.228 Length of each tube = 588 = 8.52 ft long. 68 Choose a tube length of 12 feet, since this is the closest standard tube length available. vi. Calculation of Vapor Velocity in Tubes: Since 7.5 lb per hour of water are evaporated per tube, the maximum vapor velocity obtained per tube is (3600)(0.5945) = 13.12 ft/sec This velocity is much less than the allowable velocity of 30 feet per second. vii. Feed Distribution: The feed distribution system is to be made as follows: 1. A distributor plate is to be mounted parallel to, and 3/4 inches above the tube sheet. 2. Holes are to be drilled in the distributor plate so that their centers will be directly above the corners of the hexagonal pattern around each tube. This will allow the feed to be distributed to each tube from six points. 3. Depth of feed on distributor plate is to be greater than 1/4 inch. viii. Calculation of Hole Size for Holes on Distributor Plate: Hole pattern shows that there are six distributor holes for each tube. Therefore, the number of distributor holes is (6)(68) = 408 holes. Since the amount of feed to the distributor is 1800 lb per hour, each hole on the distributor is fed at the rate W = 1800 = 1.2 x 10 lb/sec. (408)(3600) 89

Dodge,61 suggests that the discharge coefficient for a sharp-edged orifice discharging liquid into a gas space should be approximately 0.6. Since it is imperative that the liquid level on the distributor plate remain at least 1/4 inch, a coefficient of 0.8 is used. This is a conservative assumption. The equation for an orifice is 2 LHp2 W = Co as 1Since the value of (Do/Dt)4 in this case is very small, the equation becomes, W = Co as P f2g which can be rearranged to give W as = Co p /2g The area required in order to discharge the correct amount of feed is now calculated. 1.2 x 10-3 105 ft2 s = 1.73 x 10- ft2. (0.8)(75) 7 6,4)(o.0o0208). 2 = 4a = (1.73 x 10-5)(4) = 22.06 x 106 Therefore, the required hole size is dh = 4.7 x 10-3 ft or dh = (4-7 x 10-3)(12) = 0.047 inches Therefore, the distributor plate feed holes are made with a diameter of 0.1 inch. 1. Pressure drop through tubes From part (vi) the maximum vapor rate through each tube is 7.5 lbs/hr. The average vapor rate is 72. = 3.75 lb/hr or 75)85 h90 90

or 685 o600 = 0.19 lb/(ft2)(sec) Assume an average vapor temperature of 2200F. At this temperature the average viscosity is 0.025 C.P. Figure 61, Part V gives a pressure drop of 0.002 lb/(in.2)(ft). Assume that vapor flows through the entire length of tube, and that the thickness of the liquid film on the tube wall is negligible. Pressure drop APt = (12)(0.002) = 0.024 lb/in.2 Summary of Exchanger Design Specifications (Sheot Fluide) old Fluid (Shell-Side) Material Steam (10 psig) Al(NO3)3 solution Inlet temperature 2400F 75~F at 22.5% conc. Outlet temperature 2400F 218OF at 30.0% conc. Duty 427,500 Btu/hr Preheating zone 71~F LMTD IEvaporating zone 180F U-Clean 200 Btu/(hr)(ft2)(0F) Fouling factor U-Fouled U-Required No. of passes/unit No. of units Surface/unit 132.3 sq ft Total surface 132.3 sq ft Shell size 12 sq ft Shell type IFixed tube sheet tExpansion joint No. of tubes/unit 68 Total no. of tubes 68 Tube length 12 ft Tube size 1 in. OD, 16 BWG Tube pitch 1-1/4 in. triangular Baffles Pressure drop 0.024 psi Special modifications: tubes are to be groud flush with top tube sheet. Feed distribution: Feed is to be distributed to the tubes by putting a distributor plate parallel to and 3/4 in. from the tube sheet. Distributor plate is to be made from 1/8 in. thick plate drilled with 408 holes of 0.1 in. diameter. These holes are to be positioned such that their centers will be directly above the corners of the hexagonal pattern around each tube. 91

Problem No. 5 - Design of a Thermosyphon Evaporator 1. Statement of Problem In a pilot plant recovery process, a dilute solution of a mixture of salts is produced which has a specific gravity of 1.01. It is required to concentrate this solution to a specific gravity of 1.350. This solution is produced at the rate of 235 liters per day. It is required further that a thermosyphon evaporator be used. 2. Summary of Given Data a. Cold Fluid - Tube Side. Salt solution feed rate 235 liters/day Inlet temperature 75~F Outlet temperature (boiling point) 220~F Average specific heat (approximate) 1.00 Btu/(lb)(OF) Other properties are assumed to be the same as those of water at 212~F Concentrated solution outlet rate 6.5 liters/day b. Hot Fluid (Steam) - Shell Side. Shell side pressure 35 psig Temperature 281OF 3. Solution a. Heat Load. i. Quantity Evaporated: Feed rate = (235)(1010) = 21.78 lb/hr (24)(454) Product rate= (6.5)(1350) = 0.805 lb/hr (24)(454) Amount of water evaporated = 21.78 - 0.805 = 20.97 lb/hr ii. Required Sensible Heat: = (feed) Cp At = (21.78)(1.00)(220 - 75) = 3158 Btu/hr iii. Required Latent Heat: = (water evaporated)(latent heat/lb) = (20.97)(970) = 20,350 Btu/hr 92

iv. Total Heat Load: Sensible heat 3,158 Latent heat 20,350 Total 23, 508 Btu/hr b. Required Heat Transfer Surface. Since this unit is to be used in a pilot plant to insure flexibility of operation, the evaporator is designed to handle twice the above heat load, i.e., 47,000 Btu/hr. i. Calculation of At: The holdup in this type of evaporator is large enough so that the temperature of the solution entering the bottom of the tubes is practically at the boiling point. Therefore, the temperature of the solution throughout the tube length is assumed constant.. At = 281 - 220 = 61F. ii. Assumed Unit - Trial (1): Assume an overall coefficient of 300 Btu/(hr)(ft2)(OF). The required surface will be A 47000 = 2.56 ft2 (300)(61) Use 3/4 in., 10 BWG tubes 4 feet long. The area of 1 foot of tube is 0.1963 square feet. The number of tubes required is 2.56.1963)(4) = 3.2 tubes Call 5 tubes. iii. Calculation of Condensing Steam Coefficient: The quantity of steam required is Load 47,000 50.8 lb/hr Btu/lb of steam 925 Since there are five tubes, the quantity of steam condensing on each tube is 5 0.8 10.16 lb/(hr)(tube) Properties of water at 2810F: Viscosity 0.13 centiposes Sp Gr 0.927 g/cc Thermal Conductivity 0.444 Btu/(hr)(ft2)(~F/ft) Use Figure 34, Part V, for finding the coefficient. From this figure h = 250 Fk = 5.6 Fs = 1.44 Fds = 0.90 93

and ho = (250)(5.6)(1.44)(.90) = 1814 Btu/(hr)(ft2)(OF) Using a fouling factor of 0.8 hof = (0.8)(1814) = 1451 Btu/(hr) (ft2)(OF). iv. Tube Wall Coefficient: ht kAw = 26 x 0.54 1265 Btu/(hr)(ft2)(OF). t L 0.0111 v. Boiling Coefficient: From Figure 171, of McAdam's Heat Transmission,3 a boiling coefficient of 2,000 is chosen. This is a conservative value, and is valid for a low recirculation rate in the evaporator. Using a factor of 0.8 to allow for fouling hif = (2,000)(0.8) = 1,600 Btu/(hr)(ft2)(OF). vi. Overall Transfer Coefficient: Uf = 1 = 485 Btu/(hr) (ft2)(OF) 1 1 1 +. + ____ 1451 1265 1600 This value is much larger than the assumed coefficient; therefore the size of the unit is adequate. c. Design of De-entrainment Section. A de-entrainment factor of 10-6 is required. Robinson and Gilliland.,65 give a number of plots which show the amount of entrainment in bubble plate columns for various plate spacings and types of liquids and vapors. Since the top of this evaporator is similar to the top plate of a distillation column, these data should be applicable. Using a 4-inch layer of crinkle type mesh, 99.9 of any entrained liquid is removed, or 0.1% is carried out with the vapor. In order to insure only one part of liquid to be entrained for every 1,000,000 parts of vapor, an entrainment of 0.001 lb liquid/lb of vapor must be realized in the vapor de-entrainment section above the liquid-vapor deflector. From the above data VpVO.5 equals 0.45, based on an 18-in. plate spacing for steam and water. From steam tables, Pv at atmospheric pressure = 0.0373 lb/ft3, or V =.0.45 = 2.33 ft/sec (0.0373)(5) Since 20.97 pounds of water are evaporated per hour, the volume of vapor produced is (20.97)(26.80) = 562 ft3/hr. 94

The required diameter for the de-entrainment section of the evaporator is d 4 (562) = 0.0852 E (3600)(2.33) dE = 0.292 ft, or (1.292)(12) = 3.5 in. To insure an adequate margin of safety, use a 5-inch diameter de-entrainment section. A liquid-vapor deflector is mounted three inches above the open ends of the evaporator tubes. The metal crinkle mesh is mounted in the top of the de-entrainment section, and an 18-inch space is provided between it and the liquid-vapor deflector. The de-entrainment liquid runs from the de-entrainment section into a standpipe. The bottom of the standpipe is connected to the bottom of the evaporator tubes, and thus the liquid to be evaporated circulates from the standpipe to the less dense boiling column in the evaporator tubes. Hot Fluid Cold Fluid Specifications (Shell Side) (Tube Side) Material Steam at 35 psig Dilute soln. (spigs 1.01) Inlet temperature 2810F 750F Outlet temperature 2810F 2200F Duty 23,508 Btu/hr LMTD 590F U-Clean Fouling factor 0.8 0.8 U-Fouled 397 Btu/(hr)(ft2)(OF) U-Required No. of passes/unit 1 1 No. of units 1 1 Surface/unit 3.93 sq ft Required surface 2.00 sq ft Shell size 5 in. (?) Shell type No. of tubes/unit 5 Total rxumber of tubes 5 Tube length 4 ft Tube size 3/4 in. OD, 10 BWG Tube pitch 1 in. sq Baffles Special modifications: Diameter of de-entrainment section 5 in. Thickness of metal crinkle mesh 4 in. Distance between crinkle mess and vapor-liquid deflector 18 in. Distance between vapor-liquid deflector above top of tubes 3 in. Entrainment 1 lb liquid/ 106 lb of vapor.........95

V. TABLES AND CUJRVES 1. Heat Transfer Curves. 2. Tables. 3. "Net Free Area" Curves. 4. "Pressure" Drop Curves. 5. Proforma Heat Exchanger Specifications Sheet. 96

'3H/'Sg1 IAV3IS 00~~~~~~~~~~~~~~~~~~0 0 0O 1i11 ~~~~~~~Ii I I [ii I I~~~~~IIH II I I m I HIM I ~~I III! I i'' l' j II 11 II II l I I I IF I I N, IUI I I N Ir1 H ii I'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Hl!Fl &IHilz I I Iii ~~~~~~~~~~~~~J i' I Iil HUM I t'~~~~I~~l I I~XU I MAW -'VI~~~~~~~~~~~~~~~~0" H MC~ ~ ~~~~~~~~~I I I III I Hilli ii I I'I I''II~~~~~~~~~~~~~IIT1 II l F~~l 111111111 4 I I I iI II I ll TI'11 MA I HIIIIIIIIIIIII I 11 IIII TH till ill~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IjI' All II H l II ll'eLL II II IL, ill, I' 1111~~~~~~~~mil!Il I N1 I II H1I I 1 I I4IM —1I'ilil i l-' ill~~~~~~~~~~~~~~~X UI II 441H il INLI I IN. I xi H X I I I N, O Al Ill INJ'Ill Al FIR 111VIIIII I I I I little~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I''I T 11 THI II IiteIAt I t~~~~~~~~~~~~~~~~~~~~~~~~~~l 111111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~itl 1111 li,1i'iIII,11~~~~~~~~~~~~~~~~~~~I I I I,~~~~~d I HilIN, I III Ii H1ll1II1I TI T! X I ~~~~~~~~~~~~~~~~~~~~~~~IiIIAl li IMI I A I"I'd i NN i 11111 11 111HI~~~~~~~iIIIIIII II I... 1 1'Hll l1111ii;III 11- NJ.J N, 11111"NC.- I X I I MIX Ill I 1H ~~~I- Il''' I'I''''IliI'i1{ til Im I'AllI I I H Til MII iI I'i I IN I IIi I'I III II II I ~ ~ ~ ~ ~ I II 1111111 I.1 IIxI wili II'I''OO I O 1 IIIIIIH I II I IJ'. O I D 0 r 0Z I I I I X IH TI dill~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'

CORRECTION FACTOR, Fx a) -4 to o 0112t 0 0 i0 0 0,r X1 6 plo -. N r — gI] I~ I) iI — 4OrF 1-4-1-; —~ I I - J-l~i ii~~_i - I-I I I I

11 W w~ w,E~ II - 0L-I- - - I I I II - IW I_ I " I I L il 6 a + [~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-!, —- -- - 17H-E J -1 1 I I Lill 11 I JFI I I II I lt I I isJ1. 9 ~ t`o, 6 L 0Illll 0I111l PTlli4 - Ix I 17O. LO_ O 1 -1O IIllt-lt-l: I Lil ll PI~O3V OJWHiiI

1.0 f1% fI LI- 1 LI -1 714L II II' -lm1jl~.LAI I F"*- I ~ ~ ~ ~ ~ ~ ~ ~ - 1 0.9 ZL~~~~~~~~~~~ ir it~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t --- till —~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I r 3 SHELL PASSES, i~a I pi I~~~~~~~~~~~,I

0 9!' 0 I - I I I - QIL 1L I H X W FW $ | t4|0Ltt e 1 1 } 40.7 z o —.!F I I I 11 02eEW 11111+I1S110Jl110XW11g-WLtI I — 0.6 -.....FIGURE 5.I.S Tl — t 1 lI?:.1- 1 3 l e i~~ti ~ ~~~ 75-~t] M.T.D. CORRECTION FACTORS -lj i LL * i -L;4 SHELL PASSES R H 1 t2 — ta-w 8 OR-MORE TUBE PASSES - — REFER-PAGE-36RFER PAGR4E 53 6 S~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i~-:'-;~

1.0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 09 10 10. 0.9 8 I I 0. 11-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 (JO.6X m tv m XtX L M W mw W m~~~~~~~~~~~~~~~~~~~~~~~~m m~~~~~~~~~~~~~~~~~~~~~-t 1 —tt -- - ~ X 0.7 08 W 1X~~~~fE X~~tlS+M~~~lIGURE4 6Xf + E ~~~~S =E t21 -t' 3 l ltitm I |11,H~;|j||[lll fill i I I tt1 1 -1 1 EH ~l t U~~~~~~~~~~~~~~ HLL PASSE I0 OR MO RE 6TU PSES S= t2~omR PE 36 0~~~~~~~~~ 25 SHELLW1 PW++XASSESX T- FL 2II R44,HFIUE6 1 < > H ~~~~~~~~~~~~~~~~~~~~~~~10 OR MORE TUBE PASSESL

0.9 0.8 Iv E 11; 1 i I 11 1 1 I I I L 01 II 1MI rr 0 I — 0.6 0.5 S=t2- t, ffirl'"'"''"mimt~m FIGURE 7 M.T.D. CORRECTION FACTORS R~~~~ T,-T2 ~~~~~~~6 SHELL PA~SSES t t2-tll 12 MOR MOE TUBE PASS ES,i-lI- -i-i'i- -~i REFER PAGE $6,'~' -~~ MlL~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I I Il i St El~~t~t Mt 181 N Sr 18 1 lt!01~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ WIX & 0 1I II I V I 81Xx1N1P os ti1 111 1111 11 I 0111111111 1t2111111111111111111111 1111Ili~lil~llI ofil I!i h A iX I I I F M 1 1M 11!1111111 IIL I 1111 11111111111t g X IL~~~~~~~llrilililililillkl ILIIIIIII 1|11 ll~~~~~l~~e~tIXIIIIIIII-lt~~~el~lilL~lilillilil~~~iX ~ltlC ttml~~lilililililkNII-\IVA 111111110Mlrnm.9pikll'L~a~iilL lm~'ttf~ -lllllliii~zlllllsllkllltlltflfl~ W - ll~illllllllNII III _III I 1 IIIIIIIIIIIiI II11Tt[T lt| 6 1]r x L [> l4 {T;H1Ec~lrxxsi||]t ^mvllll111111 — l~ 111xg1 III~l-SII'1111 111I I 111111111 m L - 111111111!11111111111111111111111111 Illllllllllllll-L Yt~llllllllllllllllllllll~ltl~l~lX,-ttW~lLLL~d IttlL\I-I-LtWIXI 1x11II11X 1 0.8l 1 ~iifr~llll~ilIHIl~lflrrf ~ 1 4 1 1 11F t IIl:llrlitl ~alir r X \XA 41171111b11l l\ IIIIIIII I II —-z 1IIfr 11Iliil07 nLf~I~kliiid~lC ] 1~~~il11r L~~IflCfL lSil~~llI~;h F +fI+ F\I11A11 I I0IIIIIIIIT TrF FF r||. i.liZiXXsZo T ~ a lIIa-l T1rSTlII.||afe111 - TllTt | +111E1@11B 11I 1 Iil~illli~lllil~iil~l;liiilllIillllliiil-W IIIIIIIIII I i i+ 4 S IUIIH 1 NIT IUA III\E El II T II II II II |llTl rD TTT I[T r-l11I ]LSI 1 1H111HIrl1 TI l~r Ir LfE[LI X~; FTlI II II I TI_ II II;I 1 I ITa1 LN I II II II II 1 I II ll 1LIL 1 11 IITIIIL I 1!I ~t 11 1FlF 1 11 11111 11 11 1I11 11 11T}TI 114 11 1 T 4FFE EIT+ 1I T - A Il li m —l 4- 11 II U. 11111111 11 01111111Il l t111111111111L 111L.6IIIL1LLIIIILII I IHIIIH 1H,I+ T I I \IlII\ I \ II IIIII l I S!!i I I HXI'HI IIlit 1 - 1 10-tt: 1 1 I lI li4 i-fI i t tEf i o~~~~~~~~~~ F I A f1S1:10XII011 f11 1XS sH'tXL''- =,lW-:12 -11100XI1 1 1 1 0. 1 i 10 1 I [I 1SS1S q 1 1:f1 [ 1f[;i tWW I 111 Sl 1t E I1 100 1 t I~~~t Iti FIGUR 71Sl244gH:1!1111; 0990~~~~~~~~ 1 ------ I I 1 I I I I rl~~r I TT r 1 1 1I I t I ~Fit I i4 I. RIF EG RE PAG,6

2 3 4 5 6 7 89.1 2 3 4 56 9 2 3 4 5678 1 2 3 4 5 6 7 891 100c F 4OO -77,o 2 - _I00~~~~~~~~M fi 6~~~~~~~~~~~~~~~~~~IlIIIiI I..1 5 1~~~~~~~~~~~~~~~~~~~~~111 r -— I —I I 111. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~F I G URE 86 SHELL-SIDE HEAT-TRANSFER CURVE FOR BUNDLES - ~~~~WITH 25 % CUT SEGMENTAL BAFFLES ------ ~~~~~~~~~~~~~~~~~~~~REFER PAGE 413 7.~~~~~~~~~~~~~7I 2 079100 2 3 4 0 7 8 9 cJQ 2 3 4 500 7 8 9 10 2 3 4 50 6 7 8 9 0bo 2 3 4 5 6 7 8 9,OOO Re - De G8 ~~BY PERMISSION, FROM PROCESS HEAT TRANSFER:' BY D.Q.KERN C-. 3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~CPRGT15.MGRWHLBOKCPAYI.

