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ABSTRACT

An asymptotic description of the acceleration of a laminar hypersonic boundary
layer approaching a sharp corner is obtained. The description assumes small inter-
action with the outer inviscid flow. Viscous forces are neglected except in a thin
sublayer. The initial part of the expansion takes place over a distance O(Meﬁ), where
Me is the external Mach number, and 0 is the boundary-layer thickness, Here the
transverse pressure gradient is small, and a solution can be obtained analytically.
Within a distance O(6) from the corner, the effect of streamline curvature is essen-
tial, and a numerical solution is obtained by the method of integral relations for a
single strip. The solution for surface pressure is compared with experimental re-
sults for a particular case, and an approximate velocity profile at the corner is cal-

culated. Possibilities for improving the accuracy of the calculation, both by refining

the numerical procedure and by including higher order effects, are considered.
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b Condition in the base region

¢ Critical condition

e Condition at the outer edge of the undisturbed boundary layer
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M Condition on the strip boundary y = Yar
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ACCELERATION OF A HYPERSONIC
BOUNDARY LAYER APPROACHING A CORNER

INTROD:JCTION

The expansion of an inviscid supersonic flow at a sharp corner takes place through a cen-
tered Prandtl-Meyer expansion fan. Of course, this description neglects any effect of the
viscous boundary layer at the solid surface. For nonzero viscosity, the expansion actually be-
gins somewhat upstream from the corner and is completed somewhat downstream from the
corner, At any given Mach number, the acceleration of the boundary layer, here assumed to be
laminar, takes place over a distance which decreases as the Reynolds number increases. The
details of the boundary-layer expansion are of interest, for example, in relation to the calcula-
tion of base flows. The present investigation was motivated by the need for proper initial con-
ditions for the study of the hypersonic near wake. This work is concerned specifically with the
portion of the expansion which occurs just upstream from the corner, for the case of hyper-

sonic flow over a slender wedge or cone.

The inviscid hypersonic flow past a slender wedge or cone is described by hypersonic
small-disturbance theory [1]. Although the shock wave is rather close to the surface, there is
a significant range of Mach numbers and Reynolds numbers for which the boundary-layer thick-
ness is small compared with the shock-layer thickness, while the boundary layer remains
laminar, For this range, the approximate boundary-layer velocity and temperature profiles

can be obtained by neglecting interaction with the outer flow.

At the base of the wedge or cone, the boundary layer expands rather rapidly and in a com-
plicated manner, Since the acceleration and the pressure gradient are quite large in a rela-
tively small region near the corner, the flow is approximately an inviscid rotational flow.
Since, in this approximation, the no-slip condition is violated for a short distance upstream
from the corner, a viscous sublayer, with a thickness that is small compared to the boundary-
layer thickness, mustalso exist, As in conventional boundary-layer theory, and for the same
reasons, the sublayer is considered to have only a small effect on the expansion of the outer

part of the boundary layer,

It has been experimentally determined that the base pressure, for the range of parameters
of present interest, is considerably smaller than the pressure in the region between the shock

wave and the body surface. Except for the sublayer, the entire boundary layer, therefore, ac-
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celerates to supersonic speed. Downstream from the corner, when the complicated interaction
has been completed, the inviscid-flow approximation predicts a highly rotational outer shear
layer and a velocity discontinuity corresponding to the sublayer described above. Below the

sublayer is a region of recirculating flow at lower velocity and more nearly constant pressure,

Existing solutions for the near-wake region have been obtained without complete knowledge
of the initial shear-layer profiles. For example, the integral method used by Reeves and Lees
[2] to analyze the near wake of a circular cylinder is extended by Golik, Webb, and Lees [3]in
a study of the wake behind a wedge. In each of these papers, the importance of the boundary-

layer expansionat a corner is pointed out, but the flow near a sharp corner is not studied in detail.

Some recent attempts have been made to study the portion of the expansion just down-
stream from a corner. The model proposed by Weinbaum [4] assumes a highly rotational
outer shear layer with velocity discontinuity across a sublayer located essentially at the zero
streamline. In this model, flow near the zero streamline expands to the base pressure, but
an overexpansion occurs elsewhere in the boundary layer. A curved, centered expansion fan
from the corner leads to reflected waves which are predominantly expansions; these, in turn,
are reflected as compressions from the constant-pressure zero streamline and ultimately
coalesce to form the lip-shock wave. Weiss [5] incorporates this model in a calculation of
the near wake of a wedge. He uses the full Navier-Stokes equations in the recirculation region,
boundary-layer equations in the sublayer, and a rotational-characteristics calculation in the
remainder of the shear layer; an iteration procedure is used in obtaining a solution. However,
detailed pressure measurements by Hama [6] suggest that even the flow close to the surface
overexpands, and, in fact, completely turns the corner. The lip shock occurs as a separation
shock, originating very close to the base at a point just below the corner. A more detailed
theoretical investigation of the lip-shock wave formation would require accurate information

concerning profiles of the flow properties at the corner.

It is evident from Hama's [6] data for laminar flow that a significant portion of the pressure
drop does indeed occur upstream from the corner. In fact, since the base pressure is suffi-
ciently low, the air very close to the surface (i.e., just outside the thin sublayer) is expected
to accelerate at least to sonic speed, and details downstream from the corner will not influence
the upstream flow. Therefore, the flow upstream can be studied without further knowledge of

the lip-shock wave.

The upstream influence of the corner is associated with the propagation of disturbances
through the subsonic part of the boundary layer, A basic assumption in this study is that the

extent of upstream influence is small compared with the length of the body. In the present ap-
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proximation, it is found that this requirement is satisfied provided that the boundary-layer
thickness is small compared with the shock-layer thickness. Because the changes take place
in a small region, the problem is approximately two-dimensional for a cone as well as for a

wedge.

The idea of describing abrupt changes in a boundary layer by the inviscid-flow equations
has appeared in the literature in several other contexts. For example, Morkovin [7] has ob-
served experimentally the effect of an expansion wave impinging upon a boundary layer on the
wall of a supersonic wind tunnel and has successfully predicted the post-interaction velocity
profile by an inviscid-flow calculation. That is, given the initial conditions in the boundary
layer, he calculated the final velocity profile from the Bernoulli equation, the entropy equation,
and the measured value of the final pressure. Except for the effect of a viscous sublayer, his
prediction agrees well with the experimentally-determined velocity profile. Lighthill [8] uses
a similar concept in analyzing the interaction of a supersonic boundary layer with a disturbance
sufficiently weak that separation does not occur. He introduces small perturbations on a par-
allel shear flow and neglects viscous shear forces except in a sublayer. Zakkay and Tani [9]
consider a problem of boundary-layer acceleration at a sharp corner without considering sepa-
ration. Their interest is primarily in the boundary-layer development downstream from the
corner, and they assume that the changes close to the corner are described by inviscid-flow
equations. The concept of a sublayer again appears. For the same case, 2 calculation describ-
ing changes close to the corner is given by Hunt and Sibulkin [10]. They use a momentum inte-

gral and assume that pressure is constant along radial lines.

After the present study had been completed it was brought to the authors' attention that
closely related work has been carried out by Neiland and Sychev [11] and by Matveeva and
Neiland [12]. Neiland and Sychev consider compressible boundary-layer flow at a rounded cor-
ner having radius of curvature O(8). For a distance O(5) in the stream direction, they obtain
inviscid-flow equations, except in a viscous sublayer of thickness O<R\-;v1/45>’ where the
boundary-layer equations are required. Matveeva and Neiland use a similar approximation to
formulate a description of a supersonic boundary layer approaching a sharp corner. They
carry out a one-strip calculation by the method of integral relations. The numerical integra-
tion is started by use of an asymptotic solution valid upstream where the perturbation in
pressure is characterized by a small nondimensional parameter, A. In this region, nonlinear
1/2)

inviscid-flow equations are required at a distance o(dA from the wall, and the disturbances

-1/2

extend over a distance O(6A } in the stream direction.