T T9~p 8 6 9 L 9 v c 000 6 8 L 9 9 V c 00' 6 9 L 9 s v e 9 S tr E U111111 111111111111 MI 111111111 11111 I I I I I I I 11 1111111 I. I.~~~~~~~~~~~~~~~~~~~~~~~~II t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- --- E11111111 Hill Hill ill i Hill 1111 1111 I I I M11111~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -Ll 1. I Ila~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i-3 I I Hill 11 I IF I UTT —-4- HAIM~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i.; A 1 111 1 1 11 1 1 1 1 I HIM1111 ff 11111 11 IH Ill I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tilM II 1 T -F T II H 1 1 1II I II 1 I H I I I II I~~~~~~~~~~~~~~~~~~~~~~~~~~~I 1 -4-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~? z ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 9 +4- 4 —p~ ~~ ~ ~~ ~ ~~~ ~~~ ~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t 9'S32tltl ~~~~~~~~~~~~~~~~~~~~~3~~~~SN~~~~~~~1 1 IIIl H t11 Hil111 I9~ Ill IN I I Ill ill I 11 lill I I. I 11M Mill 00' oe ~~~~~~~~~~~~~~~~~~~~~~~~~~ II I l I,.TT 1f 1 1T W II J, O, R -HU LI-III I I H ] II I Ill 111 1 I -1-0.111 10M ll -1010 I IJ-0 11H IllH Mill HI I 11 11 I, I 111111,0'H I L;011`1 000~~~~~~~~~~~~~~~~~~~~~ I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IIIIIIIII~lHl 111Hl.1 0-'0,1i.Il4-1 bn II1U IIIIIIIII~~~~~i~~ii lill Hill )fill I I I H I Hll ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1IHHLII I II1 H II I I IIi I-r l II I W 8~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 IIHIIIT & U-111 ILL~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f I I f I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~t I H 1 II I 6 8 L 9 E P E I t 6 8 i 9 9 ir C i i 6 i i 9 i t i i 6 8-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i- cT~~~~~s~~ —~~~~~~ —- I 11 II oF

90T 6'91d- d3J3: 301 1S 113HS.NO MO0-S1-SOdO NI soIlnon1 O.S3.ILVN d3JSNV81..V3H- 0 O_ SdO10. V. NOI.I.'33OO3 D -6 3Jn1..I 0101 01 016 9 L 9 0 6 9 L 9 9 t 9 -6 9 L 9 9 t 9 o'LI' - I-I I /. 9 6 g~ / 9 g 6 + I 9 4 IjI II I f I I I I 4 - I I I HI17 I 7F- - 7'-1;i` 7t7 T- t +T I 4-t - -2 I I T r 2-i 11Hil4' - IL x-~~~~~ — ~; (~~~~~~~~~~~~~ I'*Q -r~ti i 771 [42 2-t~i~-lm~tt~t~ -~ t~i~tit~-~-~tl- Itt~ttt~t~-+ I-+l+-lt~il? ki +~~~~~~t tt~~~-v-'-'t~I i;-Lt t''2~ - -L _.-;t L-L —-v 1,F - LL ~ru_!::':~, t.~ -F- I, I I 141-tI - 7'I II FII I_~f~rll-~-rrr~-rrrr~rrrrrrrrrrrrrAr l -Il't~i 4 -'7 F -4- - 1I -4 —t-~l'tt~-+ I — 1 *~Sb~lt~~;I- 0- Ill -H I 7- I,_'J I II L I i I I II- I F4 I I I F- -V - F-li F- 1,1tic I -1- I +-4F i-ICL F- F - I227_' -T' - - --— i__ --- - LIT _ _ A ~~~~~IT L+-II I I 7 1 I 9'F - - _'' -'77+J-7 7- I t A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I F -I I 41'' II 41I L' IF L ~71 ~H 1 - 7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~77 -- jt~ ~~2 1 H 7 ~' ~' 7' ~ + - 2L +F 7i~ FI KI-J~s-:-:~-i-l-cj 1 1 —!-~1 1 ii-CCi-~-! c~ i' ~ F -T_i._iLi_~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I Fl IF' ~liNt"H i~flt 7~ 7FF 1FF F F F1 I -r d -L F _ jI Ff_ 41- F i __.___ ~ ~ ~ ~ ~ ~ 2-1-44 _~i -i -n —i 412KF1I 4F4- p 2~ 7FF 1412-2~ 1~4-i 4~~~~~~~~~~~~~~~~~~~~vit lip — 2-I2 IHI

'o3S/1'.J'o$/'s -1 -, 00 6 8 / 9 ~ V; 016 8 L 9 ~ t c Z 0. 6 8 L 9 ~ V c; 01'6 8. 9; 9 I Z 11 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ j — I IS I I I I Ft I 11 i I I W i!F1 il i TI I I I I 11i it It *6 i II T ILL I III1. ill IT li l Ii I~~~iiiIIIir Iili I Ii Ifilill I I I I TINIL I I I I -1 i III tiitii c;!1 ifif Ii tii i Hil l I ill I I I I I I I I[ 1 - l,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 I lit~~~~~~~~~~~~~~~~~~~~~~~~~~~~tr~~+ ITal r.~fl~~~~t ~ ii- i-1 —1i if I- I t4 a ii+11 AF -I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t, 9'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'_ 6' 01' i! 11 E:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~MM1 I1111 1,-I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4-I oP~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~P Al oT, I I I...........~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l~ii i Iii I ilkfll Al B'~~~~~~~~~~~~~~~~~~~~~~~~~~~4 001~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' [~T I1 3II8 I3-13I S3Bnl -10 S)NYB ~13AO M0Oq_ —SSO~ID NI 3 9~~~~~~~~~~~~~~~~~~~~~~~~~~~~~3Y 000 8 1 1 6 8 L 9 9 V I 1 8 L 9 1 P E I 6 9 L 9 v c E 1 6 8 L 9 s V

9o0 01'91-i 83A38 MOlJ SSOO 301S —13HS NI S3SV9 1OJ1 S3LVd 83JISNV.L IV3H 80_J S10.LOVI N011O 38803 D - 01 38n91SI 01 01 91 01 b 16 8 L 9 9 L-96 8 g 9 9 Z 6 9 L 9 9 i Z ~S- 0 )WW 1'E00 LI - I I I K I I IWi I r IM m t e t1131IL III'I IIIIIII1I I iIifIIIIiI1I110I ~~~~~~~~~t Uw+e1 - 1 11 1 I I I L I E 1'I ll-ll ll I 1 11 1111 111111 11 1111111 1 1 i 1 1 1 I ) k m i1,_L?- 4 - II1 I I- I I It @o -1 O m_01- 1 I,01 IO'1 IOI

2 3 4 5 6 7 8 9.1 2 3 4 5 6 2 2 3 4 5 8 9 1 1,000 flat.......... um H Ul$ 4 mom =uMt =F- -4:F- if 7~it +H7~H~E ++ rr +1_141 +H+ _.J I H ILI AMR, III, -4p 100 1.......... a _Eli 9 E- v $ Aum' 9. 4_ 4i 8. U LL. 0 ve ++ 90' WET=__AEM U T- 4+ 4m F_: 4, U. %"$CIA NM I# _MUHHW iv-9-IT —::tttLtAIT CY T: 4444-LH+ — 4f Will 1 F —14 cn - Sol I I IL11H TF11T _j"1111ai- _ H Ili -T TUP ITT h'W... 101. FT 111111111 C_ -' 1, dw _M$m: qwm*M == I -:: 9. w........ If --- Mkm T t1414 + 5. -+Hiff Into _Vgtthz MITT, Tait t if MIT MLE - P't FIGURE R RATE 044 HE AT TRANSFE Itil HL ff IM t GASES A N D VAPORS IN.91 -3IM CROSS- MOW I I I TFIT UM:IL REFER PAGIE 42 HIll 111111m _ -m - IC, 6 7 8 9 1 4 5 6 7 8 91 4 5 6 7 8 9 I- 3 4 6 9 1 0.1 1.0 10 100 Gx I bs /sq. f t.,sec.

to c o P CD cO o D 0( 0 C A Uo Ol J CO bO 03 -D O CA ) O 1 0,~~~~~~~~~~~~~~~~~~~~~ —4 + 4 1FF 0W I I J LII'' 1_ IFJ-7-iF...... - Y r. -' ~ TITi -t - -'' I Z l' ji -.4r -I- I I 4ft I 1 LEV —- T-M~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'-' l~~~~~~....Ii -i - I +~ ll4K ~~~~~~-ir~~~~~~~~~~~~~~~~~~4 TrK 14 r - -diri ~ti r - + —- 4r-rj7jI i-i- 4I nm~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~l 008 ni- mC)li - 00 0 ~~~~~~~~~~L::lLI0II (I)M rn - FT /L i 1 2L i_ co 0 4 ii ++H +1- LIP 1!- -A i-H- T4 l -f~+ rtn-trtii — H-I~ —IH ti-l -rl~ ~~~~~S rrl e t-1 -41 I -+-LH- I I F 7~tt~r~~fr~-~i~r ar~tt+C-~r I~~~'i~~~i7~i~ 0' — ~~~0o 0I1 V) ~~~~~~1 ~ ~ ~ LllI _ I L I i-JI II M3 o 0 r M M +l t, I —Z ii h~~~~~, b~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 I''30 cn D C n, m ~ ~.lo o ~u,,,~ ~~ rn -4 ~~~~~I ~~~~~~~~~~~1 i? if~~~~~~~~~~~~~~~~~~~~~~ 0 T- l~ u, I: -t —t —L- _1Vi 1 T___ tv 11 -- -C -i u, ii -,i.~~~_V - I I ~I I -TIt T r i i~~~~~~~~~~~~~~~~~~~~- 11 _1 17 H- JT- F ~ ~ ~ ~ ~ ~ 7- I ii i —il r i~~~~~~~~~iii'lh_1.11i i 1 I 1-I: Iii ~~~~~I i 1.- 111 _ ~!_ __ii U - Ljj-7-T- I-4 Iii~ Lf! —i ---- 1;l~ "i i — _I i-1r -;i1-i i i r~t~-l' i -t — LiTIJ F I 4 _14-' I I; C ii-. -- d- fa - AI t i I I I jIT~'i I~lt~i~ i ~ i -!- i -li -11 _1 _ _i il. I ri-~ia~ r: T -~ 1 1 -i-I It _:! _I-1 -1- I. -;-i t- i -l-i- ii i/-14 T. o1-17-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_ 744" _4 - 1 A- -- -.0.0 0 Oli~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. I~! - -t rtJ i --- LCjl _E II J — ~t tt-l -iijnIC

G I G h 60 400 40 10 8 200 D 20 20 0.5 0.6 4 100 0.7 0 0.8-1 80 0.9 — 2 _9H 60 1.0 6 405 4 h =OUTSIDE FILM COEFFICIENT, p.c.u./ft hr.,~c 0.8 Cp= GAS SPECIFIC HEAT 06 2-.0 G= MASS VELOCITY, 10 lb./ftz,hr. -_ __ — 0.4 D OUTSIDE DIAM. OF TUBE, inches 3.0 — _ 2I0 G = MA SS VELOCITY, Ib./ft., sec. 10 0.8.... - 0.2 8 -t 0.6 4.0 0.4 5.0- 01 --- 0.08 6.0 INCHES FIGURE 12 HEAT TRANSFER RATES FOR GASES ACROSS TUBES REFER PAGE 42 BY PERM1SSION OF THE A.SM.E. 111

145 2 2.5 3 4 5 7 8 9 1 1.5 2 2.5 3 4 5 6 7 8 9 12.5 3 4 FIGURE 1 3 HEAT TR~ANSFER RATES FOR WATER IN TRANSVERSE FLOW IN BANKS OF TUBES ~s.5 REFER PAGE 42 1.5 I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1.2511 (Bull~~~~~~~~~~~~~~~S/l VIC CORR~ECTION F~ACTOFS Ill I Hill TUITLKC DW Fo 3/9 i.25 1,,, 100 0/, 93C I V4 0.758 11/4" Fp SQUARE PITCH- 0.77 1.;:: t15 2 2.5 3 I -fill ~ ~ G, BSSOF.~C 1 ~~~~~~~~~~~~~~~5 2 5 3 4 5 6 7 815 2 2 6 7. 23 G,' -LB./Q.T/E2

Des II/, qt I E 09Z 0 w OZZ oo 081 091 00 OZI 091 01 09 00 v 1 0 01 tb 3S~M 33-338 00~ S31JAYS IN3W913S "113HS NI 831VM S31VU H3.4SNVNI IV3HH ti~ 3unsu — --- =~:=~,~~~~~~~~~~~~~~~~~~~~~~~~~~ ~:I= IOC, I OOJ_ O08 0O6 ooo'l 0J0'1 1,01~ ~ ~~~~~~~~~~~O0( A I I I I F__ I ~I ~ oot,~ OOL'l 009'1 ~~~~t~~~~~~~cl-!~~~~~~i _l

'03S/IA' OA 3 A1-1180 HROBHI. 113013A 0' 1I'0 6 8 L 9 9 E 97 z G' 01 6 8 L 9 9 t C 91' I t 9g'0 -,, t,'0 1 6G'O -,,0~ 6~'0 -##,8' M9'0 -,,tx 980 9 I 9' -,,0I 0'1 -'1~:lfill I I ~9'0 -, 9 l'l Ilit,'O -,,1 8~'1 N011038800 9 N13VdS 31AJV13 i t, J I~~~~~~ I l [~ LI J[J ILU~~~~~~~~~~~~~~ ~~~~~~~~~~ 1ILI 11AII~IIILLI]~iI I t 0 -I X r~ I,:I li~l-~~r~ttt~l ~ rW ~ ttW W~ttttiSttt 1 I- I 1 I 1I I 1 1 I7 - rllirr I I OF 0 II r I1 1 II r L L I I I Ill ~0~1 opr~~~~~~~~~~~~~O 39Vd II I3.13bl S3"I_-_-IV 33101.-II -'"1"3H$ NI EI3.I.V S.I. N311_-I_,130 I..-ISN..I.3H g 3In91:1

ui If? uu11 oo a. 0 h. D in t _3.V.U ( -t -h (4, ff C3 c4.V r ly! ol to L c"! o m eq V~~~~~~~ft Wi w 4$FFi5Ef0 t-f IIIc"|||||I11111111111111|II|IIIX O -coo LL ro, w Ik~~~~~~~ w tD ~~~~~~U i mWwRXQlaN1 --- CD1111 IS ly 1) X0100 m SWHWf)g0Xfflt~zu=< Wt Ln LO ~~B~P~f~ _~F- I I trrrtffttiti~~fF~fftff~~i~tfttttft~ r 1 tfff-fl I I II m r ll m II v I I I I kI I L ~I' I I 1 \I I I I IIII~I Il l I I~I I I I I I i nl I II XI I I1 1 I X \1 NN N I W: 401Wt WlA l~~~~~~~~~~~IZ: VCm C~~~~~~~~~~~~~~~~~1 H TlS XI I'llW N...11 t t I.. I1.lll1 lllll II T I Lo VT111llii t |Xirm1 m-iikil I\\\lIIIIIIllllllllllIt11111111111111 1111111 X 1 1111 111 11 11 Illllilll[TllT, 1111 1X1 W m a FF \111 l~l ll\\N K-lI h\\N\NX\NIINIIIII I II I I I I Illlllllllllitlllllli I I I I I 11 11milllll1111111111111 1111111 1 1 1 1 1 1 1 1 1 ~ 0 Loif I1 L OF + I H11 I Hill I i I I I k A I4t+-tt ~ 1~1rrr li;trtt~t+t~+~ m 1I1 Irrl.r I11 t co I t t X W HE HX-(L1 \1 WI II L LLL~III U U LIIa4Lmk N I II I U1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — gX W W Xt~ii-i SI-~itttIIIIiTi Xlt lcflttt-X~ lSilg 1 X ~ l m iiglliiilIII2!h 7-~~~~~~~~~~, <Ng Kcgt i~C —C-t~:~H tCLCH; i <0 1 W3X x''''''H~ C +Ft+iCi t-~C —~HC-'"'L'i''i'iL'IIUIIIlit r_ Lll I i L I I lii Lll'II iIi111?11 I I I I~ i I i I I Ii I Ii 1 1 1 1 L l l l I I I; I I 1i I 1 I I I I I I I I, I I I I I I L Iif 1 11111 1l lll I lI \ ii 1 1 1111111112I'| 1 i!i |! ^1 1 l ll l l ll l l ll l ET F ~tS l l l I I T [ IT fI T| |[ li ll ll ll ll l| II -I -I I-..?I I S X ^ I r a i l 1 1 ~ S |; i ~ I\| l| |1\ ElT 51 11 1z k1 1 1 11 11 11 11 11 11 1 11 1 1 1 1 1 1 1 1 I; 1!,Ee ~ lllll Il Iil~ilY 1l11 1 N \ 1 t 11 i i eff I I I~ ~ I I I' t: I II 1 i I f I I I I I I I I I I i le el i U ie kN I I! I I i i i i I I il i i i I WiA SL1~~~~~~~J XYSA r 110S nI'tt0

01 0.2 0.4 06 2 4 6 8 1010 l I 0 j 4-4 2,5 1,5 III 1 115 2 2,5 3 4 S ~~~~~~~~~~~6 7 8 9!0!,5 2.5 3 ~ 5 6 70 I I I0j.01.0~ ~~~~2.4 06.06 J020 n18L FIGURE 1 6HEAT TRANSFER RATES FOR OIL IN CROSS-F~LOW OVER TU13E BANIf REFER FIG. 16 116

o3SA'Ja'OS/'S3-1 179 00 )1 6 L 9 S b G -Z Z -l X 6 8 L 9 S V c S-Z Z S-lt 6 8 L 9 S t, c S7 Z 0S 3til i0SSNV801 W t IILII~~~~~~~~~~~~~~~~~~~~~~~~~tI I I {t00;40000S I 1L1 1 1W111010Xlitt1~~~~~~~~~~~~~~~~~~~~~~~~III[Jlllit I ITTI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ E W 1 j l I 14 I [11, I I I I Id I3S43I I I I WT I I I HI'IIII I r1 ill 1/ 6g = =lt~~~~~~~l~~~iX't M Xr 1 I ri T H$Xffl t~~~~~~~~~~~~~~~~~~tE~~~i:4 I I i II 00T I II L, 05I S 8 $< I I I 4Ilt +WI X I| | X l-ttltl l 11 111 11 111 11 1 11 I I I1 I 1 1 1i i 1 1 i I 9 1 >m/IfISIIIIIIISLG~t'1,1 I liII I I Ik+$440 1Itttt0tm 0+4 lll 11111111 111l101 1111111 1111 ~ I IE I-M M 1tISI1 II I I I A I I 11 I~l4F: W k I I00 I VI I I Io I I I 11 II 1 I 10~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ it U 111111 jil! 0-W-tt.~il~ill400l00i 1111111111 11111111161 1 4~~~~~~~~~~~~ i0 I I Sr I PO SZ- Z i 9 S t || SZ; t~ S

9TT 811 ~ ~ ~ ~ ~ ~ ~ ~ ~~1111-Hl LI -914:1i343L S3.Sll JO SXNVB 01 MO1J 1VNIanIIDNO1 NI 110 A 80d S31.V 83ISNtuN1 80- S8013VA N01133N803 0o -LI 38fl91I MI 1Ir I r~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Ir HfI I I i [I 1 1111111 10% "El ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~+ I~~~~~~~~~ %0111 F I T I I 41 lTnT~~ illiilliilliilliilliill lillii4I K i --- K-' fq T - K I I~~~~~~~~~~~~~~~~~~~~~IIA: TIL II T~~I1111111111111111IlIIITlIIItiL~l11LTII~r7lI~r1rIH11lr111T |^ 111111 L t m <~~~~~~~~~~~~~I 1111111115101rlWt4mlllllllll~lL~lllllII F 111111 llTSI tI~oLI~lll4W~llllll~llllllllllllllllllllllI~lllllIILIIIIIIIII 1111lll11111111111E 11111111111111111J11.1. I I | | | l l l I | | t |! I I I I i I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I, I _ I I jl I I I. I I

I~ooo 1: 1,5 2 5 3 4 5 7 8 9 1 1.5 2,5 3 4 5 6 7 8 9 1 1.5 2 2.5 3 4 5 6 7 8 9 1 1,000 L [ iI 1Z lr i m ~~~t- 0 iSt l | X 0 BAFFLE PITCH CORRECTION FACTORS 6. ~~~~~~~~~~~~BAFFLE: PITCH TRVRI[LtENT VISCOUS$t 6. 4 ~~~~~~BAFFLE PITCH TUIRBUL9JT V_[KXS. ]- iet + itt 4~rlTl —~FI'!I" lIF-Lf ee i rlrmm mrtmI r._' -++il~lllll lkllll''~- I- ~~rI "I 11#+-'' ll" r i' ~~ -l-l'K i llll'l I "111;;"rl[Y-' IE~IITr-1r i_ [ I l |lilililil l 6 3 I. 12 1.17 4 1.00 1.00 6 0.897 90897 rigi:0 08 8 0.830 0.794.0 0.782 0.734 12 0.745 0.W$3 o I 16 O.690 0.630 20 0.670 0600 2~~~~~~~~~~~~~~ - - - - - 11 M e~~ t{t~lt 2.5 —.5 H htS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IHMU L. c~ [10010 or 1 I.r 1I 8rIr _j I rlr Iml i Ilit r rllzrrrr17 [ l llrr 1LG7TTlrzEl Iirlr, T ITTTTT! T T T~1-1 1 1! 1 Iili~Tillil I III i~l I! 1 iT-1-iv rLn i 1kni ilrnrr i i I*rrslnrl~~7?rr;KlTrmTTT~ 1TI I fi T l1 171l l'lil ll I —~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I 8, +tT I i Ri I Trmr l rr i miR 1nmmn llllll II I -+liT/~IIIII ttt i 1I'/T;Ti75r~L7LK rnLnm i L~~;~I;IHf f Ii llT~lilTLTli TTiTil~l R~irTI i T 1 1 l l I I TTTTiTTTTTL rlT11 iT1Til1TTlt111-iltT-l-tld I 1 1I i I l llT:1 6, s F 5,W+4 11 llt lill lWL~~~~~~~~~~~~~~~~~lillitWW 5F~b Q 10__ 2_5. 4.S 12.5 2 2.5 3 4 5 6 7 8 9 1.; 5 5. I. 10 100 G. Ib/tubeohr 1,000 10,000 2.5Ib./tube~hr. I~~~~~~~~~l ~ ~ ~ -~~~~~~~~~~~~~~~~~I0100I,00JO 10L~ ~ ~~ ~~~~~~~~~~~~~~~~~~~~G lbtb, hr.FF

1.5 2 2.5 3 4 5 7 8 9 1 1.5 2 2.5 3 5 6 7 8 9 1 1.5 2 2.5 3 4 -H+ F1 UR 1 -14+11 4-r_ INSIDE TUBES HEAT TRANSFER TO LIOUIDS FLOWING REFER PAGE 41 itj 4-4 41 i EQUATION K VALID FOR Re > 10,000 (TUROULENTI 014 4-1- i.06 2. CURVES B-B BASED ON THE EQUATION rZ7W Ju (STREAMLINE). 4-:7 Re < 2100 4 = 3. CURVES IN TRANSITION REGI 4 L`i 77 L) III Mill II. I Ill iT - + _L ift j _u 1z N Z N J, EL T till I I-Q I I I I _t__ -T _44 4 —4-4-4 9. 4_ 1+ f 1, %d -4+ -4 4 -4444 — __4+ i 1=0111 fl 4+ #t WILL I T4_ T V TT- 44 14'N-1 I', I If 4 2Z_ -4-44+ IH_ I T F 71:TT -T I I F-I + _++ Hit I Ill T T- Hit tilltill L ]it -4 T71t -ITT tt I T 11 L'5 25 3 4 5 6 7 8 9 10-4 1.5 2 2.5 3 102 1.5 2 2.5 3 4 5 6 7 8 403 DG P

QOt0~ m h 10 V) cr m cu n0 ho' BT U /SQ. FT. /HR./~F o0 n S cos 00 1 - U15 m cm co r- I>C D LO e n Ci,X, * 5 x 0> ^ _ _ _ _. _ _ _ L _ _ _.. _ _ _., _ _ _ 1 s _ i _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~:~t~t~i~t~L ~.-: _.m S-: d d~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I -~~~~~~~F V: 41 ~~illXkWW-,o 4 -1 [ 4t t40g- I E T X +,mt-K 4EVHXWLNTW —W-i'T t~~~~~~~~~~~~~~~~~~~~alkaliI i tt i w t. -T I A If I f I IMI I$ ff- A ittX 1 I: Rt t tiiX clltp t 14 J 00 Ij I ti~~~~I4 71 + 4i o~ ~ ~ ~~~~~~~ii~~ h1 i tli i I = Cf 1,.tllt,4i [f''.'tt'-''''' - -01 ---;,44ti-j t4_,- 4t4 ilir sfiW~~~~~~~~~~~~q I T 4tS t t il,; 1;44 I L | cn- T 14, i t i t1 A'i; 1' 1 i. - et - T E W _ 0f I I I 1 J 1W-t-X tX4 | 44f+Xa til+~ ++X St ~t iftit tt+ t+I-+Wef-~ Ft it t~i -X+ Xtii 1: NN~f-t i x t ilt bt ij tX t X ld i0l L iifii i! L; lie i N V th- t i~~~~~~~~~~~~~~~~~ i t;wt0gr00I t l te_ W t:1t 1 o zW t 24 to 4i t x g X a1:',p~~~~~~~~~,, tt M M X fW t m 3 Z S mit!Xm1 imt " Ni V- 1 M I tT~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ F + 0 INt Jff f i_ T-A qee 1: 1 01 1 1 fi 4111 p"It A i stin " A It J-A I x~~~~~~~~~~~~~~~i iit E g X S X e tllllEllli~t -~i~ —l ti; ~~- ~~=-t:Il I tiI~- I I Ii_ — _l ClllllIIIIII lit ii tfii't~i!~i itr~i-~f~tiS~tihirl t l I4 T ti~ i:I t 4t Ft tM Q) i I, J -t~~~~~~~~~~~~~'t or E E 0Ei~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ g~~~~~~~~~~~~T t W g W N g X g g X W W WA I dE ~~~~~~~~" LT 1 L 1 W W 1E t i 4i 4 i I ti aw t N Y a~~ (3 q IL~~~~~~~LIC z W _ h O ~~~~~~~~~~~~~~~~~~~~a0 U)AAP m-'T'~''''' ~'' l'~~~ — ""11:~ IiiII~II 11 1111 C~mrrlll~rl rilrlllllrr~r 17 I1~11~ll~T:l r~ —~1H ~111ff ~.l~R -~ I;'i Lillili it~~~~~~~~~~~~~~~~~~~~~~~~~~~u t~~~~~~~~~~~~~~~~~~~~~~~~~~