In the present study, the case of zero wall heat transfer and unity Prandtl number is con-

sidered, primarily because of simplifications in the equations., The initial boundary-layer
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profile is then obtained quite easily (app. 1). As the boundary layer approaches the corner,

the pressure drop causes the boundary layer to become thinner because the changes in stream-
tube area for the subsonic portion of the layer are dominant. Flow deflections at the outer edge
of the boundary layer remain small, even if relative pressure changes are of the order one,
because the flow is hypersonic. In the early stages of the expansion, the flow deflection is also
small throughout the boundary layer. Since the profile eventually becomes entirely supersonic,
this behavior cannot persist all the way to the corner; eventually the spreading of streamlines
in the supersonic region must dominate. In a second region close to the corner, the stream-
line deflection remains small at the outer edge but can become quite large inside the layer be-
cause the fluid is free to turn inward when it reaches the corner. The boundary layer in these
two regions might be called subcritical and supércritical. This distinction is discussed by

Lees and Reeves [13].

A numerical solution of the problem to be discussed here has been obtained by Baum [14],
who used a finite-difference method to solve the boundary-layer equations. For the initially
supersonic part of the flow, an acceleration term was retained in the transverse momentum
equation, Consequently, the normal pressure gradient was nonzero. Weiss and Nelson [15]
have obtained an approximate solution by using a stream-tube calculation (zero normal pressure
gradient) for the fluid which is initially at subsonic speed and a Prandtl-Meyer expansion for
the initially supersonic part. In the present investigation, approximate equations are derived
which are expected to be correct in an asymptotic sense for the case of a sufficiently thin hy-
personic boundary layer, a simple method is shown for obtaining approximate numerical re-

sults, and the procedures for studying the largest neglected terms are considered.

A more detailed physical description of the flow is given in section 2. In section 3 the
asymptotic nature of the approximation is discussed, order estimates are given for the two
regions of inviscid flow and for the sublayer, approximate differential equations are obtained
for each of these regions, and the appropriate matching conditions are given. An analytical
solution is derived in section 4 for the upstream region in which the normal pressure gradient
is negligible. In section 5, the full inviscid-flow equations for the region closer to the corner
are studied by using the method of integral relations. Numerical results are obtained for a
one-strip calculation, and a procedure for carrying out a two-strip analysis is described. An
attempt at a generalization to an arbitrary number of strips is also discussed. A composite
expansion of the solutions for the wall-pressure ratio is obtained and compared with an experi-
ment [6] for a particular case, and an approximate velocity profile at the corner is calculated.
In section 6, an approximate formulation of the sublayer problem is derived by using the method

of integral relations. Results and conclusions are summarized in section 7,
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2
PHYSICAL DESCRIPTION OF THE FLOW

The inviscid flow over a slender pointed body at high Mach number (see fig. 1) can be de-
scribed by using the approximations of hypersonic small-disturbance theory. The parameter
(MOOT)_1 is taken to be of order one, where 7 is some typical value of the flow deflection, for
example, the body thickness ratio. Order estimates for the flow variables can be obtained from
the shock-wave relations [1]. The shock is inclined at a small angle of order 7, and, therefore,
the velocity component in the direction of the free stream remains approximately unchanged.
The velocity Ge just outside the boundary layer is approximately equal to the freestream ve-
locity u (and, in fact, to the maximum velocity qmax)’ Relative changes in pressure and tem-
perature at the shock wave are of order one or larger. At the outer edge of the boundary layer,
the pressure Ee is of order EwEiTz, the temperature Te is of order MfoT2 Too’ and the density

Ee is of order Eoo. It follows that the Mach number Me is of order T-l.

M ~©, R ~wo,T7=0

M 7 Held Fixed
[0

FIGURE 1. SLENDER BODY IN A HYPERSONIC FLOW

If the boundary-layer thickness is small compared with the distance from the body sur-
face to the shock wave, then the inviscid-flow equations remain approximately correct in the

region between the boundary layer and the shock wave. For a boundary layer with zero wall

1/2

heat transfer, the thickness is proportional to R‘_N , where RW is a Reynolds number based

on u_ and on thermodynamic properties evaluated at the surface. Then the assumption of a thin
e

‘—Nl /2 be small. If the body

is a wedge or cone, the pressure is constant in the boundary layer. The temperature in the

boundary layer requires that a viscous interaction parameter MeR
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boundary layer is large, of order MzTe, and the density is therefore small. Since the
mass flow is small, the boundary-layer thickness 6 can be taken equal to the displacement
thickness 6* [16].

It is known from experiment that for a wide variety of body shapes in high-speed flow,
the pressure Eb in a neighborhood of the base of the body is considerably smaller than Ee'
Thus, the nondimensional pressure drop (pe - pb)/ Pe at the base of the body is of order
unity, and the boundary layer, in separating from the body, will undergo a significant accelera-
tion. Outside the boundary layer, this acceleration influences the flow through a change in the
boundary-layer displacement thickness. The pressure varies with the flow deflection angle
0 5 at the outer edge of the boundary layer according to the Prandtl-Meyer formula for a sim-
ple-wave expansion. Inside the boundary layer, the large pressure drop at the corner causes
the pressure and velocity gradients, px and ﬁi’ to increase greatly over their values in the up-
stream, undisturbed boundary layer, while the viscous shear stress remains of the same order

as farther upstream.

These remarks suggest that the accelerating flow in the boundary layer (see fig. 2) can
be described approximately by inviscid-flow equations. Propagation of disturbances upstream
through the subsonic portion of the boundary layer will cause a significant portion of the accel-
eration to occur near the surface of the body upstream from the corner. However, the no-slip
condition at the body surface cannot be satisfied by a solution to inviscid-flow equations.
Therefore, a viscous sublayer must exist in which the viscous shear stress is of the same
order as the streamwise pressure gradient —pi and the inertia term 'ﬁﬁﬁi. The balance of
viscous and inertia terms in the streamwise momentum equation provides the estimate of the

order of magnitude of the thickness 6. of the sublayer, which is found to be considerably

SL

M, Pe 7, yT

\
Sonte Line\ 7 /z/

Sublayer

[

M -o, R_~w, MR 172
e w e w

Dividing
Streamline
FIGURE 2. ACCELERATION OF A HYPERSONIC
BOUNDARY LAYER APPROACHING A CORNER
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-1/2
w
is small. The sublayer flow is described by the boundary-layer equations with a pressure

smaller than the boundary-layer thickness, provided that the interaction parameter MeR

gradient.

In a first approximation (as in conventional boundary-layer theory), the sublayer is ig-
nored and an inviscid-flow calculation is made with the normal velocity component V set equal
to zero at the wall., Then, from a knowledge of the pressure and velocity distributions along
the wall, calculated from the inviscid equations, the sublayer equations can be solved, giving
the variation in sublayer displacement thickness along the wall. In a second approximation
(not carried out in this work), the normal velocity component ¥ at the wall would be related to
the rate of change in the sublayer displacement thickness dgs X /dxX while, otherwise, the
inviscid-flow equations would still apply. Thus, for most of the boundary layer, the primary

effect of viscosity is the variation in sublayer displacement thickness.

If the base pressure is sufficiently low, a streamline at the surface (i.e., just outside the
viscous sublayer) will accelerate to the sonic condition at the corner. The sonic line is not
expected to intersect the surface upstream from the corner because streamlines near the sur-
face would have to bend away from the surface as the pressure continues to decrease. If the

pressure is at least as low as the base pressure immediately downstream from the corner,

as expected from experiment [6], the flow at the surface must have reached supersonic speed
at the corner. A similar situation occurs for the flow in a convergent nozzle exhausting to a
low pressure. The sonic condition must occur at the nozzle exit to permit the flow to adjust

to the ambient pressure. Thus, in the present problem, the sonic line will intersect the corner
in a first approximation, and the portion of the acceleration of the boundary layer which takes

place upstream from the corner can be analyzed, independent of a knowledge of the base pressure.