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 89i9 7T FIGURE 20- a CORRECTION FACTORS FOR HEAT TRANSFER RATE FOR L 7 ~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~USES. RefsrFg.2 ]... 1 ~gX or 0.6 0i XtC i l fC -t- XE -Wi.+ WIze t < 0.~~~~~~~~~~~~~~~~~~~44 0.34 =I3 0.72. ~li: -=-: ~: W~Lt i 0 <-:,: iS m ~",'~~;::: ~i:~;:;:' ~WW|1;~ + +...... 30.4-t 8 H' H H X W' |' -3 4 5 6 7 8 1 F 7F0 tG =2 t6 +1x X -, T- AERAGE TEM PERATURE c[ 0000-i+~if~li < ~ XXXT- t 1m E Xm Gr 4[f~~~~~~~~~~l i0 4rkW tW0k0 W MXX-W-~ Ww E1g 31 -< WitU~~~~~~t1W g S W#S~~~~~~gFXWWW~~~g0M~~~s 2F;; 0 1 4 | ilE~rrt —ttX l10 l ktl [ —|t 0 < t t m X T C 1tm +X r-t!- [ t t t X X X W i 91t0| 0tstI1[r~ S + X tFt 11 1XWt|XC|-|X;4;+ W tX1 1W 1 1i1|'||8|| F W H W X; _ 10 24 3 4 6 8 1 D p92 4 5 67B92 368402 3 4 6 6 890 6~~~~~~~~~~~ tL TAEAE EPRTR

=t~~~~~~~~~ ~!i if A SFERH TRASE AT E VS. I,It dX~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i (1 S1im,' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~ ~~~~~~~~~~~~~~~17 i-f L160 t X i t t 1 i40 m jili ISf Ifil Ij I0T0 i20~~~~~~~~~~ 0 L E R OVRALL HEA <100~~~~~~~~~~~~~~~~~~~l it I XeM2 -I II 1 I _F W~~~~~~~~vgm m~~~~~~~~~~~~1 |:f I I f~ LL 16O 2~~~~~~~~~FGR 13 123I... TRANSFER B~~~~~f E VS. WATIA. I 140t tt IElilllll e t 1 111 4I I _ IT 111_1 l 1Iill 11 TTII1111113111-1111-11111 IYX 1Xm X 1f 11 140~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 120~~~~~~~~~~~~~~~~~1 ~~~Z -e ~ ~ ~ -A18 0 20 Irll 1111 g W 11ll~llllll iiiiI-L ll llll iIlllll,11111 o 11114LLII4III.11E*IIIIlIlIIIIIIL. 1LIIIIII11III|III1 1 t 1t ll11 11 1111 1411 ll 1,111111 s@1111 1111 1 j! ll I I II ll.II II II II 1 Tr 1 l TI 1 r I II LL II II r r'l ll ll ll ll ll ll 111 11 e 110111 1111111111 114 111 1 111 11111110 1111111 1111111

]fill IIIIIII III I. T, ffE 21-fill] 4-4 -~OEAL U CRRCTO FCTR Hill — ]"I I I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ttit- - fill[ II LA"~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~il-I~~~ -T I I I I~~~~+t~'I~ii

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Pil ZIII1tll tt[l 4 0 1g;ft l l-llf Mttttttltlll-l[t t - - i i t — r d~lWT trl li 1ti~t T M lil~lfli Ilal~ttE m l ll[0t~tit~t I~l~ltlil4Xltfi 2tlxt1XM~tt~l~lti~i101-08:iX~itT 7 IL m XX 1:1! l 0-l]t! 4Ilrill~t4 kilT0Hdl~l~tl~tW0Ul~lU44tt1XX. II03iL' Jj 0z 0 g t1Xl Z w} Q>. t W ffi m C X m -' LI ~~~~~~~~~~~~~ r —- cHAM~ i iLLJ Z u i"> C IlH fi - H + cr o L H 2< 0 C.) LU ui iU J~-iW ti —0 0 l Z t3. ILL -1-t i I lW t'10~- 1 ~1n1 l t I- L - - - ---- -4 1 ~~~~~~i dA i i k 17R X cr ~ O0 o d t o O cs

G G I hr 2 17 I CI b/f ~r.l I b/f?., sac0 ic.u./ft.,hrC zc 2000 -60 W 20 0- Z 50 w Ir ~~40 1000 40 tu 800 w 0 6o00 10 CppO2 - 400 - L ~~~~~~~~~20 TEMR 20 300 m oC oF 6 Ic10 -200 200 o HO -300 — 40 D 0.8 10.8 to — 1~~~~~~~~~~~~I D, in. -00 -0 - 030 8 0 8,20 r ~~-100 0.4 40 2 _ 5 4 0 3 -I0-__ 3_ 0 0.3 30 / 5 — 00 0.4 4X 2.0 1 80- NH 8 6:0.1 400 " / I 0 8 0 300-N 2 2 00 8 0.0 10 800 -- 4 o- 026 3 600 — 0 - FIGUR 23 0.85~7 0.4 -:1200 Sol' / 4 0.01 2""O08 4. E 0.001 0. FOR GASES THROUGH TUBES 2 Q 2_g!! ~~~~~~0.5 ooor. (BASED ON h =I3.3Cp/.lD2P) 00. 0.4 REFER F.GE 44 -'0.6 0.0001

CORRECTION 6. BWG.FM _# 20 1.263 Il 1.135 4 61L.000 1])14 0.872 1 I I 3 COHN 12 0.690 ALSO CORRECT FOR 2.5. 66 4 2.5 L ~ ~ ~ ~ IIJ II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I ~ ~ ~ ~ ~ ~ ~ IF I 0. III I I II, i i WF 1IN I i II I I I j,~~~~~~~~ lI~ Arl I ~ ~ ~ ~ I 2-~~~~~~~~~~2

CORRECTION BWG. ~F 4-#18 1.095,16 1.000 3X- 14.887 2.5_ ~- 12.742 =Z.10.613 O' ALSO CORRECT FOR I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f —-___ Gio 2.5 1,~2.5 34 5, 6 7" 8 9 10 1. 2.5.2. 4.6.8 1.0 VELOCITY, Ff. / SEI. FIGURE 2 5 HEAT TRANSFER RAT ES FOR WATE R IN ~DIAM.. 16 BWG. TUBES. I~~~~~~~~~~IM REFER P AG E 45 128

CORRECTION BWG.FIL 1C: 1 8 1.O80 # 16 1.000 0 1 4.918.816 2.5~i~I 10.717 0 8.608 ALSO CORRECT FOR ~0~~~~~~~~~1 3CL)''l 0.1 0.2q 0.3 Q 0.5 0.6 0.8 1.0 2 3 7 8 9 011 0.2 ZI 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ oiI1 VELOCITY Ft. ~SEC. FIGURE 26 HEAT TRANSFER R AT E S FOR W AT~ E R IN I" DIAM., 16 BWG. TU BES. REFER PAGE 45:L29

Ii - ~~~~~~~~~~~~L -J 900 I 1 F 1 1 l IIT | I I i I I I I I I I I I I 800 I # 11-I I I. I + IIIIIII t X t t t- Xt-IIIII~~~~~~~~~~~~~~~~~~~~~~~~~ II PrX- -I f I It T i I I2~~~ LXW0~~ tH700 T -I {ETT~lV I X1 l~r X X X_ I i # 1 1 rl rr -rS ~ I I O L I I I I I LLp LL L -t 400 300 FIGURE 27 HEAT TRANSFER RATES FOR 200 WATER IN 3/8" QD. X# 18 B.W.G. TUBES. REFER PAGE 45 100 1.0 1.5 2.0 2.5 3.0 3.5 40 YLI VELOCITY Ft./SEC. 1150

1 1,5 2 25 3 4 5 9 1 1.5, 2 25 3 4 5 6 7 8 9 1 1.5 2 2.5 3 4 5 6 7 9 1 CORE T; 10 FACTOR EESit POR i TIME 2 GA 11U1ItGEiiiiil~0lWIl1 H 7. i SGE i8 T-RI. 2 X11 ll l l l lil 2 2 S |:Eii j2 022; 3i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ol l 5 ~~~~~~~1 EIIllH 8 11 100]LLE 111 1.00'' c Tltl / - -- 9 At~~~~~~~~ 200 2. #18 1.00 1.00~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~fiII I.1 3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.......;.5. 1.5 2 2.5 4 5 6 7 8 9 1 1.5 2 2.5 3 4 5 6 7 8 9 1 1.5 2 2.5 3 4 5 6 7 9 11 1 L~r 1 1 A 200 I2..111- l11' 1 1 II u.2Q 40 60 80 100 200 400 600 800 I,000 2,000 4,000 6,000 8,000 I0,000 L BS /H A I II d~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —H H 60~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (/)~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~5 =t 2.51~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -iA1.5Li+~:~... 2O0 IL I 11 lilt I I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 40 4A. TT 15 24 5 6 7 8 9 115 2 2.55.5 2 2.5 34 ].5 8 OD. ~~~~~~~~~~~LS/RTUBE ~1 W.8

p or K,0o~2 0 10~ -(9 H ~ 60 E -i- - 4 -t — r -f< 2 i -rL- +- - Ft - I Ii- - 8 t-ti' 1.0 - Ii~r~' ~~'~{{ I6 - 24lI 11111 T 82 o m ~~~~~~~~~~~~~~~- |1H - I Xtt T T Ic 1<0'~ -~ 1-~ - - i -+ 7 7I I-?. E IIIII d I l1 II11 11 rtt111 I IIIi r L S -- -- I ZItii-_ I I " I I I I l I 1 g 1 1 I I I IIio FIGURE 28 — a I I - I I7CURVE A FOR OILS IN NE DIAMETWEEN AA:L32 0.11 2 / 3 4 56 7891

1,5 2~~~~ ~~~~ ~~~~~~~~~ 5 36 7 8 9! 1.5 2 2, 1,00CL 1.5 ~ ~~~~~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~2 2.5 34 8008.z 5.f CORRECTION FACTORS FOR TUBE GAUGE l.400 -B.WG V I $C. TUR B. 0~~~ ~ ~~~ ~ I0.80 12 lJ n," 1.2 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.Ifl n,.'~' ~~~~~~~~~~~~~~~~~12.87 I. 13 ~'15.91 1.09 o.'14.95 1.05 20 0 16 ~~~~~~~~1.00 1.00 u. #1s 1.10 0.96.c: IOO~~~~~~~~~~1111 JilIl1.1111 oil! 6 0 - 80 7.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Il.1I 60 6,l t 11III r a40 4a 3. 40 2.4 FILM RATE BETWEEN WALILIOW 20 T~~~~~~~~~~~~~~~~~~~~~~~~~~RANFER RATE OIL lJ~~~~~~~~~~~~~~~~~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~F1. 2IV RAT 3 BETEE 6~~~~~~~~~~ 7J8r I 1.5l?l I 4.~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4 5 I~ ~ ~~~z 40 TM I?Tt __~~~~~~~e Io zo 4o0ll 20 40 60 80 100 200 400 ~~~~~~~~~~~~~600 Boo 1, o o o,004,0 GMLBS../TUB E/HR. 80DI,0

O'M H / 39eni'se'l ='A 9 000;01 0os0 00~8ot 0' 00109 09 0t oz010 9o, OO' LOO0*gz z GTT6 t TT 9 t 7 HIM~ ~ ~ ~~0t 001 III IIIIIIIIII AlIIIIIIIIIIII"LIII 11III 008~~~~~~~~~~~~~~~1 I009iII 9 0 3 owd V 3.j~~~~~v OT 11 I I I I~ ~00 HIH I' I ~~~~~~~~~~'I I I I 8 I 9I $mrIJ.~~~~~~~~~~~~~it1 NIl' 1 — S'.Lt F:I:ISN~L:;M1P0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~it I- I' III'XzI 0~ 3~11~9L: 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~M 6'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~80 T' ----— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' HIIIII! "'I I SbA I I I 11 III 1 1 e I I I I I 11HY'l I q I 1111 I I I I I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' 00 IIIIIIIZ 11 I'A I 14TI I 11111111 v I I I i I I I 100T I I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:7 I I I I'r I I i I.0, I I I 1XIIII I 1111111Y I I 11111 I OrIIIIIIII I I Yol I 1,, IIII~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I MAKIII11Y I I Lof 17 1111yri I I Hill IM11-1-11111-'Oor I I I 11111 I 11H limit title I I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~CI LAI I i IIII I I Illrill I I 11111 I II I'MI11 I O, I I~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'' 1, or I I I I A I I I I I LF I I I I I I 019~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-" Willi 11M] I fil-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~: ~~~~~~~~~~~~~~~~~~~~~~~~!I11 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~rtl $1, 910 $PILV b bVIEL'Si~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:: 38n.9L a O..-I L9' 129 L69' 1 L' 9U NOI.gga~C) sani~~~~~~- o o 9 W201 901 6~~S~0.LOV.-QI 6I II I 6 8. I 9 t~ I ~ S' it~~~~~~~~~~'I I Hil 8 SIM 6W 8 9 SM WU g'~' -I~~~~~~~~~~~~~~~~~~~~~~ 000~1OSI

3owd W3-J3W (N OuvnO 3 S,3018 No a3SV13) NOU03ANOO 33MA-S31V8 83-ASNV81 IV3H I 9. 38noij A 0 1 8 L 9 9 t E 91Z z 911 6 8 L 9 9 9. z z 911 0 I all I 7-H II I o-ol- I I I I I 00 l i t I I I I I 01 II I I I L -oOT71 II Hill I it i i I I i LLJd OTT-1 if III it 1-60 0 -7TTI I -.boor- I I -T I I I 1-hop. I.4-.Po — F I", 0 o -I-.1.00'r 00 I I Ilt Aw 7 f I T I I I L 4 Ir7 M111i Oaw + Po oft IIIML.Imi, 7-f 0 0 I I.J I I I I I I LL ok o 00 -Oo oo LL.140 010 o'opo Owoo Li. o -rT 4 4-4l i t I I I I I I 1 1 I I I I I i f +L1 1-d-:-11- L 1. 4-L- F-'-L -44 4 — I i -Ft-.,7 T! I I I I I i I i I I f I I 7 F+-r- -7 T T I I I I I I I I I I I I

10 I! 1 1 1-1 1 ---- ii I _' I H+,__ i;- t _LU_ I 0- 4 i t -rI -l L H t|-t:t-i 1 — 6 I TI, I' H'' I i I 10.0 L4-I I-I - - Li - 14 —; iT- ii II T1 I1 L FIL s 1 -f- -T __ l I T I <K-:' - 0.* 12 2 3 4 5 6 7 8 9 - 2 3 4 5 6 7 9 2 4 5 6 7 9 Lo- 5 o 136 HL lift I - I I I dr - I I I L I i' I - 2 3 4 5 6 7 8 1 0 - 4 5 6 7 8 9 100 2 3 4'4- -"- REFER~~~~~~~~~~~~~~~~t FIG. 31r I~~~~~P _i~~~~~5

LiT 12'91_- 83j31 S31VI 83JSNVtI IV3H NOI033AN03 338AI 8OJ_ N011338803 q - I ~ 31n91.:j.-I/se - d'AilSN3a 01 1ol 01 0 Zot 6 8 L 9 16 9 L 9 9 t a OOL 69 8 9 - -i L -T~ ~ ~ ~ —i 9 I r - I~~~~~~-I1 J-,S~~~~~~~~~~~~~~~~~~,fT L I -' -- 7~l-Ii 7 i i 1 I I I )I 11! I I I L t I I _ I I I I I I I ~ I I ~-L- - L - L IL I -- - 4 ItFtj- 2 - - - - rT-f 7E:i 1E E SE tt Wttmm7 4L1 1111 I 0- I8 ~~~~~~~~~~~~~~ —r-~~~~~~~~~~~~~~~~~~~~~~~~7 - ~ -i n l-tT-.~. 11ltL-4X Mt -l —1 —-l4t4 i t~ r I I 1r' rrirr ri LA-AOL

10 1000 -9.FIGURE 32 g 0oo _8]: FREE CONVECTION HEAT TRANSFER t 800 7E RATES FOR OIL AND WATER 2 700 64t --- R E REFER PAGE 44 - 6 I —— [ I ---- - _I I t| WATER AT 151 0F 4 -t- 2. WATER AT 1220F - 400 _3 —t —— J —--—' —:: WATER AT 107oF 42 - ----— t — -.-5 —; --- -4i —[ 4. WATER AT 860F - ---.. = — 3 ~-_ ~.-L?_:i:::-:'I -:-_r 5. OIL AT 3.5 Cp. —: — - 3i 00 ~. I,,...... ~ r......oL nT ~....::300 L-: S-,...:::::: 6 OIL AT 5.5 Cp.2.-5 4I T_ — 7. OIL AT 1 3.0 Cp.. OIL AT 40.0 Cp.. _ —t:' -: ]_~- ~t.- _-_'...... —- - _T0_.-..5. +W500 6]: ~ ".~, i:~].:, _L_ "'~'"';' i:: t —-_ -;_~2 — _ —-;' -r —.......:_ 6 1.5 i_ c.i~~Jrl jti-ttri'iil15 - - -- I _ --. --... - I L -... = —I —- - [ —' -.., t-I-I I,' _ l: _ i-F -+ -i-Fri-:;i~-T/; — _ r — 1..... __.=. _ -—. __.... -— 2 —-----------..... _........ —---—' -i i-i — 4-r --..... —:- __: ~__;_._ -.,_:_ 2 0 O:::::::_f_._+': — 100 7 —i —<t-l-.. j ti Il - I - - I I' -i i i- J 138i L_1_ I: f~i ~~l-tc7 ~..... — e —f —— ~-+ — I...... 3 — - r'-,-.- i-. _-'-.:L~8

P,2 tM Attm do -6,000,000 REFERENCE LINE -3,000,000 h a ) 05 3 ODs -300- 1,000,000 400- _ -~~~~~~~~~~~~~~_ -600,000 — 100 90 200 80 300-_ 70 ~f 300 70 300,000 60 50 20 \ U)0 40 0 200 30 100 — - ZOO' 30 0 - 60 90 100,000 0 — 200 80 20 70 60,000 10- 100 6 0 60 50' 30,000 20 — I1 0 - 40100 7 3904 3e3 5 6 3 0,000 40$ 90 80 - 5. ~~~~~~~40- — ~~~~~4 o 70 4 50 -100 130 1320 6,000 1400 016 602 3,000 0 70- 19 020 40 22 021 80- 24 025.2_ 026 0.8 90- o27 30-C 0.7 0.6 600 100- 028 0.5 6 0.4 300 20 -0.3 0.2 3 j, 100 60 01 2 30 10 FIGURE 32-a FREE CONVECTION,OUTSIDE HORIZONTAL TUBES

312 3 4 5 6 7 89,1 2 3 4 5 6 7 8 9 1 2 3 2 3 4 5 6 7 8 9 1 2 3 4 56 7 8 9 1 9 FIGURE 33 8 HEAT TRANSFER RATES FOR FILM-TYPE CONDENSATION OUTSIDE HORIZONTAL TUlES BASIS: NUSSELTS EQUATIONS REFER MG48 I. FOR RECTANGULAR, IN LINE, TUBE ARRANGEMENTS Wt 2. FOR RECTANGULAR, STAGGERED, TUBE ARRANGEMENTS W N. 3. FOR CIRCULAR, IN LINE, TUBE ARRANGEMENTS Wt O. 6 ND e tj~i 3 1-s 01=C~~~~ gS4 FOR CIRCULAR, STAGGERED TUBE ARRANGEMENTS WA = 77N 9~~~~~~~4. 1II'1lllili i kri Tl0 -??!1111111.~. 6?~~~~~~~~~~.~ (i-. 6. ~1 6 t t 1; L1 > E S SS tsS ~ff l 9 H t I I r I Illlltlif i l u Flil ilmt I St6 L 4.] L 4 1 I — ~~~~2 3S 4~ 56 8 2 3 e t-54 56789 i2 2ll~illl 3lllli i 4l~ 5678 2 3 4 56 8 it 2 3 4 56789lliiiil$tl~lttlllllTtI rL f 3m J k W~~~~~~~It0- E1t S S SiL 4 _ I I I Il Il I II111111111 11 I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~H IO.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~H ~ 2WW01W W W A~~~~~~~~tl~~t#W[: W XN ES~~~~~~~zR I I W X I Ll W~~~~~~~~~lilililil 111 1I1I1I 1 1 1 1 1 L L 2!61 IA 0~~~~~~I H!H,hrl t l I I 1111 < Im~ I illlllItIIIIII~ 11111111111111111111111111 II 11M -rt+.L E He-L H4HW +t +~~~~~~illt I A l 11 IN I I I I I I I I I I I I i I l l I 111:111 LI I I HI 1 Ell I I I I I II 111 1 11 111111 Z 1 111111!11111 8. 111 ill 11 Til 11111111 I IllTtTl.iI 1 1 1 T- LI l 7.:;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _dILh7~8Wif w e e X XW: a l~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~liveltti 8 2 M X XEE~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~f > g I I 1 2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A s.~~~~~~~~~~~~~~~~~~~~~~14:5~ ~~~4-t ~W1 LBL'.HU ERTB,b~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 I0l ICII 1i Wt=1 LBS PER HOUR PER TUBE

3 4 5 6 7 8 9 1 3 4 5 2 3 4 5 6 3 4 5 6 7 8 9 1 — two _4 4 —-f + 4 -04- 4- —' on-_ I j I I -1 Un AN A-t 41! I U Or-;.ioil 71 ft 7l -11 J IIIIIIIII F-N.L I:7 %SlkL_1;, T1 7 -m F 7, 144 z: SSW. -t, - T_ wt'T +-f7- 4'+14 Ll- 7177" _r ITT r4L r"7 Jo CY I I 4L I il J i cc II I I I H_;.wr s., file ill LL I 1, A -4L -4-;4:PF =F, L -4 -1...T 41 "P....ts 7 FIGURE 3 4 7 — 4 -H 44 HEAT TRANSFER RATES FOR FILM-TYPE _T17 1,,~ _7I NSIDE CONDENSATION VERTICAL TUBES q/ 11;in. -4- — t- OR............... OUTSIDE 7 Q V?. D N BASIS NUSSELT'S EQUATION:waw::" REFER PAGE 48 I _T I-T L -4 j 1.0 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10- 5 6 7 8 9 3 4 5 6 7 8 9 low t LBS CONDENSATE PER TUBE PER HOUR

6 O L..;Ot 6 i0[99 v 6 9 L 9. s' not 6 8 l 9 ~ t, ~ O 6 9 /. 9 ~ 9; 4~~~~~~~~~~~~~~~~~~'~ -'...... I II -f-~ ~ ~ ~ ~ ~ ~ ~ ~~i iiT 114 I' IIH I I'!{ $NOll.vrt03 S,.L"I3ssfN N 0 O Q3SV8 S39n.L' V31.Lt3A NO'I~.LNOZIUOH 3(]l$.LnO UO M MIN NOI.L~$N3(]N0 3dA.L P"11.:IH 0.-I S3.LVU H3.dSNVU.L IV31H UOA SHO.OVA NO0.LO3UUO9 9~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'0.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - i 6 8 / 9 S P i' i: I 6 8 Z 9 S 1~ I~ ~ I,i 8 / 9 S P ~ g I 6 I / 9 S P ~ g t 6 8 /. 9 S PI fI:'lfe 11I II I I I I 771~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ O'ITOTZ T

1,5 5 3 4 5 7 8 9 1 1.? 25 3 4 5 6 7 8 9 1 1.5 2.5 6 2. 1 E t t WW~~~~~~~~~~~llU~~~~~~liW 4 W ~~~~~~~~~~~g T ~~~~tX 0 0 4 ~~~1-T 1 [1 I 1.i~ 1 11 1 1 1 1 ~>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ H t I l!liI rIll I11t Is 8.~ ~ ~ ~~~~~~~~~~M 5.~~~~~~~~~~~~~~~~~~~~~~~~~~~~3 C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I M1 I1 It:1| i ~ 4.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. F l: I [l 1t W i HLH I I I 1 HEAT TRANSFER RATES FOR SINGLE PHASE CONDENSA~~~~~~~~~~Il I LUL I - ~ ~~~~~~~~1.5.2 25 3 4 1.54 6 7 1.2 25 C 111il1 111 1111111 1 1iiI1++X gO ETCLTBSBSDO IKRD OAz T iZ,, IIIIINIItII|11 Illtlllll III~l u. LllIH HllllllL~ lllSllllllll1!1111111 111~iiellifllllll~iilIIII~III~lIRFR NE 4 oj. 4TS 1 111Iiiiiilll T4~iiiilllll llil~lm ||lllllll~iiiiilllllllll~lli1 =~g 1 9.1S aD &. o A1lllll lll iiiiirlll iiiillllliil11111111 WHll iiill+~iil1 111111lllllll i ilIIIII111111111Illlllllll ~iiii j= 1 2E 1 17 ~l XI I 10 0lil1.11 1111i!4llll1lllllW;TIIIIItl0 llS 4 S 6 7 8 9 1 *5 2 2.5 (N VRTIA TUBES 6BA8960IS E O2 2.5B ID S C 6BR' 7 &

qV 1.8, o'l ID,'0,' T H N I - i il II ilIII II I0 I I l ~'0~~~~~IIMIIIIIHM-l 8'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 I VI I I I I I I 0 Ili 11 II II PI OFF~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-e

cl~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~: EIE F~t gE~l X l I I - -zt4 - i 4LV I 7 t 0 E E ] i m W; L S I - I I 1 U- Ax ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ zZ 10. I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ V 0 o_ M: I w -J LL'~o ~~~~~ ~ ~ ~~~~~~~~FIGURE 37 zW~~~~~~~~9 FREE AREA PER INCH OF BAFFLE PITCH -4 Im ~ ~ ~ ~ ~ ~ ~ ~~~~~i~~ —- FOR CROSS TUBE FLOW IN W a. SEGMENTAL BAFFLED EXCHANGERS I 1 I SHELL PASS I TUBE PASS wF~~~~~~~~~~~~~~~~~~ 1~25 TRIANGULAR V-11 PITCH I O.D. U is -111t llf lild l l+t}lllllllll+-l ~t~tlktFmlmm m-lIi "2'Ax A I F 11 IlLREFER PAGE 38 -r —'F I W g g t S t2 FIGURE 37 |~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t t: e5HH~~~~~~~~sH+W0+[1 li FOR CROSS TUBE FLOW IN l~~~~~~~~~~~~~~~~~~~~~~~~I T-I ar Tl —' — 1-11t Tf1 1 I fill I 4 I i_ -tt —,S U 1 g S 21 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 11;l: jl0i 11 g 1'3 -14 11 l5 T RAGUA V 1IC IOD 3'eX~e1;1 - 1 I'-FZ 3 4', 6 7 8 9 II 11 TU 13 1PAST5 16 Nil TUBE ROWS PAST CENTER - Nh

#4 -H 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t —'T'~~~~~~~~~~~~~~~~~_ z - - - A —~~~~ I -Li W FII. A~~~~~~~ I-~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~7 _-] - wT - d- Ai +~~~~-K._I L I 4 co (..) ~0~ "r4' LmJW 4~~~~~~~~~~~~~~~~~4 + 4~~~~~~~~~~~~~~~ 4~~~~~~~TPP IzJ~~ FIUR-3 TUB:EE AROW PATE RA A R INCH OF BAFF I~~~~~~~ ~~~~~~~~~ PI T CH FO0R C RO0SS TUBE FLO <~~~~~~~~~~~~~~~~~~IN SEGMENTAL BA FF LE D -— I- 77 ~~~~~~~ISHELL PASS;ITUEPS PI TUB9E PS 7~~~~~~~~~~~~I T RI A NG6U L A RV - REFER PA G E 3 8 4-T-14-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:' L: -L-ii-4 TUBE ROWS PAST GEN NTER -Nb

N z I I-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~66 -J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 IL IN~k OF BAFFLE PITCI IL~~~~~~~~~~~~~~~~~A CLL z -0 ~~~~~~~~FIGURE 3 9 FREE AREA PER NcH OF BAFFLE PI FOR CROSS TUBE FLOW i l T t~ffftULHKKKKKKFKKKKI~C-FKKKRKFKIN SEGMENTAL BAFFLED EXCHANERS. I-SHELL PASS: I-TUBE PASS LL 15/16" TRIANGULAR V-PITCH) 3/4" TUBES. R EFER PAGE 38 II0 C ew PhAQT C- I N T - N.

17 W M _ -N 16 I 14 II 12 1 i I T N e ~~I-I~~~~~~ f6''1''''1'''1''1'"' m a t2''' g t h'''''''l I I I I I I I I I I I I I I I I I II ct = 17 - H ~t I I I I l 1 1 1 1 I I TTI I I I I I I I I iI I I I I I I I I I 1 Lll~lr FREE AREA PER INCH OF BAFF1 1 CL FOR CROSS TUBE FLOW w4 cr IN SEGMENTAL BAFFLED EXCHANGERS,, L tL-'llii I I I 11111 11 ILI I I I I I 11111 1 III I SHELL ASS 0 U- I 111 1 1 # [ J 1 J1 {| m1 11 11 [FREE I SQUARE PITPH 3/NC TUBE REFER PAGE 38 2O 4 6 8 10 12 14 16 IR TUBE ROWS PAST CENTER- Nb

1816-4 I L - t t t i t + i i 0 T t ~I2 14 JO LL <L z 6 FIGURE 41 a- FREE AREA PER INCH OF BAFFLE PTCH,,N4-rtr~n+CCLL~rlilllll-17T~17rnlllll 1 II1IN SEGMENTAL BAFFLED EXCHANGERS W -I -SHELL PASS I- TUBE PASS -2 +f1 ttt < I/4 SOUARE PITCH I" TUBE REFER PAGE 38 o 2 4 6 8 10 12 14 16 18 0 22 24 TUBE ROWS PAST CENTER- Nb

It Hill — f FIGUREUR 42 Hill all N~~~~IJET FREE AREA It I IIIill-HORIZONTAL BAFFLE CUT, ifIl FULL FLOATING HEAD IIIifl lilt ~~~~~~~~5/8" OD. T U B E 13/16 -APITCHH VERTICAL FLOW l il I if itit ~REFER PAG E 38 O 16 -— ~~~~~~~~~~~~~~~~~~ 20 24~~~~il 1 I I f i l f i l fill Ill I RliPAl tNTR IN N fill fill~~~~~14

I I~I__ & _ _! I 1' 1. I I I I III I FIGURE 43 ~ 200 LL - 160 1 20 80 40 0 8 16 24 32 NO. OF ROWS PAST CENToLINE Nb

fIGURE 4 4 NET FREE AREA 34 M0fffff ff f12 VERTICAL BAFFLE CUT, FULL FLOATING HEAD, 3/4 O.D.TUBES ON 15/16 APITGH, 320 HORIZONTAL FLOVt TI- REFER' PAGE 38 m m m W W 111 111 1N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IiA! i F-11X11 11ill ll If 280 I 200 r~~m fI~t i 1 1 1 I I I i d I i I I I I I I 1\1 1 1 1 1 1 1 1 1 1 I N I I 1 I I IIIIIIII I uc 160 1 W W - X 1. t 1 ]1] 1 lfi'i1 01 t' 1 l P I w 241 v IW OF ROWS PAST w t 1N# IE INE 1!1it'- 1E I b I I i T1 I IL X w u X N'11 20~B X 1X 1 1 IL I - I-!!!! cQ 11L X IN~ 1NXEi e1t01t1N1 I 1V lX M ~ t~~l I 1X s 110 X 1t14S~lN I'll I E v E 10 i 1: 112t 4 0001g+11*k~~~~~~~~~~~~~~~I II'MmX I I1\~e2t WX~~~~~~~~~~~~~ IIIII I % I iiii~lllll~UI I~t E ff~~~~~~~I I!11 1 11 I 1 11L111 1 11 11111111 I IlllllllllllIl IllS~lllll It~~5 bX111 k

... i FIGURE 45 W W X 4 + t S * X W W I N I II I I I I i i L. I 11 36~0 mmmmm++mmmm++mf+ II iT Ig+ii0 NET FREE AREA HORIZONTAL BAFFLE CUTjI L 0 FULL FLOATING HEAD, I I Aji IL t m 3/4"0 OD. TUBES ON I" E PITCH, 320 NJ I I VERTICAL FLOW REFER PAGE 38 280 <gEI I i1 10 1 1 I I X I m I N~~~~~ ~~~~~~ IL I X! I 110114f1XL 240;11 -I I L1 L~~~~~~~~~~~~~~~~ cr~ I~~~~~~~~~~~~~~~~~~~~~ IJJ I' 1 20 I X 1 I I1 00 4W 6 LX ~t I2 V I I 1 4 F- I I 1,8 I0 1 % XN RW PX1s E LI N Nb n02 ~~~~~~~~~~~~~~~~~I A 10 12 14 I~~~O IFRW A5 ETRLNN

FIGURE 46 3:5 r~~f r, t~ f~t~fH~tT rT { ri rr a1TtI!60 I I I I! -0 i I I i NET FREE AREA VERTICAL BAFFLE CUT, FULL FLOATING HEAD, 3/4' OD. TUBES ON I" 0 PITCH, 320 320 -K LjV l HORIZONTAL FLOW REFER PAGE 38 280 < 240 1?t rII - 200 160 120I 80 40 0 2 4 6 8 10 12 14 NO. OF ROWS PAS9_5CENTERLINE, b z llr XrH~x~i~z il~~rtili TTTFT Illl~~li~liiliil~ilsll~il~illlil~liiltiliili,|llil04 x I I I 111 +F4- ll jl^-111111111 \1111141'l 11,1111 w~llilllilsiililiilil~ililL~lilliltIIIINIIIII~III~~l~ll~iI~n: 111 111. 1gt lillil1111XIliilil 111! 11 Ilbi3<ll!1\111IIIIITITTIT l~iliilil~lLliili 111111L1111IN, 1 <. @ L m Sll jl 11|1111 ~~~~~~~~~~~~~~~[is: iliilt I -— 1 11 1 lfg~iml l 120:~i Ti LL 001t11:ffliLI|~0l~0iiiid~l|i;t0Nli~l~il s 1ft111111ii00 Xm 8111111|111IL 911!IIII|I1~111111!II _ WIT~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'4 60 | 1 @;1 [ 1 X 1 t 1 i | X 1 1 1 2 l w'A10 %4 A~IHXW % l N SIF!

FIGURE 47. NET FREE AREA, VERTICAL BAFFLE CUT FULL FLOATING HEAD, AA/4"' OD TUBES ON I"APITCH HORIZO N TA L FLOW REFER PAGE 38 p- 200? 160 120 80 40 0 4 ~ ~~8 12 16 2 NO. OF ROWS PAST CENTERLINE N 154

FIGURE 48 NET FREE AREA HORIZONTAL BAFFLE CUT, FULL FLOATING HEAD, _zftt ~ tftF 3/40O.D.TUBES ON I"TRIANGULAR PITCH, VERTICAL FLOW. REFER PAGE 38 W w LL w 2 160 120 80 40 0 4 8 12 16 NO. ROWS PAST55CENTERLINE - Nb

TABLE I TABLES OF NORMAL FOULING FACTORS A. Fouling Factors for Water Temperature of Heating Medium Up to 2400F 240oF - 6000F Temperature of Water 125OF or less Over 125OF Water Velocity Water Velocity ft/sec ft/sec Types of Water ft over 3 ft over and less 3 ft and less 3 ft Sea water 0.0005 0.0005 0.001 0.001 Brackish water 0.002 0.001 0.003 0.002 Cooling tower and artificial spray pond treated make up 0.001 0.0.01 0.002 0.002 untreated 0.0030 0.003 0.005 0.004 City and well water (e.g., Great Lakes) 0.001 0.001 0.002 0.002 Great Lakes 0.001 0.001 0.002 0.002 River water Minimum 0.002 0.001 0.003 0.002 Mississippi 0.003 0.'002 0.004 0.003 Delaware; Schuykill 0.003 0.002 0.004 0.003 East River; New York Bay 0.003 0.002 0.004 0.003 Chicago Sanitary Canal 0.008 O. 006 0.010 0.008 Muddy or silty 0.003 0.002 0.004 0.003 Hard (over 15 grains/gal) 0.003 0.003 0.005 0.005 Engine jacket 0.001 0.001 0.001 0. 001 Distilled 0.0005 0.0005 0.0005 0.0005 Treater boiler feed water 0.001 0.0005 0.001 0.001 Boiler blowdown 0.002 0.002 0.002 0.002 If the heating medium temperature is over 4000F, the ratings in the last two columns should be modified accordingly. B. Fouling Factors for Industrial Oils Fuel oil 0.005 Clean recirculating oil 0.001 Machinery and transformer oils 0.001 Quenching oils 0.004 Vegetable oils 0.003 156

C. Fouling Factors for Industrial Gases and Vapors Coke oven gas and other manufactured gas 0.01 Diesel engine exhaust gas 0.01 Organic vapors 0.0005 Steam (non-oil bearing) 0.0005 Alcohol vapors 0.0005 Steam exhaust (oil bearings from reciprocating engines) 0.001 Refrigerating vapors (condensing from reciprocating compressors) 0.002 Air 0.002 D. Fouling Factors for Industrial Liquids Organic 0.001 Refrigerating liquids, heating, cooling or evaporating 0.001 Brine (cooling) 0.001 E. Fouling Factors for Atmospheric Distillation Units Overhead untreated vapors 0.0013 Overhead treated vapors 0.003 Side stream cuts 0.0013 F. Fouling Factors for Vacuum Distillation Units Overhead vapors to oil From bubble tower (partial condenser) 0.001 From flash pot (no appreciable reflux) 0.003 Overhead vapors in water cooler condensers From bubble tower (final condenser) 0.001 From flash pot 0.004 Side stream To oil 0.001 To water 0.002 Residual bottoms, less than 200 API 0.005 Distillak bottoms, over 200 API 0.002 G. Fouling Factors for Cracking Units Gas oil feeds Under 500OF 0.002 5000F and over 0.003 Naphtha feed Under 5000F 0.002 500~F and over 0.004 157

Separator vapors (vapors from separator) Flash pot and revaporiser o.oo6 Bubble tower vapors 0.002 Residuum 0.010~ H. Fouling Factors for Crude Oil Stream 0-199OF 200-299oF Velocity ft/sec Velocity ft/sec Under 2-4 6 ft Under 2-4 4 ft 2 ft ft & over 2 ft ft & over Dry 0.003 0.002 0.002 0.003 0.002 0.002 Salt* 0.003 0.002 0.002 0.005 0.006 0.004 500-699dF 5000 and over Velocity ft/sec Velocity ft/sec Under 2-6 4 ft Under 2-6 4 ft 2 ft ft & over 2 ft ft & over Dry 0.004 0.003 0.002 0.005 0.004 0.003 Salt* 0.006 0.005 0.004 0.007 0.006 0.005 *Refers to a wet-crude —any crude that has not been dehydrated. I. Fouling Factors for Absorption Units Oil Field Natural Refinery Vapor Gasoline Plants Recovery Plants Gas 0.002 0.002 Fat oil 0.001 0.002 Lean oil 0.002 0.002 O.H. vapors 0.0005 0.001 Gasoline 0.0005 0.0005 J. Fouling Factors for Natural Gasoline Stabilizer Units Feed 0.0005 O.H. Vapors 0.0005 Product coolers and exchangers 0.0005 Product reboilers 0.001 158,

K. Fouling Factors for Debutanisers, Depropanisers, Depentanisers and Alkylation Units Feed 0.001 O.H. Vapors 0.001 Product Coolers 0.001 Product Reboilers 0.002 Reactorsfeed 0.002 L. Fouling Factors for Tube Treating Units Solvent oil mixed feed 0.002 O.H. Vapors 0.001 Refined oil 0.001 *Refined oil heat exchangers water Cooled gums and tars 0.003 Oil cooled and steam generators 0.005 Water cooled 0.003 Solvent 0.001 M. Fouling Factors for Deasphalting Units Feed oil 0.002 Solvent 0.001 Asphalt and resin Oil cooled and steam generators 0.005 Water cooled 0.003 Solvent vapors 0.001 Refined oil 0.001 Refined oil and water cooled 0.003 N. Fouling Factors for Dewaxing Units Tube oil 0.001 Solvent 0.001 Oil wax mix heating 0.001 -*Oil wax mix cooling 0.003 0. Fouling Factors for Hydrogen Sulfide Removal Units For overhead vapors 0.001 Solution exchanger coolers 0.0016 Reboilers 0.0016 *Precautions must be taken against deposition of wax. 159

TABLE II PIPE DIMENSIONS AND DATA TO CALCULATE FLOW RATES Outer ID Surface Area, Diam. BWG in. sq ft/ft Outside Sq i F* in. Outside Inside in. 3/8 22.319.09815.1104. o8o 4.02.50 20.305.072 4.46.555 18.277.060 5.33.664 1/2 20.430.1309.1964.1452 2.21.275 18.402.1269 2.53.315 16.370.1075 2.99.372 5/8 20.555.1636.3068.2419 1.33.165 18.527.2181 1.47.183 16.495.1924 1.67.208 14.459.1655 1.94.242 3/4 18.652.1963.4418.3338 1.96.120 17.644.314 1.02.127 16.620.3019 1.06.133 15.606.284 1.13.141 14.584.2679 1.20.149 13.560.247 1.30.162 12.532.223 1.44.179 1/2 IPS 12.62.220.550.3019 1.06.133 1 18.902.2618.7854.6390.60.0626 17.884.6138.524.0652 16.870.5945.540.0673 15.856.570.563.0702 14.834.5463.587.0732 13.810.515.630.0176 12.782.477.67.0539 11.760.455.705.088 10.732.421.77.095 1-1/4 18'1.152.32725 1.227 1.0423.3075.0383 17 1.134 1.012.317.0395 16 1.120.985.326.0406 15 1.108.967.332.0414 14 1.084.923.350.0434 13 1.060.882.370.0454 12 1.032.838.390.0477 11 1.010.801.40.0499 O10.982. 757.430.0528 160

TABLE II (cont.) Ou~ter Diam. BWG ID Surface Area, Sq in. Sq in., F* in. in. sq ft/ft Outside Inside 1-1/2 16 1.370.3927 1.767 1.474.2175.0271 15 1.358 1.453.221.0275 14 1.334 1.398.23.0286 13 1.310 1.348.24.0297 12 1.282 1.291.25.0310 11 1.260 1.247.258.0321 10 1.232 1.192.27.0336 1-3/4 16 1.620.4581 2.405 2.061.156.0194 15 1.608 2.036.158.0197 14 1.584 1.971.163.0202 13 1.560 1.911.168.0209 12 1.532 1.843.174.0217 11 1.510 1.791.179.0223 10 1.482 1.725.16.0232 2 14 1.834.5236 3.142 2.642.1215.0151 12 1.782 2.494.129.0160 10 1.732 2.356.136.0170 Wall Thickness,.028.035.049.058.065.072.083.095 inches, BWG 22 20 18 17 16 15 i4 13 Wall Thickness,.109.120.134.148.165.180.203 inches BWG 12 11 10 9 8 7 6 Use of factors F and P Velocity, ft/sec, = G.P.M. x F 0.321 x G.P.M. No. tubes/pass sq in. Mass' lbs/hour x 0.04 x lbs/hour Velocity, sq ft/sec, t = No. of tubes/pass sq in. 161

TABLE III TUBE-SHEET LAYOUTS (TUBE-COUNTS) FOR FIXED TUBE SHEETS A. 1/2 in. IPS on 1-1/32 in. Triangular Pitch Shell Tube Number of Passes Number Net Size, Line 1 2 4 6 8 10 12 f Rows Free in. in. Across Distance 6 5-13/16 22 20 16 8 7-13/16 42 40 32 10 9-15/16 73 68 56 12 11-13/16 109 98 88 14 13-1/4 130 126 114 16 15-1/4 178 172 154 18 17-1/4 235 224 204 20 19-1/8 288 282 260 22 21-1/8 352 346 330 24 23-1/8 421 412 4oo 26 25-1/8 506 498 468 28 27-1/8 588 578 558 30 29-1/8 684 672 648 32 31-1/8 782 774 744 B. 1 in. OD Tubes on 1-1/4 in. Triangular Pitch 6 5-13/16 14 14 8 7-13/16 31 26 26 26 20 10 9-15/16 48 48 42 34 32 34 28 12 11-13/16 68 66 56 54 52 50 44 14 13-1/4 88 82 78 74 72 70 68 16 15-1/4 i1 114 110 108 104 92 92 18 17-1/4 151 148 140 136 132 130 124 20 19-1/8 199 184 176 168 164 160 156 22 21-1/8 241 232 220 216 208 204 200 24 23-1/8 284 282 270 262 256 252 244 26 25-1/8 345 334 322 316 304 296 288 28 27-1/8 397 392 372 366 360 346 340 30 29-1/8 454 454 436 430 416 410 396 32 31-1/8 530 522 506 494 484 474 468 162