The flow deflection angle 6 will be equal to zero at the wall and comparable in magnitude
with M;1 at the outer edge of the accelerating boundary layer. Two posslibilities arise for the
order of magnitude of 6 in the layer. To match 6 to the value 6 5= O(M;3 ) at the outer edge,
one might anticipate a region where the flow deflection angle is comparable in magnitude with
M;I throughout the boundary layer. In such a region, the streamline curvature is small.
Therefore, the normal pressure gradient can be neglected, and the flow is described by inviscid-
boundary-layer equations. (For another application of these equations, see reference 17.) A
second region might occur in which 4 is of order unity throughout the layer. The boundary
condition at the outer edge, in the first approximation, would then require that 6 be equal to
zero. In this region, the normal and streamwise pressure gradients would be comparable in
magnitude because of significant streamline curvature. A considerable divergence of stream-
lines will actually occur because, in the immediate neighborhood of the corner, a streamline

just ouside the viscous sublayer turns rather sharply around the corner,
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The two possible choices for the order estimate of § correspond to two rather different
physical effects. A decrease in the pressure will cause the subsonic portion of the layer to
contract and the supersonic portion to widen. Initially, the subsonic portion of the layer is
dominant, and d6*/dp > 0. This is designated as the subcritical condition [13] and is analogous
to subsonic flow in a convergent nozzle. The pressure change generated is communicated
smoothly through the subsonic portion of the layer a considerable distance upstream. Lighthill
[8] finds the inverse logarithmic decrement of upstream influence for small disturbances in a

subcritical shear layer to be
2 21200 5 2
M (1 - M M “M[1-M®]dy (2.1)
0 .

where M(0) is the Mach number at a point just outside of the viscous sublayer. Clearly, in an
accelerating boundary layer, a point may be reached at which the integral in equation 2.1
vanishes. At such a "critical point,” some average Mach number in the layer is sonic, and
small disturbances can propagate upstream only through a distance of the same order as the
boundary-layer thickness. When the expression in equation 2.1 is set equal to zero, the condi-

tion

6‘ljém‘2@) @y=<M -1 (2.2)
0

results. Therefore, <M 2> is the appropriate function for determining whether or not the layer
is subcritical. In a subcritical flow,<M_ 2>> 1, while, in a supercritical flow, we have

< 2> < 1. In the supercritical region, we would expect d6*/dp < 0 because the widening of
streamlines in the supersonic region is dominant as the pressure continues to decrease. Since
the flow deflection at the outer edge is not expected to change sign, the boundary layer in the
present problem can become supercritical only in a region where the stream tubes near the

wall can be displaced inward. It is shown in the next section that this effect can occur within

a distance of order & upstream from the corner.

3
ASYMPTOTIC REPRESENTATIONS

3.1. LIMIT PROCESSES
The equations of hypersonic small-disturbance theory for flow past slender bodies are

obtained from the full inviscid-flow equations by taking the limit

Moo——oo,T-O

x/L, T/7L, M7 held fixed (3.1)
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Here X and T are dimensional coordinates measured from the front of the body (see fig. 1),
MOo is the free-stream Mach number, 7 is the body thickness ratio, and L is the length of the
body. For a sufficiently high Reynolds number, the shape of the shock wave for a cone or a

wedge is given in the form
T/TX = constant (3.2)
In this approximation, the Mach number behind the shock wave is of order T-l (see app. I).

The approximate equations describing a hypersonic laminar boundary layer on a slender

body are obtained in the limit

M - o, R -, MR_I/Z——O
e w e w

/2

X/L, ?/R;,l L held fixed (3.3)

where Me is the Mach number just outside the boundary layer, and Rw is the Reynolds number

based upon ﬁe’ L, and the thermodynamic properties evaluated at the wall. The condition

M R—l/Z
e'w

layer thickness vanish in the limit 3.3 (see app. I).

- 0 arises from the requirement that the ratio of boundary-layer thickness to shock-

In the present study, the nondimensional parameters, in the case of a chemically inert,

laminar, continuum flow, may be chosen as

Me, RW, v, Pr (3.4)
where v is the ratio of specific heats, and Pr is the Prandtl number. We will consider a limit

M - o, R~ oo, MR'l/z-o
[S] w e w

v, Pr held fixed (3.5)

Since we will be concerned with a small region near the corner at the base of the body, both

the x and ¥ coordinates will be stretched in some manner.

The equations of motion for two-dimensional planar, nonreacting, laminar, continuum

flow are
(f)ﬁ)i + (Zﬁ)? =0 (3.6)
T)(ﬁﬁi + \—rﬁy) = -f)i + (ﬁl%)v +... (3.7
T)ﬁ?i +T/V?) = -f>§ +... (3.8)
PRy + Vhy) - @y + 75y = BT + ﬁﬁé il (3.9)
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For simplicity, the terms shown for viscous and heat conduction effects are only those impor-
tant in the boundary-layer equations. In the case of axisymmetric flow past a cone, it will be
shown that the effect of body curvature on the acceleration of the boundary layer at the corner
of the base of the body is negligible in a first approximation.

We now consider the boundary conditions to be imposed at the wall and at the outer edge of

the accelerating boundary layer. At y = 0 we have

u(x, 0) = v(x, 0) = 0 (3.10)

As the boundary layer undergoes rapid acceleration, it will initially become thinner if it is in the
subcritical condition in which d?i*/d_ﬁ > 0, where 6* is the displacement thickness of the boundary
layer (see sec. 2). Then the pressure at the outer edge of the layer will be related to the flow de-

flection by the simple-wave relation in hypersonic small-disturbance theory [1].

2y /(v -1)
J (3.11)

P&, 0) . L1y, v =1y o, 5)
— 7.12 M2 2 e

Pele 7 Me

Notice that the boundary-layer thickness ‘5 in the limit 3.5 is equal to the displacement thickness

T* (see eqs. I-34, 1-35, and ref. 16), so that

o(x, §) = dg*/d§[1 + o(m;z)} (3.12)
with
v/d = tan ¢
~9

when 6 is small. From the limit 3.1 and when Ap/p = O(1), we have
— -1
o(x, 5) = O(Me ) (3.13)

If in addition to the limit 3.5, §/R;71/2L and some stretched x coordinate are held fixed in a
manner such that

(x/L) -1-0 (3.14)

the equations obtained in a first approximation will not contain terms representing viscous effects.
Regardless of the limit chosen, the order of magnitude of the flow deflection should be such that
a first approximation to the continuity equation shows a balance between streamline divergence

and change of mass flux. If Ap/p = O(1), it follows that
9 = O(Ay/ Ax) (3.15)

where Ax and A§ are taken to be of the same order as the relevant lengths, respectively, in the

x and y directions.

10
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5=y R -1/2
sistent with the limits 3.5 and 3.14. For % = [(x/L) 1]/M R -1/2 held fixed, equation 3.15 gives

L is held fixed, any of four possible sets of equations might be obtained, con-

o= O(M(;l> (3.16)

throughout the layer; the y -momentum equation simplifies to p— ~ 0, and no further approximation
is made in the boundary condition (3.11). For X = [(x/L) - 1) /R 1/2 held fixed, equation 3.15
gives

0 = O(1) (3.17)

in the boundary layer; terms for both pressure and inertia appear in the first approximation to

the y-momentum equation. Since 0 = O(M;I) at the outer edge, the leading term in ¢ is required
to approach zero as y — 0, and equation 3.11 is replaced by the requirement that p remain bounded
asy — 6. For the class of limits X —~0butx — -o0, we obtain the approximate form both for the}—
momentum equation and for the boundary condition at y = 6. This case turns out to be important
for obtaining higher approximations. Finally, for the class of limits { — -0 with (x/L) -1 -0,

we find

g = o(M:) (3.18)

throughout the boundary layer. Here the flow properties are only slightly perturbed from their

undisturbed values, a situation related to that studied by Lighthill [8].

Following the physical arguments of the previous section, we will assume that limits for >Ac
or X held fixed mustboth be considered, with X fixed to correspond to the subcritical condition
and X fixed to correspond to the supercritical condition. The choices of X and X show the same
dependence on Reynolds number as those given in references 11 and 12. Since in each case
the no-slip condition (3.10) is lost, we will refer to those as the first and second outer limits,
respectively, and we will later introduce a sublayer limit in which ¥ — 0 at a prescribed rate.
Specification of the sublayer limit is determined, as in ordinary boundary-layer theory, by the
requirement that terms for viscosity and inertia in the x-momentum equation (3.7) be of the

same order of magnitude.

The notation to be introduced for the boundary-layer limit, the first outer limit, the second

outer limit, and the sublayer limit are summarized in table I.

3.2. FIRST OUTER LIMIT
The first outer limit is described by the conditions

M -, R -.oo,MR'l/z-—o
e w e w

(3.19)
X, 5, v, Pr held fixed

11
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TABLE I. COORDINATE NOTATION AND LEADING TERMS IN
ASYMPTOTIC EXPANSIONS

Original Boundary First Second
Variables Layer Outer Limit Outer Limit Sublayer
- X A _x/L-1 ~ x/L-1 ~ x/L-1
x L XE02 0 *TT i *TT ik
M R R R
e w w w
= ~_y/L ~ _y/L > _ y/L y/L
y Y=—"173 Y=—"173 Y="11/3 7= 577
R R R R
w w w w
— ~ AA ~ ~ o~ o~ ~ ~
W/, utx, 3) 0&, 3) Wk y) U@, v
-1/2, ~ “lpp ~ ~ -1/4,~ T~
Vi, R H MRy vE&n RV uen'E
- = y-1 AA ~ ~
p/p g Py = o P&) p(x, y) pT(x)
p/p, p(x, y) P&, y) p(%, y) pT(x, yT)

where X = [(E/L) - ll/MeR;vl/z and y = ;/R\_NI/ZL. We wish to obtain the appropriate asymptotic
representations for u, v, p, and p and the system of equations and boundary or initial conditions

applicable in a first approximation. We note that in a boundary layer in the limit 3.3

G/Ee = O(1) (3.20)
‘/‘ -0 M'z) (3.21)
P/ Pe = ( e :
These relations are also applicable in the limit 3.19. Thus from equations 3.16 and 3.20 we have
o -1
vu =0(M (3.22)
e e
and if Ap/p is assumed to be of order one, equation 3.21 gives
AB/E 22 = o(1) (3.23)
w e )

From the x-momentum equation (3.7), we see that

8u/4 = o[Ag/(zwajﬂ

= 0(1) (3.24)

12
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In the y-momentum equation (3.8), we have

puv—
X _ofm2gl/2 1 (3.25)
- -2 e w

p.u

w e

1/2

_ - — — A
Since Ay is of the order RW L, in a first approximation, p; = 0, and p is only a function of x.

From equations 3.20 through 3.25, we see that the asymptotic representations for u, v, p,

and p in the limit 3.19 are given by
- AN ~
uAe~u(x,y)+. .

TR Ve Tt T R
(3.26)

Substitution of equations 3.26 into equations 3.6 through 3.9 provides the relations for the first

approximation in the limit 3.19

@®§+$%§+qn=o (3.27)
;)\(GG/\ +GG~>=—6/\ +O(M R_1/2> (3.28)
X y X e w
A -2
0--p§+O<Me ) (3.29)
s(aﬁA g ) BT o(M-Z) . o<M R-1/2> (3.30)
X y X e e w

A = /=2
where h = h/ue. Since the equations in the first outer limit are inviscid-flow equations, the no-

slip condition u(x, 0) = 0 must be dropped, and only the requirement

9(x,0=0 (3.31)

is retained. For convenience we introduce a nondimensional, stretched boundary-layer thickness
= /-1/2
6= G/RW / L (3.32)

which remains finite in the limit 3.19. Then the pressure is related to the flow deflection at the

outer edge of the layer from equations 3.11 and 3.13 by

(3.33)

A A } 1A A 2v/(y-1)
By =12 1075106 o]

13



WILLOW RUN LABORATORIES

Upstream we have the initial condition

U (-, §) = u, ) (3.34)

where u1(§) is the velocity profile found from the solution to the boundary-layer equations with

x/L =1 (see app. I).

For a large and negative )Ac, it follows from equations 3.11 and 3.18 that the pressure dis-
turbances are small, and the flow problem becomes similar to the one studied by Lighthill [8].
Lighthill found that the region of disturbed flow extends a distance of order R'3/ 8L in the stream
direction. The variation in the displacement thickness of a viscous sublayer l‘:]as a first-order

effect on the perturbations in the outer, inviscid portion of the layer and is of order R:Ns/ 8L in

magnitude:
2 - ofl)
w
* (8.35)
5 /3 1/8
SL = O(Rw >

Depending upon the order of magnitude of the pressure disturbance, there are two possible order

estimates for the change Au in the velocity of any fluid element in the sublayer, namely

Au = (3.36)

In the first case, the sublayer equations are nonlinear, and a balance of the orders of magnitude

of /_)Gﬁg, B;, and (u H;)_ in equation 3.7 with

y
Ax=0 (R-3/8L>
w
Ay = O(R_5/8L>
w
provides the order estimates
o/, - o(;!"?) (3.3
e w
— = =2\ _ -1/4
Ap/(pwue> =0 <Rw ) (3.38)

In the outer, inviscid region, the orders of magnitude of Eﬁﬁ; and B; in equation 3.7 are equated,

giving, along a streamline,

14
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AE/Ee = 0<R'1/4) (3.39)

w

In the second case in equation 3.36, the sublayer equations may be linearized, and AE/(EWGS
=0 (R;Vl/(l). (Note that Lighthill's order estimates may be reconstructed by a systematic con-

sideration of orders of magnitude in the limit RW - 00.)

The solution for G()A(, y) is obtained in section 4. It is shown in equation 4.29 that as g~ -cC,

{ (X, 7) has the form
~ A=2. ~
w () +0kx 7),y>0

A, § = (3.40)

A ~
Thus, if x = O(R\lﬁ/8> , the order of magnitude of G(Q, y), as found from equation 3.40, agrees
with the order estimates given in equations 3.37 and 3.39. That is, the velocity profile obtained
in the first outer limit has the possibility of matching upstream with a solution to the problem

described by Lighthill.

3.3. SECOND OUTER LIMIT

The second outer limit is described by the conditions

M, ~ o, R~ o, MER;}/Z- 0
(3.41)

X, ¥, v, Pr held fixed
where x = [(x/L) - 1]/R;V1/2, and y = §/(R_1/2

\
representations for u, v, p, and p, and the system of equations and boundary conditions applicable

L). We wish to obtain the appropriate asymptotic

in a first approximation. The order estimates 3.20 and 3.21 are also valid in the limit 3.41, and,

thus, from equations 3.15 and 3.20, and 3.41, we have
V/Ge = 0(1) (3.42)

In order for the inertia and pressure gradient terms to balance in the x- and y-momentum equa-

tions 3.7 and 3.8, we then must have

AB/ <EWE§ > - 0(1) (3.43)

AII/Ge = 0(1) (3.44)

15
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From equations 3.20, 3.21, and 3.42 through 3.44, we see that the asymptotic representations

for u, v, p, and p in the limit 3.41 are
VAT (-3 R
;/ﬁe ~VE, Y +. ..
_/(_ _2> ~— (3.45)
B/ Pyl " P Y) .
BBy~ BT+ -

Substitution of equations 3.45 into equations 3.6.through 3.9 provides the relations for the first

approximation in the limit 3.41.

(Eﬁ)g + (5\7); +0o(1) =0 (3.46)

Py + Tg) = =By + 0 <R;V1/ 2) (3.47)
BV + Ty =By + O (R:Nl/ 2) (3.48)
P(Ehy + 7he) = Uy Ty + O<R‘-”1/2) (3.49)

where h = H/Gz. Because these relations for the second outer limit are the inviscid-flow equa-

tions, the no-slip condition G(E, 0) = 0 must be abandoned, and only the requirement
v(x, 0) =0 (3.50)

is retained at the wall. At the outer edge of the layer, v/u is of the order M;l so that the bound-

ary condition on v at '37 = 0 becomes
v(x, 8) =0 (3.51)

while S(;c, 8) must remain bounded. The equations 3.46 through 3.49 are elliptic when the local

Mach number

—D 1/2
M= [GE%/y5)] (3.52)
is less than one. Thus, it is appropriate in this limit to specify a downstream condition. As
discussed in section 2, for a sufficiently low base pressure, the sonic line will intersect the

corner, X = ; =0, in a first approximation where the effect of the viscous sublayer is neglected.