C. 3/8 in. OD Tubes on 1/2 in. Triangular Pitch Shell Tube Number Net Number of Passes Size, Line, 1 2 4 6 8 10 12 f Rows Free in. in. 6 Across Distance 5-13/16 109 98 78 70 64 62 6 7-13/16 202 188 162 154 144 138 124 9-15/16 333 312 278 256 256 242 232 8 11-13/16 475 1452 410 402 380 366 356 14 13-1/4 604 578 524 510 496 486 464 16 15-1/4 805 776 716 704 672 664 644 18 17-1/4 1039 1006 940 924 888 876 852 20 19-1/8 1285 1236 1172 1152 1120 1094 1072 22 21-1/8 1555 1514 1440 1418 1388 1360 1332 24 23-1/8 1887 1846 1754 1716 1692 1660 1628 26 25-1/8 2221 2172 2082 2056 2008 1982 1952 28 27-1/8 2592 2538 2440 2410 2356 2330 2296 30 29-1/8 3001 2944 2836 2806 2748 2720 2676 32 31-1/8 3427 3366 3254 3218 3160 3130 3080 D. 5/8 in. OD Tubes on 13/16 in. Triangular Pitch 6 5-13/16 38 36 28 26 24 8 7-13/16 73 68 56 54 52 46 10 9-15/16 121 114 102 96 92 90 84 12 11-13/16 174 168 152 148 140 134 124 14 13-1/4 220 214 196 186 180 172 168 16 15-1/4 301 286 264 258 244 240 232 18 17-1/4 380 372 348 334 324 324 308 20 19-1/8 475 464 432 420 416 394 396 22 21-1/8 583 566 532 522 512 502 484 24 23-1/8 696 682 652 640 624 612 600 26 25-1/8 824 816 770 764 740 728 712 28 27-1/8 970 952 914 896 880 864 856 30 29-1/8 1123 1104 1060 1040 1024 1012 992 32 31-1/8 1285 1258 1216 1202 1188 1170 1148 1653

E. 3/4 in. OD Tubes on 15/16 in. Triangular Pitch Shell Tube Numbber Size, Line, 1 2 4 6 8 10 12 of Rows Free in. in. Across Distance 6 5-13/16 31 26 20 16 16 8 7-13/16 55 48 42 42 36 10 9-15/16 88 82 76 74 72 68 64 12 11-13/16 130 120 110 108 104 102 92 14 13-1/4 163 152 146 140 132 130 120 16 15-1/4 216 214 196 186 188 180 172 18 17-1/4 284 274 256 252 240 234 224 20 19-1/8 349 342 322 314 300 292 284 22 21-1/8 433 420 404 394 380 374 364 24 23-1/8 518 498 484 474 468 458 440 26 25-1/8 614 606 574 562 552 542 528 28 27-1/8 721 708 678 666 644 636 620 30 29-1/8 843 818 792 776 764 752 736 32 31-1/8 955 938 910 892 880 68 852 F. 1-1/4 in. OD Tubes on 1-C/16 in. - 600 Pitch 6 5-13/16 8 6 8 7-13/16 19 18 16 14 10 9-15/16 31 30 26 26 24 24 12 11-13/16 42 40 36 34 32 30 28 14 13-1/4 55 52 48 46 44 42 40 16 15-1/4 74 72 66 66 60 58 60 18 17-1/4 96 98 86 82 80 76 72 20 19-1/8 121 118 110 108 104 102 100 22 21-1/8 151 146 138 136 132 128 124 24 23-1/8 183 180 172 168 160 152 148 26 25-1/8 212 214 200 192 192 184 180 28 27-1/8 253 242 236 232 228 226 216 30 29-1/8 295 286 278 272 268 260 252 32 31-1/8 337 330 322 310 304 300 292 164

G. 5/8 in. OD Tubes on 7/8 in. Triangular Pitch Shell Tube Number Net Number of Passes Size, Line, wt 2 4 6 8 10 12 of Rows Free in. in. Across Distance 6 5-13/16 31 30 26 8 7-13/16 6 62 56 10 9-15/16 o109 98 88 12 11-13/16 151 146 134 14 13-1/4 199 184 176 16 15-1/4 258 246 236 18 17-1/4 330 318 302 20 19-1/8 409 400 378 22 21-1/8 499 486 472 24 23-1/8 604 588 566 26 25-1/8 715 704 670 28 27-1/8 847 818 796 30 29-1/8 966 952 924 32 31-1/8 1106 1088 1052 165

TABLE IV TUBE SHEET LAYOUTS FOR FULL FLOATING HEAD HEAT EXCHANGERS A. 5/8 in. OD Tubes on 13/16 in. Triangular Pitch Shell Tube Number of Passes Number Net 8 7-1/16 56 52 48 46 40 38 15 3-7/8 10 9-3/16 100 98 86 82 76 68 68 21 4-1/2 12 11-1/16 151 146 126 124 120 114 104 25 4-3/8 14 12-3/8 199 184 168 160 152 148 136 29 5_7/8 16 14-3/8 262 250 236 228 220 212 208 33 5-3/4 18 16-3/8 349 334 310 300 292 284 276 39 6-3/4 20 18-i/4 433 416 400 390 368 358 348 45 8_3/4 22 20-1/4 530 514 494 478 468 460 448 49 7-1/2 24 22-1/4 649 626 598 586 572 562 548 53 8-1/16 26 23-7/8 747 732 696 686 672 664 652 57 8-1/2 28 25-7/8 874 858 824 818 804 792 772 63 9_3/8 30 27-7/8 1027 1006 966 952 936900 9167 10-3/8 32 29-7/8 1176 1152 1116 1102 1o88 1070 1052 71 10-1/4 B. 3/4 in. OD Tubes on 15/16 in. Triangular Pitch 6 8 7-1/16 12 40 32 24 13 4-5/8 10 9-3/16 76 72 60 58 52 46 17 4-5/8 12 11-1/16 110 106 94 94 84 21 4-3/16 14 12-3/8 14o 138 122 118 112 106 104 25 5-1/2 16 14-3/8 199 184 176 164 160 156 148 29 5 18 16-3/8 254 242 228 224 220 212 204 33 5-1/4 20 18-1/4 316 308 294 284 276 268 260 37 6-3/8 22 20-1/4 392 384 364 354 344 342 324 41 7-1/8 24 22-1/4 480 468 442 434 420 414 400 45 7-7/8 26 23-7/8 559 538 514 506 492 484 472 49 8_7/8 28 25-7/8 649 642 618 602 592 580 564 5 81/8 30 27-7/8 764 744 720 712 692 684 668 57 8-7/8 32 29-7/8 874 866 832 820 804 796 776 63 10-3/8 34 32-7/16 1039 1024 992 970 960 950 928 36 34-5/16 1159 1140 1104 1086 1065 1064 1040 39 37-3/16 1369 1354 1318 1302 1280 1270 1240 42 40-3/16 1607 1576 1540 1510 1500 1504 1480 166

C. 1 in. OD Tubes on 1-1/4 in. Triangular Pitch Shell Tube Number of Passes Number Net Size., Line, 1 2 4 6 8 10 12 of Rows Free in. in. Across Distance 8 7-1/16 22 20 18 9 4-1/8 10 9-3/16 40 40 32 32 13 4-1/2 12 11-1/16 61 52 48 50 44 42 15 4-5/8 14 12-3/8 76 76 70 66 60 58 60 19 4-1/4 16 14-3/8 109 102 94 94 84 84 80 21 4-1/2 18 16-3/8 140 136 126 120 116 110 104 25 6-1/2 20 18-1/4 174 168 156 152 148 144 136 27 6-3/4 22 20-1/4 216 214 200 192 192 184 180 31 7 24 22-1/4 264 254 246 240 236 230 224 33 7-1/4 26 23-7/8 304 302 286 278 272 268 260 37 7-1/2 28 25-7/8 361 350 342 336 328 320 312 39 30 27-7/8 421 412 400 394 388 382 370 43 32 29-7/8 499 480 464 454 440 434 428 47 8-1/4 34 32-7/16 571 558 546 536 528 520 508 36 34-3/16 645 622 614 604 600 584 576 39 37-3/16 756 740 726 724 712 696 688 42 40-3/16 883 878 854 846 824 812 812 D. 4 in. OD Tubes on 1 in. Square Pitch 8 7-1/6 32 32 30 24 7 3-5/8 10 9-3/16 57 56 52 52 9 4-1/14 12 11-1/16 89 82 78 76 76 11 4-5/8 14 12-3/8 108 108 98 92 92 11 6 16 14-3/8 148 148 136 128 128 120 120 14 6-1/2 18 16-3/8 192 188 180 180 180 168 168 16 7 20 18-1/4 242 236 224 220 220 212 216 17 7-3/8 22 20-1/4 304 300 284 280 280 268 268 20 7-7/8 24 22-1/4 362 360 352 344 340 332 332 21 8-3/8 26 23-7/8 421 412 402 392 392 392 392 23 8-7/8 28 25-7/8 502 488 480 476 472 460 460 25 9-3/8 30 27-7/8 580 566 566 548 548 540 540 27 9-7/8 32 29-7/8 673 652 644 636 636 620 624 29 10-3/8 34 32-7/16 793 788 766 756 756 732 736 36 34-3/16 882 876 860 852 848 828 820 39 37-3/16 1052 1040 1024 1016 1008 992 992 42 40-3/16 1224 1216 1196 1188 1184 1164 1168 167

E. 1 in. Tubes on 1-1/4 in. Square Pitch Shell Tube Number of Passes Number Net Size, Line, 1 2 4 6 8 10 12 of Rows Free in. in. Across Distance6 8 12 8 7-1/16 21 16 16 5 4-1/8 10 9-3/16 37 32 32 32 6 4-1/4 12 11-1/16 52 52 48 44 44 8 4-1/4 14 12-3/8 69 64 64 52 52 52 52 10 5-1/2 16 14-3/8 90 88 86 84 80 76 76 11 5-1/2 18 16-3/8 121 120 112 112 112 112 li2 13 5-3/8 20 18-1/4 150 150 144 144 144 132 136 14 5-3/8 22 20-1/4 188 182 180 176 176 168 172 16 7-3/8 24 22-1/4 230 224 224 212 212 208 208 17 7-3/8 26 23-7/.8 266 266 258 252 252 240 244 19 7-3/8 28 25-7/8 308 308 304 304 304 296 300 20 7-3/8 30 27-7/8 366 360 352 344 344 332 332 21 9-3/8 32 29-7/8 421 412 406 392 392 392 392 23 9-3/8 34 32-7/16 498 488 480 472 472 468 464 36 34-3/16 558 554 540 536 536 524 524 39 37-3/16 661 648 6k8 636 636 620 624 42 40-3/16 777 772 754 744 732 732 732 F. 3/4 in. OD Tubes on 1 in. 600 Pitch 8 7-1/16 38 36 32 28 24 11 3-7/8 10 9-3/16 66 66 56 54 52 46 17 4-3/4 12 11-1/16 96 94 86 78 76 76 72 21 5-3/8 14 12-3/8 126 118 110 108 104 100 96 23 5-5/8 16 14-3/8 170 164 152 150 144 140 136 27 6-5/8 18 16-3/8 223 220 200 196 192 184 180 31 7-1/8 20 18-1/4 283 274 256 252 244 238 228 35 7-3/4 22 20-1/4 349 338 326 320 304 296 288 39 7-3/4 24 22-1/4 421 412 396 394 380 370 364 43 8 26 23-7/8 499 480 460 450 436 430 420 47 8-7/8 28 25-7/8 583 562 546 538 524 514 508 51 9-5/8 30 27-7/8 673 654 640 628 612 604 592 55 10-3/8 32 29-7/8 770 756 738 726 712 700 688 59 11-1/8 168

G. 3/4 in. Std. IPS Tubes 1-5/16 in. 600 Pitch Floating Head Type Exchangers Shell Tube Number Net Number of Passes Size Line, 1 2 4 6 8 10 12 of Rows Free in. in. Across Distance 8 7-1/16 19 18 16 14 10 9-3/16 37 36 32 28 28 12 11-1/16 55 52 48 46 44 42 36 14 12-3/8 68 66 60 58 52 50 44 16 12-3/8 94 94 86 78 76 76 72 18 16-3/8 126 120 114 110 104 102 100 20 18-1/4 158 152 146 140 132 128 124 22 20-1/4 199 188 184 180 180 168 160 24 22-1/4 241 232 224 220 212 208 200 26 23-7/8 276 270 256 248 240 258 232 28 25-7/8 324 318 306 300 296 288 280 30 27-7/8 380 372 360 356 344 338 324 32 29-7/8 442 428 416 406 404 394 384 169

TABLE V U-TUBE LAYOUT A. 1 in. OD Tubes, 1-1/4 in. Triangular Pitch Shell Size, in. 6 in. 8 in. 10 in. 12 in. 14 in.*j 16 in.* 18 in. 20 in. 22 in. 24 in. 26 in. 2b in. 30 in. 32 in. Tube Cirzle,in. 5-13/16 7-13/16 9-13/16 11-13/16 13-1/4 15-1/4 17-1/4 19-1/8 21-1/8 23-1/8 25-1/8 27-1/8 29-1/8 Tot sq ft/12'nom 25 49.8 121.4 165.7 214 291 392 495 598 736 887 1036 1196 Sq ft/ft st 2.1 4.2 9.4 14.1 18.3 25.1 34 43.3 52.8 65.3 79.5 93.5 109 Sq ft in Bends.6 1.2 3.4 5.5 7.8 12.2 18.6 25.5 34 46 60.1 76.1 94 No. of U-Tubes 4 8 18 27 35 48 65 83 101 125 152 179 [208 Row Radius Bend Number of U-Tubes No. in. in. Cntr. 2 6.3 1 1 2 3 3 4 4 5 5 6 7 7 8 1 2 6.3 3 5 7 9 10 10 13 15 15 17 19 21 23 2 3.1 9.7 2 6 8 9 11 12 14 16 16 18 20 22 3 4.2 13.1 3 5 8 10 11 13 15 17 19 19 21 4 5.2 16.5 2 5 7 10 12 14 16 18 20 20 5 6.3 19.9 6 9 11 13 15 17 19 21 6 7.4 23.3 6 8 10 14 16 18 20 7 8.5 26.7 5 9 11 13 15 17 8 9.6 30.1 4 8 12 14 16 9 10.7 3355.5 1 I I I I I 1 5 9 13 15 10 11.7 36.9 4 10 12 11 1,2.8 40.3 9 12 13.9 43.7 ____ *Denotes off center pitch.

TABLE V (cont.) B. 3/4 in. U Tubes on 15/16 in. Triangular Pitch 1-3/4 in. Minimum Radius Shell Size, in. in. 10 in. 12 in. 14 in. 16 in. 1 in.' 20 in. 22 in. 24 in. 26 in. 28 in. 30 in. 32 in. Tube Cir-le,in. 7-13/16 9-15/16 11-13/16 13-1/4 15-1/4 17-1/4 19-1/8 21-1/8 23-1/8 25-1/8 27-1/8 29-1/8 Total sq ft/12'nom 87.9 143 215.3 301 404 541 694 856 1019 1218 1445 1653 Sq ft/ft st 7.5 12.2 18.5 25.9 34.9 47.5 61.2 75.7 90.6 108.5 131 150.5 Sq ft in Bends 2.2 4.2 7.3 11.4 16.9 25.5 36.2 48.7 63.4 81.0 106.6 127.6 No. U-tubes, Total 19 | 31 | 47 66 89 121 | 156 193 231 276 333 383 Row Radius Bend No. in. in. Number of U-Tubes Cntr. 1-3/4 5-1/2 3 3 4 5 7 8 9 11 11 13 15 15 1 1-3/4 5-1/2 7 9 11 13 15 17 19 21 23 25 29 31 2 2-9/16 8-1/16 6 8 10 12 14 16 20 22 24 26 28 30 3 3-3/8 10-5/8 3 7 9 11 13 17 19 1 21 23 25 27 29 4 4-3/16 13-3/16 4 8 10 12 16 18 20 22 24 26 30 5 5 15-3/4 5 9 11 15 17 19 21 23 27 29 6 5-13/16 18-3/8 1 10 12 6 18 20 24 2628 7 6-5/8 20-13/16 7 11 13 17 19 23 25 27 8 7-7/16 23-3/8 8 12 16 18 20 24 26 9 8-1/4 25-15/16 1 9 13 17 19 23 25 10 9-1/16 28-1/2 4 10 14 18 20 24 11 9-7/8 31 5 11 15 19 21 12 10-11/16 1 8 12 16 20 13 11-1/2 36-1/8 1 9 1 7 14 12- 5/16 38-3/4 1016 15 13-1/8 41-1/4 5 11 16 13-15/16 43-3/16 4

TABLE V (cont.) C. 1/2 in. IPS Tubes on 1-1/52 in. Triangular Pitch, 1-3/4 in. Minimum Radius Shell Size, in. in." 10 in. 12 in. 14 in.* 16 in. ld in. 20 in. 22 in. 2)4 in. 26 in. 28 in. 50 in. 52 in. Tube Circlein. 7-15/16 9-15/16 11-15/16 13-14 15-1/4 17-1/4 19-1/8 21-1/8 23-1/8 25-1/8 27-1/8 29-1/8 Tot sq ft/l;2non. 68.1 139 214.8 266.5 389.1 501.0 626 786 947 1111 1505 1508 1727 Sq ft/lin ft 5.7 11.9 i8.5 22.9 33.9 43.5 55 69.5 84.5 100 117 138 158 Sq ft in Bends 1.6 4.0 7.3 9.5 16.6 23.5 32.7 44.9 59.0 75.7 94.4 116.4 142.3 No. of U-Tubes 13 27 42 52 77 99 12_ 158 192 228 267 ___ _ Row Radius Bend Number ofU-Tubes No. in. in. Cntr. 1-3/4 2 3 3 4 6 7 8 8 9 10 11 1 1-3/4 5.S 6 9 11 12 13 15 17 19 21 23 26 28 30 2 2-21/32 8.4 8 10 11 14 16 16 20 22 24 25 27 29 3 3-9/16 11.2 5 9 10 13 15 17 19 21 23 24 26 28 4 4-7/16 14.0 2 6 9 12 14 16 18 20 22 23 27 29 5-11/32 16.8 5 6 9 13 15 17 19 21 24 26 28 6 6-7/32 19.6 8 10 14 16 18 20 23 25 27 7 7-1/8 22.4 3 7 11 15 17 19 22 24 26 8 8 25.1 14 8 12 16 18 21 23 25 9 8-29/32 28.0 5 9 13 17 18 22 24 10 9-13/16 30.9 6 10 14 17 19 23 11 10-11/16 33.6 7 11 14 18 20 12 11-19/32 36.5 8 13 15 19 13 12-15/32 39.2 8 12 16 14 13-5/8 42.1 9 13 15 14-1/4 44.8 10 *Denotes off center pitch.

TABLE V (cant.) D. 5/4 in. OD Tubes on 1 in. Triangular Pitch, Center Tubes on Pitch with 1-3/4 in. Radius, 1-3/4 in. Minimun Radius Shell Size, in. T-bin.* 10 in. - 1 in. 14Tin. 16 in. -18 in. -20 in. -22 in. 24 in~ - 26 in. 28 in. 50i.-2in Tube Circle,in. 7-13/16 9-15/16 11-15/16 13-1/h 15-1/4 17-1/h 19-1/8 21-1/8 25-1/8 25-1/8 27-1/8 2918 5i/ Tot sq ft/12'nom. 69.h 120.6 196.5 2h9.2 575 486 609 744 895 1071 1252 hh 16 Sq ft/ft St 5.9 10.6 16.9 21.6 52.6 42.4 55.5 65.5 79.4 97.5 115.515 Sq ft in Bends 1.8 5.5 6.5 9.2 15.9 22.9 51.6 45.1 55. 7 75.2 92.2 1. h. No. of U-Tubes 15 127 h3 _____ 85 1 jo 136 167 202 12h6 1289 _____ Row Radius BendNmef -ue No. in. in.NubroUTbe Cntr. 1.8 5.5 2 3 4 4 5 6 7 8 9 9 10112 1 i.8 s.5 6 9 11 11 15 17 19 21 22 25 27295 2 2.6 8.2 5 8 10 12 14 16 18 20 21 24 26285 3 5.5 10.9 2 5 9 11 13 15 17 19 22 25 25279 4 4.4 15.7 2 6 8 1214 16 18 21 22 24285 5 5.2 16.4 3 7 1131 15 17 20 25 25279 6 6.1 19.1 2 8 1214 16 19 22 24268 7 7.0 21.8 5 915 15 18 21 25352 8 7.8 24.6 6 10 14 17 18 22246 9 8.7 27.5 7 11 14 17 19255 10 9.5 30.0 8 11 16 18204 11 10.4 32.8 8 13 17192 12 11.h 35.8 10 14i82 13 12.2 38.5 3 11159 1h 13.1 41.3 4126 15 14.0 43.9 1 16 14.8 46.78 *Denote-s off center pitch.

TABLE V (cont.) E. 5/8 in. OD Tubes on 13/16 in. Triangular Pitch, 1-l/4 in. Minimumn Radius Center Tubes on Pitch 1-3/8 in. Radius Tube Circles 8 in.-32 in./HS-127 Shell Size., in. 8 in. 10'in.' 12 in. 14 in. 16 in. 18 in. 20 in. 22 in. 24 in. 26 in. -28 in. 3 n 2n Tube Circle,in. 7-13/16 9-15/16 11-13/16 13-1/4 15-1/4 17-1/4 19-1/8 21-1/8 23-1/8 25-1/8 27-1/8 81~~~~~~~~~~~~91/8 3 1-191 / 8 4 Tot s~ ft/12'nom. 111.6 203.1 288.1 373.9 496.7 647.1 8 16978 l1139316789 Sq ft~lin ft 9.5 17.4 24.9 32.4 43.2 56.9 71.6 87 106.7 125.2 150 1 2. ~ 5 Sq ft in Bends 2.5 5.3 9.2 12.9 19.7 29.1 40.6 54.4 71.4 9. 1 _Tot No. U-Tubes...29 53 76*.99* 132 174' 219 266 326* 383* 458* 57 6 7 Row Radius Bend ~~~~~~~~~~~~~Number of U-Tubes No. in. in. Cntr. 1-3/8 4.3 3 5 5 7 7 9 9 ll 13 13 15 1 1-1/4 3.9 9 12 14 16 17 20 23 25 28 30 32358 2 1-15/16 6.1 8 ll1 13 15 18 19 22 24 27 29 33347 3 2-5/8 8.3 5 10 12 14 17 20 21 25 26 30 32 3 56 4 3-11/32 10.5 4 9 ll 13 16 19 22 24 27 29 31347 5 4-1/16 12.8 6 l1215 1821 23 26 28 30336 6 4-3/4 14.9 7 ll 14 17 20 22 25 27 313 2 5 7 5-1/2 17.3 4.8 ll 16 19 21 24 26 30 3 34 8 6-1/8 19.3 3 l 0 13 16 20 23 27 293 2 5 9 6-1/8 21.6 7 12 17 19 22 24 283 1 4 l0 7-9/16 23.8 9 12 16 21 23 273 0 3 ll 8-1/4 25.9 2 ll 15 18 22 26293 12 9 28.3 6 12 17 21 25 2 13 9-11/16 30.4 9 14 18 22 2 58 14 10-13/32 32.7 ll15 21242 15 11-1/6 34.7 4 12 8216 16 11-25/32 37.0 9 15203 17 12-1/2 39.3 l0 1 72 18 13-3/16 41.4 3129 1913 - / 43.6 71 20 14-9/16 45.7 l ~*Denotes off center pitch.