Therefore, we have the condition

16
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M(0, 0) = 1 (3.53)

To obtain initial conditions upstream, we assume that for any given flow quantity the solu-
tions in the first and second outer limits can be matched. That is, we assume that both solutions

are valid for some class of intermediate limits such that

X = -0, §/hde -0
5 (3.54)
x/f(Me) fixed
where 1 << f(Me) << Me as Me — . In a first approximation the matching appears straight-

forward, and it is expected that the matching conditions become simply

U(-e0, §) = 1(0, ¥) (3.55)
B(-0, §) = (0) (3.56)
V(-0, §) =0 (3.57)

See reference 18 for a further discussion of matching.
For higher approximations, the situation is quite different. As X — -, the asymptotic ex-
pansion of the normal velocity component v for the second outer limit (3.41) gives
-~ ~-3
v/ue ~ (constant) X

as X — -o. See the representation for v described by equations 5.48 and 5.93, for example. In
the first outer limit, the asymptotic expansion of V, for X = §/Me - 0, is found from the solutions

given by equations 4.17, 4.18, and 4.33 to be

-1/2
L -1h
v/ue (constant) Me Ix]

-1/2

-1
~ (constant) Me Ix/Me

as §/Me -~ 0. Thus, these two expansions for v do not have the same functional form, and the

higher order matching cannot be carried out. Since these expressions are of the same order of
1/5

o >, it is expected that approximate differential equations must also

magnitude when x= O(M

be derived for f(Me) = O<Mcle/5> in equation 3.54, i.e., for the distinguished limit in which
§A/[l/5 is held fixed. It can be shown that in this limit the order estimates for the perturba-

tions in the dependent variables along a streamline are

s/ = O(M;Z/ %

17



WILLOW RUN LABORATORIES

v/5, = o *?)
Aa/(gwai) - ofu:?/?)

— /= -2/5
Ap/ pW = O<Me >
In the governing equations in this limit, both the approximation E}; =~ 0 employed in the first

outer limit (3.19) and the approximation v(x, §) ~ 0 applied in the second outer limit are valid. A

solution to these equations would be required as part of a higher order approximation.

In equations 3.6 through 3.9, the effect of body curvature has been neglected. The extent
of upstream influence of the corner in which the disturbances are still a first-order effect is

found to be

(x/L) -1 = O(MeR;Vl/ 2>

Since the radius of a slender cone is equal to T-);, the relative variation in the radial coordinate
T when % = [(x/L) - 1] /MeR;Vl/ 2 is held fixed is
AT/t = 0<M R'l/z)
1 e w

where ?1 = 7L is the radius of the base of the cone. Thus, the variation in r is relatively small,

and may be classed as a second-order effect.

3.4. COMPOSITE EXPANSIONS OF SOLUTIONS IN THE FIRST AND SECOND OUTER LIMITS
As long as the asymptotic expansions obtained in various limits in a solution to a singular
perturbation problem have a common region of validity, a single uniformly valid expansion can
be constructed from them. One method of constructing composite expansions is by additive
composition. The sum of the expansions is corrected by subtracting the part they have in com-

mon so that it is not counted twice [18].

In the present problem, we will construct a composite expansion of the solutions in the first
and second outer limits to provide the necessary boundary values in the sublayer problem.
Following the rule for additive composition we have, to the first order,

E<§’§’M’R) A ~ o~ o~ -
& ¥ ~u<Ml,§> +Ux, ) -0(0,F) +. .. (3.58)

ue e

where §/Me has been substituted for ¥ and where the common part, to the first order, is found

from equation 3.55. Since only Me appears in the expansion, it is necessary,in this approach,to
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specify Me but not Rw in carrying out the solution to the viscous sublayer equations. When the

sublayer solution has been obtained, all three expansions may be combined to give, in a first

approximation,

u<X, Y5 Me; RW)~A X ~ ~ o~ o~ A ~ ~ T [~ y
= u{3=, ¥ ) +ux,y) -u(0,y) + Ux)u' | X, —777
u M -1/4
e € R
w

- G<Mi o) -3, 0) +1(0,0) +. .. (3.59)
e

— /= ~ ~ ~/ -1
where u/ue ~ U(x)uT(x, y/RW /4) + . .. in the sublayer (eq. 3.64). Composite expansions for the
other flow properties are found in a similar manner. In particular, the first-order, uniformly

valid representation for v is simply

v (i’ % Me’ RW)

u
e

~VX, ¥+ ...

3.5. SUBLAYER LIMIT

The conditions applicable in the sublayer limit are found when an approximate stretching
factor for the y-coordinate in the sublayer is determined. Again, the order estimates for u and
p given in equations 3.20 and 3.21 are applicable in the viscous sublayer also. Because the pres-
sure gradient in the sublayer is equal to the pressure gradient given by the outer inviscid solu-
tion for § = 0, equation 3.23 also provides the order estimate for Ap in the sublayer. Thus, for

the EEE; and B}—( terms in equation 3.7 to balance in the sublayer,

AE/E,e = 0(1) (3.60)

If we choose to consider a limit in which Me - w, it is again necessary to introduce the two
X coordinates, % and x. It seems, however, that to take the hypersonic limit in studying the sub-
layer does not lead to simplification, but rather to increased complication. A different approach
is first to obtain the composite solutions for the first and second outer limits (e.g., equation 3.58)
and then to use these results evaluated at;l = 0 as the boundary conditions at the outer edge of the
sublayer. To accomplish this, of course, it is necessary to specify the value of Me. Then x

= [(}/L) - 1]/R‘_Wl/2 is an appropriate x coordinate in the sublayer, and
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puu—
X -
_ O(RI/ZL 1)
we (3.61)
=
v/—
= ol 55 1)
——2 ~ %y %Lt
Pyle
- -3/4 L o
Thus, 6SL =0 RW L], and the conditions in the sublayer limit are
R —-w
v (3.62)

;(, yT, Me’ ¥, Pr held fixed

where X = [(x/L) - 1]/R;Vl/2 and yT = §/R;73/4L. This choice is in agreement with the result given
in references 11 and 12. The order of magnitude of the flow deflection in the sublayer is found

from equations 3.15 and 3.62 to be

v/u = o(a'”‘*) (3.63)

e w

From equations 3.20, 3.21, 3.23, 3.60, and 3.63, we see that the asymptotic representations

for u, v, p, and p in the limit 3.62 are
E/Ge ~ U(§)uT(;{, yT) ...
=/ e 1/4 T
v/ue RW UV X,y ) +...
— /- =2\ . f~
p/(pwue) px)+...

5By o Gy v

(3.64)

where U(§) is the nondimensional x component of velocity at the outer edge of the sublayer and

is found from equation 3.58 with y = 0. The introduction of U(x) into equations 3.64 simplifies

T

the boundary conditions on u'. Substitution of equations 3.64 into equations 3.6 through 3.9 pro-

vides the relations for the first approximation in the limit 3.62.

Al UuT); + T uvh (o) =0 (3.65)
y
pTU &T (UuT )}~{ + VTUuT T:I = -p}.; + U<uTuT T> " + O<R;}1/2) (3.66)
y vy
0= -pTyT " o(xz\'vl/z) (3.67)
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Foof T T 1 T T i Tt .2 T \2 -1/2
pUQl ~ +vhyT>-Uu p§=<kTyT>yT+u U <u yT> +O<RW ) (3.68)

where J = E/ﬁw’ kJr = E/EW, hT = H/Ez. The boundary conditions (3.10) become

u& 0) =vIE 0)=0 (3.69)
while, at the outer edge of the sublayer, yJr - o0, and
Tre o
u'(x, 0)=1 (3.70)
4

SOLUTION IN THE FIRST OUTER LIMIT:  (X/L)-1= o(MeRw—l/2)

4.1. TRANSFORMATION OF THE EQUATIONS
The approximate equations 3.27 through 3.30, obtained by taking a limit of the exact equa-
tions for & fixed, can be integrated directly by the following procedure. First, von Mises

. A .
variables s, ¥ are introduced.

A
s =X
%z-f)‘(} (4.1)
A AN
Y~ = pu
7=°P

Then in the case of adiabatic flow of a thermally and calorically perfect gas over an insulated

body, the set of equations (4.1) becomes

v/, = (1/p0), (4.2)
A
(g (4.3)
L
A ANLAY
p=EW)p (4.4)

A
where G, G, ﬁ, and /;\) are now functions of s and ¥. The boundary and initial conditions (eqgs.

3.31, 3.33, and 3.34) are

-w, ¥) = g(8) (4.5)
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(s, 0) =0 (4.6)
2r_
v-1
P(s) = 7—2;—/—1[1 + Z—;—IO(S, oo)] (4.7)

where g(B) = ug the Blasius boundary-layer solution u(x, ;) evaluated at x = x/L = 1 (see
app. I). Notice that any streamline can be identified by specifying either the appropriate value

A
of ¥ or the corresponding value of 8. From equations 4.3, 4.4, and 4.5,

A -1 .2
BW) =Lp—(1-¢") (4.8)
Now let us introduce a new coordinate
6=1+2220s, ) (4.9)

Thus, from equations 4.3, 4.4, 4.7, 4.8, and 4.9 we obtain

=11 % - g2 (4.10)
S =72;1¢27’/(7‘1) (4_11)
p =[1- YD (4.12)

The normal velocity component 3 and the transformation s = s(¢) are found from integration

of equation 4.2.