TABLE V (cont.) F. 3/4 in. Tubes on 1 in. Square Pitch, 1-3/4 in. Minimum Radius Shell Size, in. 6 in.* 8 in. 10 in.* 12 in. 14 in. 16 in. b in.* 20 in. 22 in. 24 in.26in. 2in28n. 30 in. 32 in. Tube Circle,in. 5-13/16 7-13/16 9-15/16 11-13/16 13-1/4 15-1/4 17-1/4 19-1/8 21-1/8 23-1/8 25-1/8 27-1/8 29-1/8 Tot s~ ft/12'nom. 18.8 55.9 102 156.4 223.5 299.3 396.3 492 618 750 899 1055 1258 Sq ft/ft st 1.6 4.7 8.6 13.3 19.4 25.9 34.6 43.2 54.6 66.8 8o.5 95 110 Sq ft in Bends.4 1.3 3.0 5.2 8.5 12.8 19.3 25.9 35.8 47.8 62.2 78.6 Tot No. U-Tubes 4 12 22 34 49 66 88 110 1139 170 205 242 281 Row Radius Bend Number of U-Tubes No. in. in. 1 1-3/4 5-5 4.4 7 8 l 13 15 16 19 21 23 25 26 29 2 2-1/4 8.7 5 8 9 11 13 16 17 19 21 23 26 27 3 3-3/4 ll.8 6 9 11 13 14 17 19 21 23 26 27 4 4-3/4 14.9 5 9 11 14 15 19 21 23 24 27 5 5-3/4 18.1 5 9 12 15 17 19 21 24 25 6 6-3/4 21.2 5 10 13 15 17 21 22 25 7 7-3/4 24.4 6 9 13 17 19 22 23 8 8-3/4 27.5 5 11 13 17 20 23 9 9-3/4 30.7 5 11 15 18 21 10 10-3/4 33.8 7 11 16 19 11 11-3/4 37.0 7 12 15 12 12-3/4 40.1 6 13 13 13-3/4 43.2 7 14 14-3/4 46.4 *Denotes off center pitch.

TABLE V (cont.) G. 1 in. U-Tubes on 1-1/4 in. Square Pitch, 2 in. Minimum Radius Shell Size, in. in. 10 in. 12 in. 14 in. 16 in. lb in. 20 in. 22 in. 24 in. 26 in. 2bn in. 30 in. 32 in. Tube Circlein. 7-13/16 9-1/116 11-13/16 13-1/4 15-1/4 17-1/4 19-1/8 21-1/8 23-1/8 25-1/8 -1/8 29-1/8 Total sq ft/12'nom. 49.6 74.3 129.3 171.3 247 321. 408 517 636 764 6 1/4 Sq ft/ft st 4.2 6.3 11.0 14.7 21.2 27 8 35.6 45.6 56.6 68.6 79 94.2 Sq ft in Bends 1.3 2 4.3 6.5 10.9 16 21.5 30.3 41.3 53.6 66.2 83.8 Sq ft/ft t 4.2 6.5 11.0 14.7 21.28 27. 3568 48. 56.6 6863914. Tot No. U-Tubes 8 12 21 28 41 1 53 68 87 108 131 151 180 Row Radius Bend Number of U-Tubes No. in, in. 1 2 6.3 5 7 9 9 11 13 15 17 17 19 21 25 2 3-1/4 10.2 3 5 7 9 11 13 13 15 17 19 21 23 3 4-1/2 14.1 5 7 9 11 13 15 17 19 19 21 4 5-3/4 18.1 3 7 9 11 13 15 17 19 21 5 7 22.0 3 7 9 11 15 17 17 19 6 8-1/4 25.9 7 9 13 15 17 19 7 9-1/2 29.9 7 9 13 15 17 8 10-3/4 33.8 5 9 13 15 9 12 37.7 3 9 13 10 13-1/4 41.6 9

TABLE V (cont.) H. 5/8 in. Tubes on 7/8 in. Triangular Pitch, Minimum Radius l-l/4 in. Center Tubes on Pitch 1-3/8 in. Radius, Tube Circle 8-32 in./HS-1R7 Shell Size,'in......... 8 in.* 10 in. 12 in.' 14 in. 16 in.*' 1"8 in. "'20'i'n. 22 in. 24 in.*' 26'"in.' 28 in. 30 in. 32 in.Tube Circle, in. 7-13/16 9-15/16 11-13/16 13-1/4 15-1/4 17-1/4 19.-1/8 21-1/8 23-1/8 25-1/8 27-1/8 29-1/8 31-1/8 Tot s~ ft/12'nom. 92.3 164.4 244.1 311 422.4 ~49 689 861 1019 1215 1425 1636 1569 Sq ft/lin ft 7.9 14.1 20.9 26.8 36.4 48.5 60.7 75-5 91.3 109.2 128.5 149.5 171.5 Sq ft in Bends 2.0 4.4 7.6 10.5 16.4 24.6 33.2 46.8 61.4 80 101.7 125.6 153.6 Total No. U-Tubes 24 43 64 82 112 148 186 233 279 334 393 457.... 524 Row Radius Bend No. in. in. Number of UTubes I Cntr. 1-3/8 4.3 2 2 3 4 4 5 6 7 8 8 9 l0 l0 1 1-1/4 3.9 8 11 13 15 16 19 21 24 26 27 30 32 35 2 2 6.3 7 10 12 14 17 18 20 23 25 28 29 33 34 3 2-3/4 8.7 6 9 11 13 16 ~ 17 21 22 24 27 30 32 35 4 3-15/32 10.9 i 6 lO 12 15 18 20 23 25 26 29 31 34 5 4-1/4 13.4 5 9 ll 14 17 19 22 24 27 28 32 33 6 5 15.7 6 8 13 16 18 21~ 23 26 29 31 32 7 5-3/4 18.1 5 10 13 17 20 22 25 28 30 33 8 6-17/32 20.5 7 12 14 19 21 24 27 29 32 9 7-9/32 22.9 9 13 16 20 23 26 28 31 10 8-1/6 25.3 4 10 15 17 22 25 27 30 11 8-25/32 27.6 7 12 16 19 24 26 29 12 9-19/32 30.2 9 13 18 21 25 28 13 10-5/16 32.6 10 15 18 20 25 14 11-1/16 34.8 5 12 17 21 24 15 11-7/8 37.3 7 14 18 21 16 12-19/.32 39.6 9 15 20 17 13-3/8 42 12 17 18 14-1/8 44.4 5 14 19 14-7/8 46.7 7 2O *IJenotes off'center pitch.'.....

TABLE VI A. HORIZONTAL FREE DISTANCE 2 Tube Passes (Fixed Head) Tube OD 3/8 in. 5/8 in. 3/4 in. 1/2 in. IPS 1 in. 1-1/4 in. A Pitch 1/2 in. 13/16 in. 15/16 in. 1-1/32 in. 1-1/4 in. 19/16 in. Shell Diam. Horizontal Free Distances (Inches) in. 6 2 1-1/2 1-1/2 2 2 2-1/2 8 2-1/2 2-1/2 2 2 2 2 10 3 3 2-1/2 2-1/2 2 2-1/2 12 3-1/2 3-1/2 3 3 3 3-1/2 14 4 3-1/2 4 3-1/2 3-1/2 3-1/2 16 4-1/2 4-1/2 3-1/2 4 3-1/2 4-1/2 18 5 4-1/2 4 4 4-1/2 4 20 5 5 4-1/2 4-1/2 4-1/2 4-1/2 22 5-1/2 5 5 4-1/2 5-1/2 5 24 6 6 6 5 5-1/2 6 26 6-1/2 6 6 5 5-1/2 6-1/2 28 7-1/2 6-1/2 6-1/2 5-1/2 6-1/2 6 30 7-1/2 7 6 6 6-1/2 7 32 8 7-1/2 6-1/2 6 6-1/2 6-1/2 34 36 39 42 178

TABLE VI (cont.) B. ROWS OF TUBES IN HORIZONTAL FLOW 2 Pass (Fixed Head) Tube OD 3/8 in. 5/8 in. 3/4 in. 1/2 in. IPS 1 in. 1-1/4 in. A Pitch 1/2 in. 13/16 in. 15/16 in. 1-1/32 in. 1-1/4 in. 1-9/16 in. Shell Diam. Rows of Tubes in Horizontal Flow in. 6 21 13 11 9 7 3 8 29 17 15 13 11 9 10 37 23 19 17 15 11 12 45 27 23 21 17 13 14 51 31 25 23 19 15 16 59 35 31 27 23 17 18 67 41 35 31 25 21 20 75 45 39 35 29 23 22 83 51 43 39 31 25 24 91 55 47 43 35 27 26 99 61 51 47 39 29 28 107 65 55 51 41 33 30 115 71 61 55 45 35 32 123 75 65 59 49 39 34 36 39 42 179

TABLE VII A. VERTICAL FREE DISTANCE 2 Tube Passes (Fixed Head) Tube OD 3/8 in. 5/8 in. 3/4 in. 1/2 in. IPS 1 in.. 1-1/4 in. A Pitch 1/2 in. 13/16 in. 15/16 in. 1-1/32 in. 1-1/4 in. 1-9/16 in. Shell Size Vertical Free Distance (Inches) in. 6 2 3 2 1-1/2 2-1/2 3-1/2 8 3 2-1/2 2 2 2-1/2 3-1/2 10 3-1/2 4 3-1/2 3 3 3-1/2 12 4 3-1/2 3 3-1/2 3-1/2 3-1/2 14 5 4 4-1/2 3-1/2 5 5 16 4-1/2 5 4 4 5 5 18 5-1/2 5 4-1/2 4-1/2 5-1/2 4-1/2 20 6-1/2 6 5 5 6 6-1/2 22 6-1/2 6-1/2 6 5-1/2 6 6-1/2 24 7-1/2 6-1/2 6-1/2 6 6-1/2 6-1/2 26 8 7-1/2 6 6-1/2 6-1/2 6 28 8-1/2 7-1/2 7 7 7 8 30 9 8-1/2 7-1/2 6-1/2 7-1/2 8 32 9-1/2 9-1/2 7-1/2 7 7-1/2 8 34 36 39 42 180

TABLE VII (cont.) B. ROWS OF TUBES IN VERTICAL FLOW 2 Tube Passes (Fixed Head) Tube OD 53/8 in. 5/8 in. 3/4 in. 1/2 in. IPS 1 in. 1-1/4 in. A Pitch 1/2 in. 13/16 in. 15/16 in. 1-1/32 in. 1-1/4 inI1-9/16 in. Shell Size Rows of Tubes in Vertical Flow in. 6 12 6 6 6 4 2 8 16 10 8 8 6 4 10 22 12 10 10 8 6 12 26 16 14 12 10 8 14 28 18 14 14 10 8 16 32 20 18 16 12 10 18 38 24 20 18 14 12 20 42 26 22 20 16 12 22 46 28 24 22 18 14 24 52 32 26 24 20 16 26 56 34 30 26 22 18 28 60 38 32 28 24 18 30 66 40 34 32 26 20 32 70 42 36 34 28 22 34 36 39 42 181

TABLE VIII A. VERTICAL TREE DISTANCE 2 Pass Tubes (Full Floating Head) 5/5 in. 5/5 in. 3/k in. 3/k in. 3/k in. 5/k in. 1 in. 1 in. 1 in. Tube OD 131/16 in. 7/8 in. 15/16 in. 1 in. 1 in. 1 in. 1-1/4 in. 1-1/k in. 1-1/ in. Pitch LI A A Eli K> A iii K> Shell Size, Vertical Free Distance (Inches) in. 6 2-V44 8 4 2-1/2 4 3-1/2 4 3 4 3 10 4 3-1/2 4 4 4-1/2 3 4 4 R\) 12 4-1/2 4 4-1/2 4-1/2 5-1/2 5 4-1/2 14 5 4 4-1/2 4-1/2 6 4-1/2 5-1/2 k-l/2 16 6 6 5 5-1/2 5 18 6 5-1/2 6 5-1/2 7 5-1/2 5-1/2 6 20 7 5-1/2 6-1/2 6 7-1/2 5-1/2 5-1/2 6-1/2 22 6-1/2 6 7-1/2 6-1/2 8-1/2 6 5-1/2 7 24 7-1/2 6-1/2 7-1/2 7 8-1/2 6-1/2 7-1/2 8 26 8-1/2 7-1/2 9 9 11 8 7-1/2 8-1/2 28 9 8 10 9-1/2 10-1/2 8-1/2 7-1/2 10 10 9 8-1/2 9-1/2 10 11-1/2 9 7-1/2 9 12 10 8-1/2 10-1/2 10-1/2 13 9-1/2 9-1/2 10 34 10 10 11 10 10 11 16 11 10-1/2 11-1/2 10-1/2 10 11-1/2 19 11-1/2 12 15 11-1/2 11 11 42 12 12 16 11 10 11 45

TABLE VIII (cont.) B. ROW OF TUBES IN VERTICAL FLOW 2 Pass (Full Floating Head) 5/in. in in. 34/4 in. / in. 1 in. 1 in. 1 in. Tube OD 131/16 in. 15 /16 in. 1 in. 1 in. 1 in. 1-1/4 in. 1-1/4 in. 1-1/k Pitch A A A []~a Shell Size, Rows of Tubes in Vertical Flow in. 8 8 6 6 6 8 6 4 6 10 12 10 10 8 11 8 6 8 12 14 12 12 10 13 8 8 10 14 16 14 14 12 16 10 8 12 H 16 18 16 16 14 18 12 10 14 co 18 22 18 18 16 21 14 12 16 20 24 20 20 18 24 16 14 19 22 28 24 22 20 26 18 16 21 24 30 26 24 22 30 20 16 23 26 32 28 26 22 32 20 18 25 28 36 30 28 24 35 22 20 26 30 38 32 30 26 37 24 22 30 32 40 36 32 28 39 26 22 32 34 38 32 44 28 24 135 36 40 34 46 30 26 37 39 44 36 51 32 28 39 42 48 40 54 16 32 44

TABLE IX A. HORIZONTAL FREE DISTANCE 2 Pass Tubes (Full Floating Head) Tube OD 5/8 in 5/ in. /8 in. in in. 3/4 in. 1 in. 1 in. 1 in. Pitch 13/16 in. 7/8 in. 15/16 in. 1 in. 1 in. 1 in. 1-1/4 in. 1-1/4 in. 1-1/4 in. Shell Size, Horizontal Free Distance (inches) in. 8 3-1/2 3 3 3-1/2 4 3 4 3 10 3-1/2 3-1/2 3 -1/2 4-1/2 3 4 4 12 4 4 4 4 5-1/2 3 4 4-1/2 14 4 3-1/2 4-1/2 4-1/2 6 3-1/2 3-1/2 4-1/2 FJ 16 4-1/2 4 5 5 6 4-1/2 5-1/2 5 18 5 5 5-1/2 6 7 4-1/2 5-1/2 6 20 5 6 6 7-1/2 5-1/2 6-1/2 6-1/2 22 5-1/2 5-1/2 6-1/2 5-1/2 6-1/2 7 24 6 6 7 7 8-1/2 6-1/2 6-1/2 8 26 7 6-1/2 7-1/2 7-1/2 11 6-1/2 6-1/2 8-1/2 28 7 7 8 8-1/2 10-1/2 7-1/2 7-1/2 10 30 8 7-1/2 8-1/2 9 11-1/2 7-1/2 7-1/2 9 32 9 7-1/2 9-1/2 9-1/2 13 7-1/2 7-1/2 10 34 8-1/2 10 13 9 9 11 36 9 10-1/2 13-1/2 9 9 11-1/2 39 10 11-1/2 15 10 10 13 42 10-1/2 12 16 10 10 13 45

TABLE IX (cont.) B. FULL FLOATING HEAD UNITS Rows of Tubes in Horizontal Flow Tub e OD 5/5 in. 5/4 in. 5/4 in. 3/4 in. 3/4 in. 1 in. 1 in. 1 in. Pitch 15/16 in. 15/16 in. 1 in. 1 in. 1 in. 1-1/4 in. 1-1/4 in. 1-1/4 in.'Shell Size Rows of Tube in Horizontal Flow in. 6 11 8 15 15 15 6 8 9 4 6 10 21 17 17 9 11 13 o 8 12 25 19 21 11 15 17 8 10 H, 14 29 25 25 12 16 19 10 12 \-q 16 33 29 27 14 18 21 10 14 18 59 33 31 15 21 25 12 16 20 43 37 55 18 24 27 15 19 22 49 41 59 20 26 51 15 21 24 55 45 45 22 50 33 17 25 26 57 53 47 24 52 57 19 25 28 65 53 51 25 35 59 20 26 50 67 57 55 27 57 45 22 50 52 71 61 59 29 59 47 24 52 54 6y 32 44 49 25 35 56 71 54 46 55 27 57 59 77 57 51 57 29 59 42 85 40 54 63 32 42

TABLE X3 A. OVER-ALL COEFFICIENTS FOR HEAT EXCHANGERS IN PETROLEUM SERVICE Fluids Velocity At Over-all Coef. Service of Exchanger in Tubes,' U, Btu/hr..................Tubes. Shell |ft/sec (sq ft)(OF) Stabilizer reflux condensers Water Condensing Vapors + Residual Gas 3.0 13.5 94 5.0 22 145 1080-1180A.P.I. 0.3-0.6 55-67** 0.7 98125j* - Partial condensers 390A.P. I. crude 580A.P.I. gasoline 2.4 147 24 550A. P.I. crude 620A. P.I. naptha 4.4 80 37 550A. P.I. crude 620A. P.I. naptha 6.8 90 48 Stabilizer reboiler Steam 580A.P.I. naptha 33.5 42 Absorber reboiler Steam 370A.P.I. oil 41.4 45 Stabilizer reboiler Steam 67-740A.P.I. 43-183** ~o Oil preheater 420A.P.I. oil Steam 1.4 32 108 Exchangers 600A.P.I. 580A.P.I. 1.4 65 74 63~A. P.I 570A.P.I 4.6 69 139 70-820A.P.I. 67-740A.P.I. 0. 3-0.7 18-37'* 70-820A.P.I. 67-740A.P.I O. 3-0.7 35-45* 430A.P.I. 370A.P.I 1.6 59 33 390A.P.I. crude 13~A.P.I. residue 3.9 262 19 Coolers Water 57OA.P.I 40 52 Water 440A.P.I 97 40 Water 67-740A.P.I 0.2 20** Water 67-74~A.P.I 0.4-0.7 51-53'* *Adcapteci rrom Chemical Engineers' Handbook, edited by J. H. Perry, with the permssion or McGraw-l Book Company, Inc., The A.I. Ch. E and the A.S.M.E. **McGiffin Trans. Am. Inst. Chem. Engrs., 38, 761 (1942). All other data in Table X are from Higgins, "Heat Transfer," P. 56, a special publication of the A.S.M.E. (New York, 1936).

TABLE X (cont.) B. A RANGE OF VALUES OF MISCELLANEOUS OVER-ALL COEFFICIENTS* U, Expressed in Btu/(hr)(sq ft)(~F) as Found in Practice Under Special Conditions Higher or Lower Values May Be Realized State of Controlling Type of Heat Resistance Typical Fluid Typical Apparatus Exchanger Free ForcedConvec- Convection, U tion, U Liquid to liquid 25-60 150-300 Water Liquid-to-liquid heat exchangers Liquid to liquid 5-10 20-50 Oil Liquid to gas (atm. pressure ) 1-3 2-10 Hot-water radiators Liquid to boiling liquid 20-60 50-150 Water Brine coolers Liquid to boiling liquid 5-20 25-60 Oil Gas (atm. pressure) 1-3 2-10 Air coolers, econoto liquid mizers Gas (atm. pressure) to gas 0.6-2 2-6 Steam superheaters Gas (atm. pressure) to boiling liquid 1-3 2-10 Steam boilers Condensing vapor to liquid 50-200 150-800 Steam-water Liquid heaters and condensers Condensing vapor to liquid 10-30 20-60 Steam-oil Condensing vapor to liquid 40-80 60-300 Organic vaporwater Condensing vapor to liquid 15-300 Steam-gas mixture Condensing vapor to gas (atm. pres.) 1-3 6-16 Steam pipes in air Air heaters Condensing vapor to boiling liquid 40-100 Scale-forming evaporators Condensing vapor to boiling liquid 300-800 Steam-water Condensing vapor to boiling liquid 50-150 Steam-oil Condensing vapor to boiling liquid 50-400 Steam-organic Steam-Jacketed tubes liquid *Modif'ied from Lucke, "Engineering Thermodynamics" p.550, McGraw-Hill, New York 1912. 187

TABLE X (cont.) C. COILS IMMERSED IN LIQUIDS. OVER-ALL COEFFICIENTS U, Expressed as Btu/(hr)(sq ft)(OF) Substance Substance Coil ReferInside Coil Outside Coil Material ence Steam Water Lead Agitated 70 1 Steam Sugar and Copper None 50-240 2 molasses solution Steam Boiling aque- 600 3 ous soln. Cold water Dilute organic Lead Turbo-agitator 300 3 dye inter- at 95 rpm mediate Cold water Warm water Wrought iron Air bubbled into 150-300 4 water surrounding coil Cold water Hot water Lead 0.40 rpm, paddle 90-360 5 stirrer Brine Amino acids 30 rpm 100 3 Cold water 25% oleum at Wrought iron Agitated 20 6 60~C Water Aqueous so- Lead 500 rpm, sleeve 250 1 lution peopeller Water 8% NaOH 22 rpm 155 3 Steam Fatty Acid Copper (pan- None 96-100 7 cake) Milk Water Agitation 300 8 Cold water Hot water Copper None 105-180 9 60OF water 50% aqueous Lead Mild 50-60 10 sugar soln. Steam and 60OF water Steel 100-165 10 hydrogen at 1500 lb/sq in. Note: Chilton, Drew, and Jebens, Ind. Eng. Chem., 36, 510 (1944) give film coefficients for heating and cooling agitated fluids using a coil in a jacketed vessel. References: 1. Read, private communication. 2. Stose and Wittemore, Thesis, Mass. Inst. Tech., 1922. 3. Chambers and Steves, private communication. 4. Chilton and Colburn, private communication. 5. Pierce and Terry, Chem., and Met. Eng., 30, 872 (1924). 6. Boertlein, private communication. 7. Mills and Daniels, Ind. Eng. Chem., 26, 248-250 (1934). 8. Feldmeier, Adv. paper, Am. Soc. Mech. Engrs. Meeting Dec. 4, 1934; published in "Heat Transfer," 69-74, ASME, New York, 1936. 9. Storrow, J. Soc. Chem. Ind., 64, 32271945). 10. Private communication. 188

TABLE X (cont.) D. MISCELLANEOUS: SPECIAL EQUIPMENT AND MATERIALS Type of Equipment Hot Material Cold Material U Remarks enceence High pressure boiler Molten salt Boiling water 100-150 1 Tubular exchanger Molten salt Oil 52-80 1 Steam superheater Molten salt Steam 70 1 Air heater Molten salt Air 6 1 Catalyst case Gas Molten salt 6 Fins on outside of tube 1 Double-pipe Karbate exchanger Water Water 300-500 2 Karbate trombone cooler 200Be HC1 Water 300 Water lF = 1750 3 Karbate tube reboiler Steam 20% HC1 136 Vertical thermosiphon reboiler 10 Steam 35% HC1 472-575 10 Double-pipe pyrex glass ex. using heat exchanger tubing Air-water vapor Water 25-75 Cooling water in annulus 4 Water Water 80-110 4 Condensing steam Water 100-125 4 Glass trombone cooler 50% sugar soln. 60OF water 50-60 Sugar solution inside pipe 9 Glass pipe in trough 200Be HC1 Water 25 3 Rotator Water Water 520-1120 Rotor velocity = 300-1900 rpm 5 Pebble heater Solid pebbles Air 4 Heating gases to 19000F using 6 Methane 9 1/2-in. pebbles 6 Hydrogen 22 6 Long-tube vertical evaporator Condensing steam Water 300-1200 7 Falling-film condenser Condensing steam Water 574-2300 Water r2 = 400-21,000 inside tubes 8 Stainless-steel conveyor belt Molten TNT 500F air 5-7 Air blowing under and over belt 9 Partial-condenser Hydrocarbons and Boiling propane 55-76 Refrigerated condenser 10 chlorinated hydrocarbons Shell and tube reboiler Hot water Hydrocarbons 42-88 Hot water in tubes 10 Reboiler Steam Chlorinated hydro- 67 Clean reboiler, At = 120F 10 carbons 20 Same reboiler after several months service, At = 96~F U = Btu/(hr)(sq ft)(OF). Al = lb/(hr)(ft) of pipe length for each side of pipe. = lb/(hr)(ft) of periphery. 1 Newton and Shimp, Trans. Am. Inst. Chem. Engrs., 41, 197 (1945). 2 Werking, Trans. Am. Inst. Chem. Engrs., 35, 489 (1939). 3 Lippman, Chem. and Met. Eng., 52, No. 3, 112 (1945). 4 Thompson and Foust, Chem. and Met. Eng., 47, 410 (1940). 5 Houlton, Ind. Eng. Chem., 36, 522-526 (1944). 6 Norton, Chem. and Met. Eng. 53, No. 7, 116 (1946). 7 Cessna, Lientz, and Badger, Trans. Am. Inst. Chem. Engrs., 36, 759 (1940). 8 McAdams, Drew, and Bays, Trans. Am. Soc. Mech. Engrs., 62, 627 (1940). 9 Private communication. 10 Breidenbach and O'Connell, Trans. Am. Inst. Chem. Engrs., 42, 761 (1946).

TABLE X (cont.) E. JACKETED VESSELS. OVER-ALL COEFFICIENTS U, Expresses in Btu/(hr)(sq ft)(OF) Fluid Fluid ReferInside in Wall Material Agitation U Jacket Vessel Steam Water Enameled C.I.* 0-400 rpm 96-120 1 Steam Milk Enameled C.I. None 200 2 Steam Milk Enameled C.I. Stirring 300 2 Steam Milk boiling Enameled C.I. None 500 2 Steam Milk Enameled C.I. 200 rpm 86 1 Steam Fruit slurry Enameled C.I. None 33-90 1 Steam Fruit slurry Enameled C.I. Stirring 154 1 Steam Water C.I. and loose lead Agitated 4-9 3' lining Steam Water C.I. and loose lead None 3 3 lining Steam Boiling S02 Steel None 60 3 Steam Boiling water Steel None 187 3 Hot water Warm water Enameled C.I. None 70 1 Cold water Cold water Enameled C.I. None 43 1 Ice water Cold water Stoneware Agitated 7 3 Ice water Cold water Stoneware None 5 3 Brine, low Nitration 35-58 rpm 32-60 4 velocity slurry Water Sodium, al- "Frederking" Agitated, 80 4 coholate (cast-in-coil) baffled solution Steam Evaporating Copper 381 5 water Steam Evaporating Enamelware 36.7 5 water Steam Water Copper None 148 6 Steam Water Copper Simple 244 6 stirring Steam Boiling Copper None 250 6 water Steam Paraffin wax Copper None 27.4 7 Steam Paraffin wax Cast iron Scraper 107 7 Water Paraffin wax Copper None 24.4 7 Water Paraffin wax Cast iron Scraper 72.3 7 Steam Solution Cast iron Double 175-210 8 scrapers Steam Slurry Cast iron Double 160-175 8 scrapers Steam Paste Cast iron Double 125-140 8 scrapers Steam Lumpy mass Cast iron Double 75-96 8 scrapers Steam Powder (5% Cast iron Double 41-51 8 moisture) scrapers *C.I. = cast iron. References: 1 Poste, Ind. Eng. Chem., 16 469 (1924). 2 Bowen, Agr. Eng., 11, 27 (1930). 3 Read, private communication. 4 Chambers and Steves, private communication. 5 Robson, Australian Chem. Inst. J. and Proc., 3, 47-54 (1936). 6 Chemical Engineering Charts No. 4, Ind. Chemist, 82, 374 (1931). 7 Huggins, Ind. Eng. Chem., 23, 749-753 (1931). 8 Laughlin, Trans. Am. Inst. Chem. Engrs., 36, 345 (1940).

TABLE X (cont.) F. VALUES OF U FOR AMMONIA CONDENSERS Btu/(hr)(sq ft)(OF over-all At) Type of Condenser Water Rate -Atm A = Atm = l.50F j 3.50F 70~F 2-6~F Vertical tube and shell r 400 220 170 150 800 275 225 215 1200 310 270 260 1600 350 315 300 2000 390 340 2400 430 370 Horizontal drip Ph = 400 250 H_ 800 330 1200 400 Double pipe V = 4 350 270 230 6 410 320 280 8 470 390 350 r= lb of water/hr/ft of periphery. rh = lb of water/hr/ft of tube length for each side of tube. V = ft/sec.

AL NET FREE AREA IN2 0~~~~~~~~~~~~ ib,~ ~ ~ ~ ~ ~ o)C ~ i C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~':0 () -u)o z P~~~~~~~~~~~~ -I —, z I ~~~~ z ~~~~ -ii <~~~ I — I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ rl Q, Z rrl -0 mb 1C P1 Ri a I I I I IF I I I n II A I y'Ar 1 1 r' l WI I~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~qIcrr( rmm I I II I I I LA Lo I FtmI t~ PI~~~~~~~J IIfI f

C8 4 4 t~~~~t 4 4 4 g 4 4 4;;Til;4;T~~~~~~~~~g4 i- 4Ta f 16 URE ownSmm F I U RE 5 0 fill. tt tt 4 N ET FR E E AR EA 36 O' lll II I 1 0 [0 0 HORIZONTAL BAFFLE CUT fill W: 44 It F U L L FLO A TI NG HEA D I O.D. TUBES ON I 1le SQUARE PITCH VERTICAL FLOW fit N W -0t~t t0 0l~gt t~gp0REfER PAGE 38,. 01S 32 kI ROWS PA ST CE N TERLI NE193

36O lF 1URE 51 NET FREE AREA, HORIZONTAL BAFFLE C U; 320 ED [it if I FULL FLOATING HEAD l I"O.D. TUBES ON I!/4"A PITCH VERTICAL, FLOW REFER PAGE 38 280 a24 1,1 13: 160 0 4 s 12 1 6 20 BP~FFLE CUT.NO. ROW~j.9PAST CENTERLINE -- Nb

360 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~FIGURE 52 360 NET FREE AREA VERTICAL BAFFLE CUT FULL FLOATING HEAD I"O.D. TUBES ON I'4" APITCH 32 HORIZONTAL FLOW REFER PAGE 38 280 Lii~~~~~~~~~~~~~~~~~~~~~~~~~~~~~fl 200 I,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i 40 O 4 I 12 16 20 24 28 NO. ROWS PAST ~~S4TERLINE - Nb

CH I I~ 1I I I a IF E l I I -l I 1 Is I I I I I I. I I II I I I - - I I i.L I I I I I I I 11 I I I I I I I I I I I 111 90 so M { 41 I fil R [IIIII f 4 f0b F 111S1 l~ lIRII111Illlllllllmxlllll NZ~~~~~~~~~~I I II III[t4 {g{ l 233t 00NINk4~IEEN~I~T 80 I a i i 3 I milli < W I 4 4 I q ~~~~~ ~~~~~~~~I l II I1 I I IL I 11 | S 1! 1 1 0'I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I 70 I~l Ikl i - i -- m ifuil4 lllit iilliltI fiilI lilIII z I I IL si lil I Iil S g i4[ TXii < m [t T r [ M f E SI [ i F F t $ } I tI t 1 NlilNIIII~i~lilN IIIINIII\EIII \l~iI I aTITI TITIt. I 4a m l ] i 2 4. - i 1 T | t i T t XI 11X111 \1111NIIINIIINIIII\IIII\IIIIIIIfillIIlaIII I IIIII I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I E~~~~~~~~ll n li a g lS 1112| \ I I 1s11 I fil~lflllllllllllllllll N I l Q..: W i I g M 1q1 lint144!4i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I ll I ll I E g 3E 2 g ~ 3 3 > 3 jM j a IIIN 1101111111V IIIIIIIIIIIIIIIIIIIIIIIITTII#Ilk I1111 O E 21 S 0 2 I l W 12 tS tS t j EtIL I I I ml Ir~~~~~~~~~~~~~R II)~~~~~~~~~~~~~~~~~~~~~~R II~~~~~~~~~~~~~~III 4~~~~~~~~i I I I 12 14 I6 MI II2 IB IL IP IT IN Nb 50I l 1, I I I I I I I L 20~~~~~~~~~~~~~~~~~~~~~~~~AI 1 11-I ml I I I if~ ~ FGU~ 5 10~~~~~~~~~~~~~li 40 If 1 1 Ili0 T% l i, lt AT ETELNE N 196~~~~~~~~~~~~~~~~~~~~~~~~~IIfl

gOFFFftfttttt~tf~ctt~fl-Mtt~t~~t I I ILI I I ILI I I IFIGUE 5 90 FR LONGITUPAE 3 0 70~~~~~~~~~~~~~~~~~~I r~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I 80L II I Q:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~' 06~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4OD -E 1 1 1 1- V C)~~~~~~~~~~~~~~VBilIIII1 -h:~~~~~~~~~~~~ILVL1 [-fl II I itI t i "4~~~~~~~~~~~~~~fI I..ll (kf~~~~~~~~~tlltRFRPG 0 70 O~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I I 2 4 6 81 K) 12 14: 16 18 20 22 24 26~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A BAFFLE CUT, ROWS PAST CENTERLINE, Nb~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ mI

ILI I I I I I MI II I Is I I I-it I I x I ME I I I I I I I I- I I I I I I I 110 I IIL I&I I L I I ILI I I I I lit FIGURI lit I IL I'm I 9 1 1111 - - - I I I. I - I JI I LLI_ I APPROXIMATE I fill I — I T I A FOR LONGITUE I Li I'm 80 I 11 I I 111111 I O. D. TUBES; _T_ ILI -L. I L R FER DAr- E Li L Hill& I I I I I IL I IL 04 I I IL I I L f I I I f i l l I l l I I l l f i l l 70 Il Iv I- It I lit 1. ILI I I I P111, II...... f i l l I f I I Plk I A IIIV I [ t i l l t i l l 60 I II L I I I I ru z I II I IL I - LA-L VI AO I'mI ILI I I II 1LiI I A IL tI II IV I I IILI I I I "A. I I... I I I IL I 50 I I1T- III I fill RI I II'LI I I I L I L fw I'VI I'll II IL IIIt L I 4... I - I - 11 IIlk X I I I I 1w Li I....... IN -rT-rn F ]RI z 30 I A I I I I I P, I I I I I IL I......... I XI L- II A Yq I %L Ill I I MA I II -jut Ilk NIL I III I I'm III I I I A I I I I Iraqi IlV% I L I I IIIL I I I EL I I MLI I I I ILI 10 I Ij. _L.LLLr_ IlU L.L.J. iiiiii -H7t~I I I I L t I I II LA L TrTTr_ 0 4 6 8 10 12 1 16 18 20 BAFFLE CUT N ROWS FRAST CENTERLINE

O~~x~~g~~gS t z OOO'O~~~~~~~~t69L99 t' t 1 OO0'068L98 t~~~~~~~~~~~~~ 8000 00068LV0 00 00 001680000*0 0 0 q 4 SD 0fr 0 0? O Hill I1 if IIAIM III W0000I H0 Z ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~8 1111111111 lit I 1 1 I000' 11 Hill~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-l s9 9 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~6 6 I I00'0.z a ~ g000'O 9' "I II H ill 111111ilitlitill I I I I I I 11 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I H III I I s ~ __ 000~9 3b 01. I 8 8 S *k ~ 6 I 6 8 8 9 S 8 8 6 I 8 ~ 9 S 8 8 6 I 6 8 8 9 S 8 8 6 1 6 8 ~ 9 S 8 ~ 8 1100~~~~~~~~I Hil H 1111111 II I

JAI A _Ft 8 -2 > -tM I i - I t 70 5 W W ~~~~~~~~~~~lL I A1 I II I I Nf X 0. 0 I 8 I -t ] 1 f 1 l l l l l | e~ e~ m 1 ilII t 7 6 -t t- - T1T{ I 0 U R E 57 I 0 5 -i li l rl rl 1 11'!1 1 I 1 7~ 171T B 1- S I 1 1 _ i R ET U o~r FEZ-,, iRPG I I ||i TUBE-SIDE RETUI N 000t - 61O 2 3 4 6 8 9,. 4 5 6 7 8 91 - 2 4 6 7 8 GI MASS VELOCITY, Ib./hr.(ft) I 200

2 3 4 5 6 7 89.1 2 3 4 5 9 1 3 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7891 9 9 88 7.7 6.6 0.055 3,3 0.01 I, 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IIfl 9,9 8.8 77 0.0056 0.001 I 1 8.8 0.000~~~~~~~~~~~~~~~~~~~~~~~~~FGR 5 2 ~~~~~~~~~~~~~~~~~~~FRICTION LOSS FOR I LIQUIDS FLOWING IN TUBES REFER PAsg 50 0.000 1111 11 I' 1111T111 Ii K"11 i! 2 3 4.5 7 8 9 102 3 4 5 6 7 8 9 },0.0 2 3 4 5 6 7 8 9 100.0 2 3 4 5 6 7 8 9 1000.0 2 3 4 5 6 7 89 1 DG..t:,.

FIGURE 59. PRESSURE DROP FOR 3.6 LIQUIDS THROUGH 3/4"0.D. TUBES, TURBULENT FLOW ONLY REFER PAGE 51 32 2.8 U-: LL a:: z2.4 0 i IF U) -LJ o I-~~~~~~~'I 0. 1.6 1.2 ~~OsB~lit 0.4 Gt2-#TUIBE/HR 202

I — m mm moh AM ~ ~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~' 1041111 Ju I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ G Iz -4 C 1 I ml I T-T 1. -A-A ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~I fit If I o 0 -1-176~~ —,'!Z0~ r-(~ -.4 Ci m I~IN I 11 IL I I

IIII' IH.I I I IIi IIII H'6 -4II t II HIM1 I V A A g YM g tWX tE~~~~~I I I I Ii..1k:z Mrk~~I~~~~ Ih~'iix~'tI~~~~~~~~f~ I~ I H1 i lF: g; g m w g g t L ffl~~~~~~~~~~~~~~~~~t2X0Hlh~~~i il I ~ I lo W IIS tH S t d S m < iS~f~g1 lgit~lklitl~l~lLH::lidlilill~li~ljilkiliLL~lll~lill~llIIII I'''I I II1Id''II. I z 0 lI~~~~~~~~~~~~~i~~I IL L Rar 14 11 I__q II FIl I HI 1ilH I T lVMIl ~l LMELII II I 11 11 II' IS I+t~ w idh S * bll11Il1H LIL1Tg11T1 LLL E Mil! - T,I H - I H~~~~ Ii I I D Hill', 0 S t IH LH SLL21 i ~IT I 1 Al il l I~T 1111 ill T I.IIilIII. I IIII IC)I i III ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~ YIIiI Ol III II IlII I'1 1 l~ ~~~I I ~IUSt t I II H -I{0T+]EW W I H HI ~ ~ ~ ~ ~ ~ ~ O t.. l. L l O-J 1111ll 11111 11 11V 1 1II I I IK I I I I t L m ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IT,~l 111 111111 l IL tL 1|1 11 2 lilt! [4tlLI Tj FTS -Qj I 44L ]Hill IMAM, H 111H 1111 H I IiI Io w 0HI.,_ t 0O II Hill!~~~~~~~~~ JIII M i <,1 I I it III I II I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i CL.) I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ O O' OI! ~ O 0. tt I 11 111H~ ~~ ~~~~~~~~ I *1 *.LI Ai Il SLJ UI~ t I —-I j~ --— [I - - I. I I IIIIM-S I I I I 7` I1 7 I1l ~i I N ITI HIMI Ii i-III III 41 1111 11-1..~~~~~~~~~~~~~~~~I 1 i L; I0IT ill I I I IN'tIWI I THIN 1111 I fail, 11 IT~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I -If4f 11; i ll i Jill 11 i ~~~~~~~ ~ ~~I-1 ffII'' I II I II _t'I I ii Ifi ilfl II~~~~~~111 "-lC t6,;4-. o 1 LO - I I4.4 co r1''1 Pi Ma- W 0 0~~~~~~~~~~~~~~~~~~~ 0 o O 0~~~o 0 C)~~~~~~~~~~~~~

1.6 1.4 12 1.0 Q8 FIGURE 61-a CORRECTION FACTORS FOR 0.4 FLOW OF GASES THROUGH TUBES REFER FIGURE 61 02 I.D. 205 It 1111,111 I-tIII IIIIIIIIIIIIIIIIIII2 0 5 I 1 III IIEII -II IIIII I|111 r I IIIIXT 11.._ 1 _.__. T 1 T TIIIlI IIII| TIIIII IIIIII.. 11 11 Ltllllil kl 3d 1 1 1 I -llll FT T ff tl T l l l 11 H1 111t. eI T~:I 1 Tl-FFT 1 L l111 11, 11 1 1 1 1, 1 TT It 0.4 |rHII&TrI| T -4lI 4r - 1_ 1__I{ VW v ^o-* a

0. 4 0. 3 0,32~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0.32 -0 0.2 0.24 0.1 0.16 <~0.2 ltl CL~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0.12 CL~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0208 PRESSURE DROP WATER IN 3/8" DIAMETER, 18 B.W.G. TUBErS REF ER CI PAGE SI 0.0C I 1.5 2.0 2.5 3.0 3.5 4.0O 4.! VELOCI~r6 ft./sec.

F~IGURE: 63 0.34 -— ~tf H~ttf PRESSURE DROP FOR WATER THROUGH SM OOTH SEAMLESS DRAWN TUBES REFER PAGQE 51 0.26 0.,_2 0.026 0~ I2 5 4 5 6 7 8 9 I0 1 2 1 VELOCITY IN Ft2/