A
¥
?-= G(ds/d¢)-1f (1/,6‘&)¢ v (4.13)
0
; A 2 A A . . ;
Since v - _7/_-T(1 - ¢) as ¥ —~ oo, letting ¥ - w0 in equation 4.13 yields
y-1 1% A A
ds/d¢ = ‘—'2—-(1 - ¢) (l/Pu)d)dW (4.14)
0

The normal coordinate ; is found by integrating the third of equations 4.1.

A

v
y= f (1/p8) ad (4.15)
0
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The integrals in equations 4.13 through 4.15 can be evaluated by substituting for ;/)\, d
from equations 4.10 and 4.12 and carrying out the differentiation with respect to ¢. Then the

A
variable of integration is changed from ¥ to 8. Since X =1, = 1, equations I-26 and I-31 yield

- ()

The resulting integrals are

12 -r*1 o
2 e pras (4.17)

ds/d¢ = (2k+ 1) ¢ -
0

8
f K, (¢, 6)d8

-t da- @02 (4.18)
K, (4, )ds
J,
2
/2 -2 g
y= (2k2+ 1) 677 AL (4.19)
where K1 and K2 are given by

K, (6, 8) = &(1 - g’2>[1 A FL é2>][1 -t - A2

(4.20)
K, (9, ) = (1 - 21 - 21 - )7 /2

The function I{8) will be defined by

2 1/2 -3?% -1(P
IB) = (m) ¢ (1-9¢) JO K1(¢>, B)dp
and will be used in the calculation of ds/d¢. Equation 4.17 now could be written as ds/d¢ = I(c0).
1

The kernel K, can be written in terms of the Mach number M = (ﬁ\ﬁz/yﬁ)z with

M2 - M) = -[1 Naarie éz)][l -t - )t

g i AN 7~
Substituting d¢ = pudy, we get

23



WILLOW RUN LABORATORIES

2
ds/d¢ = ¢~ (1 - ¢)‘1f1_'¥d§ (4.21)
M
0

Thus ds/d¢ is proportional to Lighthill's result, equation 2.1, for the inverse logarithmic
decrement of upstream influence for small disturbances. The derivative ds/d¢ clearly vanishes
at some point where the Mach number just outside the sublayer is still subsonic. This "critical
point" represents the downstream limit of validity of the solutions obtained in terms of 2 and

y. As the pressure continues to drop, the spreading of streamlines in the supersonic portion

of the layer will be dominant. This is expected to occur only when the flow becomes free to

turn inward within a distance Ax = O(R;VI/ZL> upstream from the corner. Since ¥ = O(1) cor-

responds to a distance Ax = O(M

1/ 2L> upstream from the corner, the critical point is lo-
cated at X = 0.

R_
e w

4.2. ASYMPTOTIC EXPANSION FOR s = -
To obtain asymptotic expansions for the dependent variables as s - -, we introduce

€ =1 -¢ so that e = 0 when ¢ — 1. The integral in equation 4.17 can be split into two parts by

introducing
Ao
(4.22)
o0
0
where BO is defined to satisfy € << Bg << 1. Then in I1 the approximation (see eq. I-41)
g(8) ~ ap
as 8 - 0 can be used, while in I2 the approximation
-2
e << g (B) (4.23)

is valid. Thus, we obtain

Ao

I r-1 (2€+oz2
a

Bz)-3/2 d(azﬁz) 4+ 0(1) = yz-al[_(z )11/2 + a}i(J + 0(1) (4.24)
€
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~v-1 1 2y y+ 1.2
B g
0
Because the integral is not bounded for BO - 0, we add and subtract a term to remove the
singularity.
0
-1 1 1 2 1.2 -
Iy~ -5 Ki' ;)'yf1+;fﬁJdB‘y21 (4.26)
g (aB) 2074,
Po

When we recombine the integrals I1 and 12, the terms in B(_)l cancel out so that

ds/d¢~-( 1 )1/27/-1 1

2k + 1 2a 3/2
-0
-1 -1/2 -1
s~ -y - Do~ ek + 1721 - )7 1/2 (4.27)
or
6~1-(y- 120 2@k + 1) 1s72 (4.28)
From equations 4.10 through 4.12 and 4.28, as s - -,
y-1[ 2 12 4
o \ksi) S B=0
i~< @ * (4.29)
. -2
Lg +0(s ), B>0
A y-1 -2 4.30
B =Y+ 0™ (4.30)
-1 -2
Aoa-e)vos™d (4.31)
while from equations 4.18 and 4.28 we have
A -2
v ~ (constant)s ~ for § >0 (4.32)

as s — -w. Thus, in the upstream limit s — -0, the flow properties decay algebraically as

anticipated by the discussion of equations 3.40.
4.3. EXPANSION AT THE CRITICAL POINT

Although ds/d¢ vanishes at the critical point, d2s/dc1>2 there is nonzero, so that a Taylor

series expansion of the integral of equation 4.17 yields
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2
-s o (¢ - ¢>c) (4.33)
as ¢ —~ qbc where ¢>c is found from
o o]
f K1(¢ , 8)dg =0 (4.34)
0 c
Since
A 2
dé/ds = v(¢, ) = -y——i(l - ¢) (4.35)
we have that
%6/ ds? - )—/?—l(ds/dqb)-l (4.36)
Thus, in a neighborhood of the critical point,
dd/ds oc constant + O[(-s)l/z]
(4.37)

dzé/ds2 oc (-s)_l/2

as s - 0. Thus, although the streamline slope at the outer edge of the boundary layer remains
bounded, the curvature, in terms of the stretched coordinate s, becomes large at the critical

point.

4.4. NUMERICAL RESULTS

To obtain G, Q, ﬁ, and g/)\ as functions of 2 and 5, it is necessary to integrate equations 4.17
and 4.20 numerically. These integrations have been carried out using the IBM 7090 digital
computer at The University of Michigan Computing Center. The algorithms employed are
programmed in the MAD language [19]. The numerical technique employed is first to integrate
equations 4.20 and I-39 on 8, using the Runge-Kutta fourth-order method, which is a standard
computer library subroutine [20, 21]. Thus, the integration on 8 consists of solving the fol-

lowing set of first-order, ordinary differential equations:

dy,/d8 =y, (4.39)

2

dy,/dp = (Zk vi) %of (4.41)
1/2 r+l
2 y-1 -1
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where
g(8)
£(8)
~ (4.43)
y4 =y

1/2 -1

y5=<2k2+1> D) deB

Equations 4.38 through 4.40 are introduced to generate the function g(8), which appears in the

expressions for K. and K2 To start the numerical integrations it is necessary to utilize

1
asymptotic expansions for Yy oo -5 Vg a8 B — 0. The expansions for Yy yz, and yg are given

by equations I-41, while results for expansions of ;r and ¥y are

7~ (2k2+ 1>1/2¢_V'1 1 (Zg - T)+ .. (4.44)
Vg ~ <2k2+ 1>1/2¢> —I(l - ) 201{(1 WY ; 1¢>2>Zl + [y + 1)<1>2 - I]ZZ} +... (4.45)

as 8 - 0, where o = 0.4696 and where

1,-1/2 a-l/z)

1= -2b
Z, = 2b~ 2 1/2 Zal/z + ac-l/z)
(4.46)
_ Zb_l 1/2 a1/2)
3
_on-2(1.3/2 1/2 2 3/2)
Z4 =2b <§c - ac +32
_ 2 . _ 2 _ 2 2.2 . . 2 .
Herea=1-¢",b=¢ ,andc=1-¢" (1 -a"B"). Since we find 1 - ¢ to be a numerically small

quantity over its possible range of values, [32 has not been neglected in comparison with 1 - ¢2

as 8 — 0, in equations 4.44 and 4.45. With the initial values of the dependent variables given,
the numerical integration proceeds, step by step, up to a value of 8 sufficiently large for the
asymptotic expansion for ¢ as 8 - «, given in equation I-30, to be applicable. In terms of the

values calculated in the last step in the numerical integration, the values for 8 - « are

) W2 1.2
5~ y,00, 5)+ 086252 ) 0 7 e (5E7) (4.47)
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2
2k +1

6 Y11 - ) e exp (—%§2> (4.48)

1/2 -r*1
ds/d¢ ~ y5(¢>, B) + 0.662( >

where { =3 - 1.21678. Now ds/d¢ can be calculated for any given value of ¢ from equation 4.48.
The critical point is located when ds/d¢ = 0. The critical values are found by a simple itera-

tion scheme to be

M, . = 0.4482

P /p_=0.8712 (4.49

p./Py =0. -49)
¢, = 0.980495

when y = 1.4. We retain six significant figures in ¢C because of the factor 1 - ¢ which appears
in the equations. Although the value of qbc is quite close to one, the drop in pressure is more
pronounced because 6 o <¢>7 when y = 1.4. Then s = 0 when ¢ = ¢c’ and the second step in the

numerical solution is to compute the integral

¢
s =f (ds/d¢)de (4.50)
¢

Cc

where ds/d¢ is found in equation 4.48. This is carried out by Gaussian quadratures [20],

another standard computer library subroutine.