FIGURE 64 FLUID PRESSURE DROP DUE TO BENDS AND CHANGE IN VELOCITY REFER PAGE 51 208

~~~~~~~~1 2 3 4 S 67891234 5 6 7 89 1 3 4 5 6 7 891 2 3 4 5 6 8 2 3 4 5 6 7 8 9 1 0.1.... 7. _ _1 r: r..~r.rr i. nl..r....:;;.. 1ii 1ilillllii i I i ||i i i11l11111111Mlirrmrr 71 I Ii I!lrI l |ttffttft I I- I rr r rl 1 rIlrr~iil irrir -rr -iirrnim ir il i1 rrrrrl l1 ni;nsl111 -! 6.~~~~~~~~~~~~~~~~~~~~~~~~Z: hl w w m r ~~~T M t -- pE~S1|j11 11 l l~l m 6 ~# I I 11 M i l I Ilill I l h E illT Er M i i!i I ill l I Ill 11 H li oM ~~~d 11 1 ~~~ll I MIi I 11W HIM!F - I IEM 1 lllll 1 lltli 1 11!ll I. —111I 1!W11 Hilll4i! Ili Ilk ill I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~iIiI!.O 5 i; I. i.. II I - i i - - i I i Ii I I i I i Ii illiiili~iil i I I 1 1 1 i 1! I i I I i I I I I IIH I I I II I I ii I HIM I IUII! i I +4q 4 LL 3 -tjt r T 1 1 1 LT ll~Im Il T~ir mg11 1 11!11 llElm lllm r ~IiIT1! ~i l irrl i i III1IIII f~j-tttt~ffii~ll-ii~ -;S CLti~r7 i 111!1'i I 1 Ii i1l _IIIl~ ~ili i Iilll! 7~~~~~~~~~~~~~~~~~~~~~~~~~~...7.. fill[ I I Ill I I Ill I IIII',~''''I. I 4ttF11 rli iI Irt;+tf~~r~ff —77rrr rrmmr 6. 0) ~ ttl -tttett~t tKtet~tt m m i[| r ri~lil il;!l:U 111i 1 |I |1l IE Wg I m g 1t||| || 11 lil i f I I I |t tit ILtylatl i II jriTitP4ttf-ftt/ 1tt1E I[1 [1 C 14|i|1||ttit|[z W~tW | t1; -H~~~~~~~~~~~~~~~~~L~tt:7Yt- tft~ 2IE0 ~ 1 111111 1 11' fill 11l if111 — I iliAM0 1!$ [l1 1[11 1,1l l U~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I... 3....... 1X G E 1A I i IW I A W g rr I I 1 I 1 1 I 1 1 I I I I I I I All I -I I 8.Eo'omX m m m m m E v fH 4W- I 4! L 7 +t~i i 4 1j Z 00 w1 lllll lllll ll lll lllllllll 11 m m tE E s~~~~~~~~~~~~~~~~~~~cl~lL~liir I I III _ 1i 1iI r llrWCCl-~CCCCllil~lll III iI!l7t~K~l j;i1 IIII i!liillil~i~i.0 0 1.............- 9.8 8. 7_17 — _ ~~~~~~~~~~~~~~~~~~~~~~~~~~4 FIG UR E 65 tW 14t 1tt IS I D E FR ICTIOl 0 N FL AO BUNDLES WITH 25% CUTSEMN''I li llillill m lll TT II 1i Ill Ill l Hill ric r i r nrx - t Tf TAL BAFFLES I f i l l. i l I I EFER P G G E 5-'Ol o 0 67 89O O 23 4 [~O 7L+,1-, 8,.l 9.t,=-OOO-$.'1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- f0 0~~DHXUd8 -T~~ 5 10.2 3 4 ra 60 7 8 9100 2 3 4 ISM6 7 8 9 10o 2 3 4 s 6 7 8 9 JOOOO 2 3 4 s 600,000 2 3 4 s 6 7 8 9 4 R DeGs R~~'tii es ~f= /z

~1 2 3 4 5 ~6 ~7~89 0 2 3t 4 5 6 78900 2 S 4 5678 000 2 3 4 5 6 7 891 2 3 4 5 7 8 OO 7.7 9 g = St-1 z~~~~~~~~~~~~~~Hlel 1 111, q0 I Il I 11111 I I I ifl h!il.!~ 11111 1 l l l l l 1iii llllllll 81 f l-H~~~~wililill~~~~lTFT~~lill I II, ~iiliiiil II I TI I l~~gI~dlll Illll llib Il dl 1 iiklIii lPillt I I I I I1 I I I 7i=- w g =~~~~~~~~~~~~~~~fl I I1, I I I i l Hl I I10 I I111 i A1 I Iliil1ll I fillliiilll I11 1111111111l sl t ~~~~~~~~~~ I I I I 1111 11 Ililililililililil~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~lilI~~~~~~~~lffTXT~~~I Ii l IH.o d 6.....6 w'ION "FACTOF~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ O 5,0 I3(H II I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IIIII IIIL 1i 10 1 4. 5. 3. l!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ll 2. - -4'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~L t-tt~lt-X~! 111l~l lil I l I Ililil Mi 111111 lltl I lI l 11 III~l llI!!1 1 I~li lli l!'liItI iHlll liI I 11,1 lil l 1ll lII I 1 1I1I!I111 1111!I11!11 11!11!!11!1!111!I1 IT IT TE~~rlTI 1'!1 1111111! 1] 1I1Hl I'll!IIL!IIIIII11ItIF'li! 14 f IIILllIII I>ll-l I III I lIm'1'1 1 1 11 II I l 11 111111 1111111 111illlllllllill Jilllll 1lll11 00 -- ---- 1 1 V1W 1 TI 6 LLL I ILI4IL~~~~lililill1111111IIIIIIIIIIIIDI|D I! —111ISIIIIIIIIIIIIIIIIII1111IIllII1IL1111111111111 1!il I I l~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ P~~~~~~~~~~~~~~~~~~~~~~~~Ifl l " S II I 11 I I;IIH1T1tt41X+1WII 11ER111 I H++H+I1 1 I 11 EX11 I! S — TmI. 1' HIM I j jrEI Il l 1 I. H I IEC IN;I 9. 7-7 6v. 3< M _ i li~~~~~~~~~~~~~~~~~ili S ~~~~~F141U [1 1FU6 -2t 0 - 0 = Y'PRESSURE DROP FOR AS OR VAPOR IN CROSS-FLOW, SHELL SIDE REFER PAGE 52.0001 2 3 4 5 6 7 8.| | 2 3 S tti 4 | 5 6 7 8.) 2~ 3 4 5 6 7 8 9J 2 3 4t 5 6 7 8 9 1~.0 2 3 4t 5 6 7 8 9 IO~lS0{H I0 PRESSURE DROP/lO ROWS/IO CROSS BANK PASSES 10tl A-XX 1: 1~~~~~~~~~~~~~~~~~~~ll 1;10- I 1f;Ii~ -lEl l I i:0 I10 11: Iliiii00lllFt M I1 10 100 0 11;1{1 9l L g E 4 F ~ r E ~ i N X!0t lt ~ t1 1 = =W~t t.W —-tE- F I I I I II I 1 1 1 1l l l IllI I I I l lIlI I I Iil Ith.h It 7iLJ _J-o1 r t milT t 1. 1 LI I 1 U111 1.1 I 1.1 1 1 -4ll ~tttm T sS~~~~~~~-ElT!I~~~~~~~~~~1 HIITT~ T I II I I- J. 11.I I I-00I -fl=russ 3 - t: tl F4F 0 +g~ ~ ~~~~~~~~~~~~~~~~~~~r!1| | |! | ttk1H t| [ | |q|F S E LL SI DE 3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- I L.0001 2 3 4 5 6 7 8 Fo 2 3 4 5 6 7 8 VD 2 3 4 5 6 7 6 9 1 2 3 4 5 6 7 8 9,.0 23 4 5 6789. PRESSURE DROP/ 10 ROWS /10 CROSS BANK PASSES

1 2 3 4 5 6 7 8 9-1 2 3 4 5 6 7 | |4 5 6 7 8 52 3 4 5 6 7 89 13 2 3 4 5 6 7 8 900 _ g t........., IIINiIIS, 111111, 1, hi~liliilllillililIIIIIII!IIIII~iIUI~~li i II II.l..l......l.lll.. iil....1 iI.i1.1111!1.. 9~~~~~~~~~~ LM~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 8.~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~w U)6.. ~~~~~~~~~~~~~~~TIm > S Eg m m1X|- 4-2-W22l''''h'ltll~ll11111 1 il~l il 1111111. Ip.ililm itl A 1lliffI1 11111111o o~~~~~~~~~~~~~~~~~~~~~~l Ill Ai th1A It I$1E 0t m 1 Il I lif 1 t 1 4 -t - N ||1 I Hill! I I i SO W ID~~~~~ ~~~~ ~ ~ ~~~~~~~~~ 111 I1 ill I I I k L Ltl U. E:T:FF1111111 SXX I Hlll 11 Hil 1111''.t' i I I'f 5111. I I I I.1 Lm 1 1 1 1 11 1 1, I I I tttllt 1 2 I L.-IT1111111 ro~~~~~~~~~~~~~~~~~~~~~~~~ I Hil IIII 4 I Hi II 11 1 1!i ll HllEF U) e tI4UI ~ FH 5il I 1 11! 111111 1111 I 1 a ] I F ill 1111 I I I l m I H H I I I I — 5) I Hll 5g11......I JI 1 <~~~~~~~~~~~~~~~~~~~~~~~~~~... 240 It tW i.11 11llll All liFF W_ _,L=0 ~~~~~~~~~~~~~~~~~~~1 111 1ii I 14 L 10 llt 1111 ll 1 1 111111 L0W W 8r~~~~~~~~~~~~~ liith' I tI:H 1-' m'-11 IN I'-:'~j lifE 4, i~~~~~~~~~~~~~~~~~~~~~~~~~~~. 3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4 1 L. PIeT ~e o.J._1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~F I IfL E<EL=<~~~4 P G i E 5 ++~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. t~~~~~~~~~~~~~~~~~~~~~~I Ii S 1 1 1 1 til I I.....14lt O~~~~~~~~~~l t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~oo r,.. 7 )Li.0001 3 4 5 6 7 a&OB 2 1 2 3 4 S l6 7 8 12 3 4 S 6 7 8 9 1 2 3 4 5678 PRESSURE DROP, P ER I10 RO0W S, PER I10 P A S SES - L BS. /SQ. I N.

6 9 ~ 9 9 t 6 000 ot 698 ~ 9 9 9 c 0001 6 9 ~ 9 9 9 ~ 001 6 9 L 9 9 9 6 z 0t'6 8 ~ 9 s 9 0 6 4III 3iiIIliI IIIII-I II II I I III I IIF I FI T _ III I I 00 II L III IIII III I~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~I I~4 Jill I Hill. 11~~~~~~~~~~~~~~~~~~~IfI ~'I~' H I -I-1 It Z 9 3 9 V d H3A3W~~-iV 44 6 ~~~~~~~~~~~~~~~~3 a IS 1 13 HS —~ 31HJ NO MOIA SS08JD NI14 s a in-i -i o - dO8IG 38nss3ucd - i t~~~~~~~~~~~~~~~~~~~~~~~i1 k -1 —-- 9~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- I IHI-.i IIt It I 111 J ll 6 1-1 611SI l - 6il IM ill 17IM4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4-44-4+~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -V 4-11~ ~ ~ ~~~ 9 - 9~~~~~~~~~~~~~~~~~~~~~~ r7'MML L L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —1 8 - 8~~~~~~~~~~~~~~~~~~~~...... 6....6. I 8L 9 ilI1 l l I ~ 6188~ 99I 9il 6111 I I 8~III 9il 9 6 L9 9 6 68 8~9I 66

G; L 10 50 100 500 1000 01 7 ili 6.5 00 I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I. IO IOO 1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I H I I lHVIM I I I 111+11W== ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~,I_ ILl (- LON FOW I S 1 0 N G I T13 D I A H 3 t 5X I ir~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ twH0T012XX1~~~~~~~~~~~~~~~~~~~~0 6X X~~~~~~w0|1~~~~~ 21 AE ll lI I Hi REE PAGE 52<U I T~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. |~~~~~~~~~~~~~~~~~~~~~rF I til I I It RL h ktlt E111~~~~L 1 11 11 Jil.i:1111Hil - 71l111l1 111ll 1 I l1 I I 111 >5 | 1 10 X1.011 lill 11 1 1g= fl6URE;9 m G. (LON FLOW)RD 2 ~lttt [lnit 11Xl11 t Liil~l i 111 11 1 i|I N H E LL, L ON I TU DI N A L 510 HX~i~ w1 Y~p1' i1REF R P A6E 52 1 5 2.25 3 5 7 8 9 1 0 1.5 2 2.5 3 4 5 6 7 8 9' 1 1.0 10 lOO GL ( LONG FLOW) 213

- 0~~~~~~~~~ ~0 Q0 0 0v 8 0 -U 31~~~~~~~~~~~~~~~~~ A 0 7~~~~~~~~~~~~~~~~~~~ id *'O i0 -cm CII.c0 4o,0 a~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~r rO -b —?.a8 0 i0 ao b 1%fJtffcS N I I T II I I A lrU III 1.sif I I III I I IV l~''' X "~U''1'~'A~~N I rlVI I I ~ IT~I I __ III II I I _11kl I INI q m 0 r0 0 %L I E Cal~~~ ~r -- I I 0 17%1.~,~~~~~~~~~~~~~~~~~~~~~~~~1 ML I IIn III N1 -,1 ~ LI ~ ~ e~z. I~~ J" * o o.4~~~~~~~~- _ ~o %U~~~~~~pU i %0 m!1!1 E ~' II 71.L I r,%4j II M NL 1 1 o "~~ II I L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o I r I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ WAK I~~~C I.00 o 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 All I I LA I~ ~ ~ ~~L O~~~~~~~~~ o e V O (n " P~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ Ar ".j I I I O~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1M

FIG 71 HEAT EXCHANGER SPECIFICATIONS REFER PAGE 56 ITEM NO. NO. REQ'D. B. M. NO. DESCRIPTION TYPE SIZE SECTIONS PER BANK CONNECTED IN BANKS PER UNIT CONNECTED IN SURFACE PER SECTION SQ. FT. TOTAL SURFACE SQ. FT. PERFORMANCE SHELL SIDE TUBE SIDE SHELL SIDE TUBE SIDE FLU ID GRAVITY-LIQU ID @ INLET TEMP. TOTAL FLUID IN @ 60~F VAPOR VISCOSITY @ ~F LIQUID VISCOSITY @ ~F STEAM MOL. WT. - VAPOR NON CONDENSABLES SP. HEAT- LIQUID FLUID VAPORED OR CONDENSED LATENT HEAT - VAPOR STEAM CONDENSED NO. OF PASSES ~F INLET TEMPERATURE OF VELOCITY OF OUTLET TEMPERATURE oF PRESS. DROP OPERATING PRESSURE FOULING FACTOR HEAT EXCHANGED- BTU/HR L.M.T.D. (CORRECTED) "U" CLEAN "U" REQUIRED CONSTRUCT-ION SHELL SIDE TUBE SIDE CODE ~F DESIGN TEMPERATURE ~F MATERIALS OF CONSTRUCTION DESIGN PRESSURE SHELL TEST PRESSURE TUBES CORROSION ALLOWANCE TUBE SUPPORTS TUBES BAFFLES NUMBER SIZE O.D. TUBE SHEETS PITCH THICKNESS BWG.* CHANNEL LENGTH CHANNEL COVER REMARKS SHELL COVER SHELL DIA. THICKNESS IN. FLOATING COVER TUBE SUPPORTS-SPACING THICK. IN. GASKETS TRANSVERSE BAFFLES TYPE SPACING CUT THICKNESS IN. [I WEIGHTS LONGITUDINAL BAFFLE EA. SHELL LB.: BUNDLE LB. TYPE THICKNESS IN. II FULL OF WATER LB. CONNECTIONS: SEE FLOW SHEET OR DRAWING FUNCTION OF ITEM AND REMARKS: CHK'D MADE DATE NO. REVISIONS APR PROJECT N. TYPED MADE PAGE OF 215

VI. BIBLIOGRAPHY A. Types, Description, and General Considerations of Heat Exchangers 1. Kopp, S., "Heat Exchanger Design for Modern Refinery Processing," Petroleum Engineer, Vol. 16, p. 108, June 1945. 2. Rubin, F. J., "Shell and Tube Exchangers," Petroleum Refiner, Vol. 27, p. 139, July 1948. 3. Bergelin, O. P., et al., "A Study of Three Tube Arrangements in Unbaffled Tubular Heat Exchangers' ASME (trans.), Vol. 71, p. 369. 4. Blalock, P. W., "Heat Transfer Equipment —Specifications and Codes of Materials Used in Fabrication," A.I.Ch.E. (trans.), Vol. 40, p. 593. 5. Fitzpatrick, J. H., "Maintenance of Heat Exchange Equipment," Petroleum Engineer, Vol. 23, p. C-42, November 1951. 6. Laughrey, et al., "Design of Pre-heaters and Heat Exchangers," ASME (trans.), Vol. 72, p. 385. 7. Millett, K. B., "Heat Exchangers for Chemical Process Applications," Ind. Eng. Chem., Vol. 30, p. 367. 8. Nelson, W. L., "Shell and Tube Bundle Types," p. ll1, February 9, "Double Pipe Exchangers," p. 129, February 16, "Exchanger Design," p. 117, July 20, Oil and Gas Journal, Vol. 44 (1946). 9. Otten, P. S., "Required Process and Design Data for Heat Exchangers," Chemical Engineering Progress, Vol. 44, p. 411. 10. Rubin, F. L., "Heat Exchanger Costs Today', Chemical Engineering, Vol. 60, p. 201, May 1953. 11. Sanderson, C. F., "Selection of Heat Exchangers' Petroleum Refiner, Vol. 28, p. 150, February 1949. 12. Ten Broek, H., "Economic Selection of Exchanger Sizes," Ind. Eng. Chem, Vol. 36, p. 64. 13. Thornton, D. P., "How to Get What You Need When You Order Heat Exchanger," Petroleum Processing, Vol. 6, p. 1128. B. Bundle Layout and Tube Count 14. Cardwell, F. D., "Optimum Tube-Size for Shell and Tube Type Heat Exchangers," ASME, (trans.), Vol. 72, p. 1061. 216

15. Cook and Tolman, "Chart for Shell and Tube Exchangers," Chem. Met. Eng., Vol. 53, p. 128, March 1948. 16. Davis, D. S., "Nomograph for Determination of the Diameter of a Heat Exchanger Tube-sheet," Chemical Industries, Vol. 62, p. 294, February 1948. 17. Davies, G. F., "Quick Estimation Method for Heat Exchanger Dimensions," Chemical Engineering, Vol. 59, p. 170, March 1952. 18. Malkin, I., "Notes on Theoretical Basis for Design of Tube-sheets for Triangular Layouts," ASME (trans.), Vol. 74, p. 387. 19. Miller, K. A. G., "The Design of Tube Plates in Heat Exchangers," Inst. of Mech. Engr. Proceedings (B), 1952, Vol. 1B, No. 6, p. 215. 20. Nelson, W. L., "Materials of Construction, Shellside," p. 93, March 9, "Materials of Construction, Tubes," p. 113, March 23, "Standard Tubings — Tables," p. 137, April 6, Oil and Gas Journal, Vol. 44 (1946). C. Heat Transfer and Pressure Drop Data for Heat Exchangers 1. Heat Transfer and Pressure Drop In and Over Tubes 21. Bergelin, O. P., et al., "Heat Transfer and Fluid Friction during Viscous Flow across Banks of Tubes," ASME (trans.), Vol. 71, p. 27. 22. Bergelin, O. P., et al., "Heat Transfer and Fluid Friction during Viscous Flow across Banks of Tubes," ASME (trans.), Vol. 72, p. 881. 23. Bergelin, 0. P., et al., "Heat Transfer and Fluid Friction during Flow across Banks of Tubes," ASME (trans.), Vol. 74, p. 953. 24. Buthod and Whitley, "Shell-side Heat Transfer Coefficients," p. 129, August 26, "Tube-side Pressure Drop," p. 56, September 2, "Tube-side Pressure Drop," p. 82, September 9, "Shell-side Pressure Drop," p. 91, September 16, "Heat Balances," p. 288, September 23, "Fouling Resistance," p. 84, October 7, "Economic Approach Temperature," p. 110, October 14, "Design and Operation of Heat Exchangers," p. 135, October 21, Oil and Gas Journal, Vol. 42 (1944). 25. Buthod, P., "Shortcuts in Process Design," Petroleum Refiner, Vol. 29, p. 80, June 1950. 26. Chilton, T. H., et al., "Heat Transfer Design Data and Alignment Charts," ASME (trans.), P.M.E., Vol. 55 (1933). 27. Colburn, ASME (trans.) Vol. 55, P.M.E. Section. 28. Colburn, Ind. Eng. Chem., 35, p. 873. 29. Donahue, D. A., "Heat Transfer and Pressure Drop in Heat Exchangers," Ind. Eng. Chem., Vol. 41, p. 2499. 217

46. Sieder and Tate, "Heat Transfer and Pressure Drop of Liquids in Tubes, Ind. Eng. Chem., Vol. 28, p. 1429. 2. Mean Temperature Difference and Its Correction 47. Fischer, F. K., "M.T.D. Correction in Multipass Exchangers," Ind. Eng. Chem., Vol. 30, p. 377. 48. Gardner, K. A.," Variable Heat Transfer Rate Correction in Multipass Exchanger, Shell-side Film Controlling," ASME (trans.), Vol. 67, p. 31. 49. Heiss and Coull, "Nomograph of Dittus-Boelter Equation for Heating and Cooling Liquids," Ind. Eng. Chem., Vol. 43, p. 1226. 50. Nagle, W. M., "Mean Temperature Difference in Multipass Heat Exchangers," Ind. Eng. Chem., Vol. 25, p. 604. 51. Nelson, W. L., "LMTD Correction," Oil and Gas Journal, Vol. 44, p. 99, January 19, 1946. 52. Ten Broek, H., "Multipass Exchanger Calculations —Terminal Temperature Calculations," Ind. Eng. Chem., Vol. 30, p. 1041. 3. Fouling Factors 53. Bergelin, O. P., et al., "Fouling and Cleaning of Surfaces in Unfired Heat Exchangers —Panel Discussion," ASME (trans.), Vol. 76, p. 871. 54. Butler, R. C. et al., "Fouling Rates and Cleaning Methods in Refinery Heat Exchangers," SME (trans.), Vol. 71, p. 843. 55. Weiland, J. H., "Rate of Fouling and Cleaning of Unfired Heat Exchanger Equipment," ASME (trans.), Vol. 71, p. 849. 4. Pressure Drop across Tube Banks 56. Boucher and Lapple, "Pressure Drop across Tube Banks," Chem. Eng. Progress, Vol. 44, p. 117. 57. Boucher, D. F., "Pressure Drop across Tube Banks," Chemical Engineering, Vol. 56, May 1949, p. 168. 58. Chilton and Generaux, "Pressure Drop across Tube Banks," A.I.Ch.E., Vol. 29, p. 161. 59. Gunter and Shaw, "A General Correlation of Friction Factor for Various Types of Surfaces in Cross-flow," ASME (trans.), Vol. 67, p. 643. 60. Short and Stack, "Effect of Diameter, Spacing, etc., on Pressure Drop around Tubes of Shell Type Heat Exchangers," Oil and Gas Journal, Vol. 32, p. 115, May 10. 219

46. Sieder and Tate, "Heat Transfer and Pressure Drop of Liquids in Tubes, Ind. Eng. Chem., Vol. 28, p. 1429. 2. Mean Temperature Difference and Its Correction 47. Fischer, F. K., "M.T.D. Correction in Multipass Exchangers," Ind. Eng. Chem., Vol. 30, p. 377. 48. Gardner, K. A.," Variable Heat Transfer Rate Correction in Multipass Exchanger, Shell-side Film Controlling," ASME (trans.), Vol. 67, p. 31. 49. Heiss and Coull, "Nomograph of Dittus-Boelter Equation for Heating and Cooling Liquids," Ind. Eng. Chem., Vol. 43, p. 1226. 50. Nagle, W. M., "Mean Temperature Difference in Multipass Heat Exchangers," Ind. Eng. Chem., Vol. 25, p. 604. 51. Nelson, W. L., "LMTD Correction," Oil and Gas Journal, Vol. 44, p. 99, January 19, 1946. 52. Ten Broek, H., "Multipass Exchanger Calculations —Terminal Temperature Calculations," Ind. Eng. Chem., Vol. 30, p. 1041. 3. Fouling Factors 53. Bergelin, O. P., et al., "Fouling and Cleaning of Surfaces in Unfired Heat Exchangers —Panel Discussion," ASME (trans.), Vol. 76, p. 871. 54. Butler, R. C. et al., "Fouling Rates and Cleaning Methods in Refinery Heat Exchangers" ASME (trans.), Vol. 71, p. 843. 55. Weiland, J. H., "Rate of Fouling and Cleaning of Unfired Heat Exchanger Equipment," ASME (trans.), Vol. 71, p. 849. 4. Pressure Drop across Tube Banks 56. Boucher and Lapple, "Pressure Drop across Tube Banks," Chem. Eng. Progress, Vol. 44, p. 117. 57. Boucher, D. F., "Pressure Drop across Tube Banks," Chemical Engineering, Vol. 56, May 1949, p. 168. 58. Chilton and Generaux, "Pressure Drop across Tube Banks," A.I.Ch.E., Vol. 29, p. 161. 59. Gunter and Shaw, "A General Correlation of Friction Factor for Various Types of Surfaces in Cross-flow," ASME (trans.), Vol. 67, p. 643. 60. Short and Stack, "Effect of Diameter, Spacing, etc., on Pressure Drop around Tubes of Shell Type Heat Exchangers," Oil and Gas Journal, Vol. 32, p. 115, May 10. 219

II I 1llllIll4ll lll.....228. D. Problems on Heat Exchangers 3 9015 03483 2280 61. Dodge, Chemical Engineering Thermodynamics. 62. Friend and Lobo, "Problems in Heat Exchange and Pressure Drop," Ind. Eng. Chem., Vol. 31, p. 597. 63. Robinson and Gilliland, Elements of Fractional Distillation, Fourth Edition, p. 427. 220