1t should be noted that when the results are considered as functions of ﬁ/ 51 and y/0 1
where 61 is given in equation I-37, they are applicable to both wedge-shaped and conical con-
figurations. This is because not only 6 but also s and y contain the factor [2/(2k + 1)]1/2

(see eqs. 4.17 and 4.19).

1

The velocity u/ Ge and the function I(8) are tabulated against y/ % and 8 for several
values of ¢ in table I In table III, the quantities ¢, M, B/Be, EO/Ge, d¢ /ds, and 6/8,
are tabulated against s/ 6,. Figure 3 shows M_, ﬁo/ﬁe, E/Ee, 5/31, and ¢ plotted as functions
of 9(/51. The flow properties are seen to change rather rapidly as ?{ - 0, a result expected

from the expansions in equations 4.28 through 4.32 for s - 0.

The results in the solution for the first outer limit will be utilized further in constructing
composite expansions. This topic is discussed in section 5 after the solution in the second

outer limit has been obtained.
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TABLE II. SOLUTION IN FIRST OUTER
LIMIT, PART ONE

¢ = 1.000000
B v/0, u/u, 1(8)
0.000  0.0000 0.0000 0.000E + 00
0.010  0.0059 0.0047 0.000E + 00
0.500  0.2910 0.2342 -0.000E + 00
1.000  0.5502 0.4606 -0.000E + 00
1.500 0.7514 0.6614 -0.000E + 00
2.000 0.8834 0.8166 -0.000E + 00
2.500  0.9545 0.9167 -0.000E + 00
3.000  0.9854 0.9688 -0.000E + 00
3.500  0.9962 0.9904 -0.000E + 00
4.000  0.9992 0.9975 -0.000E + 00
4.500  0.9999 0.9994 -0.000E + 00
0.000  1.0009 1.0000 0.000E + 00
¢ = 0.999000
g y/8,  u/ug 1(8)
0.000  0.0000 0.0447 0.000E + 00
0.010  0.0003 0.0450 -0.423E + 02
0.500  0.2305 0.2382 -0.361E + 04
1.000  0.4888 0.4623 -0.385E + 04
1.500  0.6905 0.6623 -0.370E + 04
2.000 0.8231 0.8170 -0.355E + 04
2.500  0.8946 0.9168 -0.345E + 04
3.000 0.9256 0.9689 -0.341E + 04
3.500  0.9364 0.9904 -0.340E + 04
4.000 0.9394 0.9975 -0.339E + 04
4.500  0.9402 0.9994 -0.339E + 04
0.000  0.9412 1.0000 -0.339E + 04
¢ = 0.995000
B y/8,  u/ug 1(8)
0.000  0.0000 0.0999 0.000E + 00
0.010  0.0001 0.1000 -0.745E + 00
0.500  0.1966 0.2536 -0.331E + 03
1.000  0.4519 0.4691 -0.367E + 03
1.500  0.6559 0.6656 -0.335E + 03
2.000 0.7906 0.8186 -0.304E + 03
2.500  0.8635 0.9175 -0.286E + 03
3.000 0.8952 0.9691 -0.277E + 03
3.500  0.9062 0.9905 -0.274E + 03
4.000  0.9092 0.9975 -0.273E + 03
4.500  0.9100 0.9994 -0.273E + 03
0.000  0.9111 1.0000 -0.273E + 03

¢ = 0.990000
B v/3, u/u, 1(8)
0.000 0.0000 0.1411 0.000E + 00
0.010 0.0001 0.1411 -0.128E + 00
0.500 0.1738 0.2714 -0.960E + 02
1.000 0.4264 0.4773 -0.109E + 03
1.500 0.6332 0.6698 -0.923E + 02
2.000 0.7708 0.8206 -0.764E + 02
2.500 0.8454 0.9184 -0.667E + 02
3.000 0.8779 0.9695 -0.623E + 02
3.500 0.8892 0.9906 -0.607E + 02
4.000 0.8923 0.9975 -0.603E + 02
4.500 0.8931 0.9994 -0.602E + 02
0.000 0.8942 1.0000 -0.600E + 02
¢ = 0.985000
B y/8, u/u, 1(8)
0.000 0.0000 0.1726 0.000E + 00
0.010 0.0001 0.1726 -0.447E - 01
0.500 0.1596 0.2881 -0.424E + 02
1.000 0.4103 0.4854 -0.481E + 02
1.500 0.6202 0.6740 -0.367E + 02
2.000 0.7607 0.8226 -0.257E + 02
2.500 0.8371 0.9193 -0.190E + 02
3.000 0.8704 0.9698 -0.160E + 02
3.500 0.8819 0.9907 -0.149E + 02
4.000 0.8852 0.9976 -0.146E + 02
4.500 0.8859 0.9994 -0.146E + 02
0.000 0.8871 1.0000 -0.145E + 02
¢ = 0.980495
B y/8, u/u, 1(8)
0.000 0.0000 0.1965 0.000E + 00
0.010 0.0001 0.1966 -0.224E - 01
0.500 0.1507 0.3023 -0.239E + 02
1.000 0.4002 0.4925 -0.267E + 02
1.500 0.6130 0.6776 -0.175E + 02
2.000 0.7563 0.8244 -0.887E + 01
2.500 0.8343 0.9200 -0.361E + 01
3.000 0.8683 0.9701 -0.122E + 01
3.500 0.8801 0.9908 -0.378E + 00
4,000 0.8835 0.9976 -0.140E + 00
4.500 0.8842 0.9994 -0.833E - 01
0.000 0.8854 1.0000 0.459E - 03
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TABLE III. SOLUTION IN THE FIRST OUTER LIMIT, PART TWO

¢ M p/p, U /U, d¢ /ds 8/3, s/6,
1.000000  0.0000 1.0000 1.0000 0.000E + 00 1.0000 -0.0000
0.999000 0.1001 0.9930 0.0447 -0.339E + 04 0.9412 -3.3437
0.998000 0.1416 0.9861 0.0632 ~-0.122E + 04 0.9309 -1.8937
0.997000 0.1736 0.9792 0.0774 -0.655E + 03 0.9229 -1.2456
0.996000 0,2006 0.9723 0.0894 -0.406E + 03 0.9165 -0.8711
0.995000 0.2244 0.9655 0.0999 -0.273E + 03 0.9111 -0.6291
0.994000 0.2461 0.9587 0.1094 -0.192E + 03 0.9065 -0.4625
0.993000 0.2660 0.9520 0.1181 -0.140E + 03 0.9026 -0,3431
0.992000 0.2846 0.9453 0.1262 -0.104E + 03 0.8993 -0.2552
0.991000 0.3020 0.9387 0.1339 -0.788E + 02 0.8965 -0.1893
0.990000 0,3186 0.9321 0.1411 -0.600E + 02 0.8942 -0.1392
0.989000 0.3344 0.9255 0.1479 -0.459E + 02 0.8922 -0.1010
0.988000 0.3496 0.9190 0.1545 -0.351E + 02 0.8905 -0.0717
0.987000  0.3641 0.9125 0.1607 -0.266E + 02 0.8891 -0,0495
0.986000 0.3781 0.9060 0.1667 -0.199E + 02 0.8880 -0.0327
0.985000  0.3917 0.8996 0.1726 -0.145E + 02 0.8871 -0.0203
0.984000  0.4049 0.8932 0.1782 -0.101E + 02 0.8864 -0.0114
0.983000  0.4177 0.8869 0.1836 -0.651E + 01 0.8859 -0.0055
0.982000  0.4301 0.8806 0.1889 -0.355E + 01 0.8856 -0.0018
0.981000  0.4422 0.8743 0.1940 -0.108E + 01 0.8854 -0.0002
0.980495  0.4482 0.8712 0.1965 0.459E - 03 0.8854 0.0000

1.0 —_—
5/51 /pe
0.9 —
0.8
e N T —
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FIGURE 3. SOLUTION FOR M, Uy/Ug, P/ Pg,

AND /6, IN THE FIRST OUTER LIMIT
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5
SOLUTION IN THE SECOND OUTER LIMIT: (x/L)-1 = O(R,,~ "/2)

5.1. FORMULATION BY THE METHOD OF INTEGRAL RELATIONS
The equations 3.46 through 3.49 in the variables x = [(x/L) - l]R";vl/2 and y = §/R\;’1/2L,
describing the flow in the second outer limit for the first approximation, are the full inviscid-
rotational-flow relations, and the flow contains both subsonic and supersonic regions. We
formulate a numerical procedure for obtaining the solution to this problem by an application of
Dorodnitsyn's method of integral relations [22]. In this method, the differential equations are
integrated across horizontal strips bounded by the lines yj = yj(x). A system of first-order,
ordinary differential equations is obtained in which the dependent variables are the flow
properties on the strip boundaries. These equations, then, are in a form well suited to numeri-

cal integration using high-speed electronic digital computing machinery.

In the present case, numerical results are obtained for a one-strip calculation, and a
procedure is described for carrying out a two-strip analysis. An attempt to generalize the

calculation to an arbitrary number of strips is also discussed.
In an application of the method of integral relations, there may be n equations of the form

aPi/ax + aQi/ay = Li (5.1)

wherei=1,...,nwithasx=band 02y:s A(x) and where Pi’ Qi’ and Li are known functions
of the independent and dependent variables. We integrate equation 5.1 on y from the lower

boundary y]._1 to the upper boundary yj of each of N strips, where
y; = (i/N) Ax (5.2)

and obtain n first-order, quasi-linear, ordinary differential equations of the form

y, Y.
] ]
4 - - ' - 5.3
Yi-1 Yi-1
where j =1, 2, ..., N. In other applications of the method, equation 5.1 is first multiplied

by weighting functions fj(y) and then integrated from y = 0 to y = A(x). (See sec. 6 for an

application to boundary layers.) Equation 5.3 would be obtained using weighting functions

0, V<Y
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If a total of n boundary conditions are given at y = 0 and y = A(x), we have n(N + 1) equations
in terms of Xx. Presumably, n suitable initial and/or boundary conditions are given at x = a
and x = b. We represent Pi’ Qi’ and Li by interpolation formulas containing simple functions
of y with unknown functions of x as coefficients. Then the integrations over y may be carried
out analytically. The new functions in x can be expressed in terms of the dependent variables
evaluated at the edges of the strips. Thus, we obtain a system of nN first-order, ordinary,
quasi-linear differential equations plus n boundary conditions at y = 0 and A in n(N + 1) un-

known functions.

In reference 22 there are comparisons of the results of calculations using the method of
integral relations for various numbers of strips with exact solutions and experimental results.

It is found that a two-strip calculation provides a reasonable degree of accuracy in a number
of different applications. In appendix II, it is shown that a two-strip calculation by the method

of integral relations for a boundary layer on a flat plate is comparable in accuracy with a

Pohlhausen calculation.

In our present problem, equations 3.46 through 3.49 in the case of an adiabatic flow of a

thermally and calorically perfect gas over an insulated body can be written in the form

(u); + v)z =0 (5.4)
(puv); + (p+ pv ); =0 (5.5)
7 2/ - DR =1 (5.6)
p=Ep (5.7)

where E =[(y - 1)/2y](1 - g'z)y and where ¢ = u(l, y) (see app. II). Thus, in this problem there
are two differential equations (5.4 and 5.5) and two integrated expressions (5.6 and 5.7). The

latter two relations are valid along streamlines, whose locations are found from

dy/dx = v/u (5.8)

The initial conditions are prescribed by the first-order matching with the solution in the
first outer limit, equations 3.55 and 3.56. As noted in the discussion following equation 4.21,
“1/21 _ 0. Further

w
decrease in pressure requires a significant turning inward of the streamlines, which can take

the critical point in our approximation is expected to occur at R= (x - L)/R

place only within a distance AX = O(R\_Vl/zL) upstream from the corner. For convenience, we

introduce the notation
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Then equations 3.55 and 3.56 become

c
(5.9)
p(-®, y) =p,
In a first approximation, the boundary condition at y = 0 is
v(x, 0) =0 (5.10)

(In a second approximation, 4(X, 0) would be set equal to the flow deflection angle at the outer

edge of the viscous sublayer.)

Before the hypersonic limit is taken, the boundary condition at the outer edge of the layer

is a Prandtl-Meyer relation between p and v. Inthe hypersonic limit, equations 3.12 and 3.51

give
dd/dx = 0
and, therefore
65=5
¢ (5.11)
v(x, 5,) =0

In the subsonic region, equations 5.4 and 5.5 are elliptic so that in this region it is
appropriate to impose downstream conditions. In applications of the method of integral rela-
tions, the downstream boundary condition takes the form of a requirement that the integral
curves must pass through saddle-point singularities of the differential equations derived from
the integral relations [22]. The corner, x =§ = 0, is located by the requirement that it is a

sonic point. Thus, the special downstream condition on the line ;7 =01is
M(0, 0) =1 (5.12)
and the corner is a singular point in the flow.

In the present application of the method of integral relations, the use of equations 5.6 and

5.7 is simplified if we choose the strip boundaries to be streamlines rather than lines y]. =
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(j/N)6 as in equation 5.2. We let y]. be the value of § on the upper boundary of the jth strip

and note that the functions y].(;() are to be found at each point from integration of
dyj/d;( = Vj/uj (5.13)

where uj = u(x, yJ.) and vj = V(X, yj).

Because of the different nature of the boundary conditions in the supersonic region as
compared with the region that is initially subsonic, we treat these regions separately in con-

structing the integral relations. In the region that is initially subsonic, we introduce M strips

bounded by the streamlines yj = yj(i), i=0,..., M, where M is the normal coordinate of
the streamline that is initially sonic. In the supersonic region, we introduce N strips bounded
by the streamlines Vg = yk(x), k=M,...,M+ N, where YMaN = Gc; there is a total of M + N
strips.

We now consider the application of the method of integral relations in the region that is
initially subsonic. It is convenient to write the integral relations, derived from integrations

on y of equations 5.4 and 5.5, in the form

I .
u)~dy = -(p.v. - p. LV, 5.14
jy (PR3 = ~(pv, = py_1vi ) (5.14)
j-1
Y
[ (Fav)~dy = -<p. . ) (5.15)
Jy X ioTi-r iy Ti-rg-l
j-1
where j=1,..., M. Here pj = 5(;(, y].), etc. Equations 5.6 and 5.7, written for the strip
boundaries y = yj(;i), become
2 2
Y
. =E.p] 5.17
p; = E;p; (5.17)
9 Y
where the terms E], =[ly - 1)/2')/]( - g].) are constants and where j =0, . .. , M.

Although 5 - o as ; - 0 in the hypersonic limit, ;1: is finite and bounded everywhere in
the region which is initially subsonic. Thus, an appropriate interpolation formula for ;)G to

be used in carrying out the integration in equation 5.14 is
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M

~~ ~ o~ m

pu = Zam(X)(y/Gc) (5.18)
m=0

Similarly, a representation for puv to be substituted into equation 5.15 is

~—e— M ~ e~ m

puv = me(x)()’/5c) (5.19)
m=0

Thus substitution of equations 5.18 and 5.19 into equations 5.14 and 5.15, respectively, trans-

forms these relations into the ordinary differential equations

M

-1/ m+1 m+1\ , ,~ -1
- = -5 -
Z(m +1) (aj a]._l )am(x) c (pjvj pj-lvj-l) (5.20)
m=0
M
-1/ m+1 m+1 -1 2 2

m + 1 o, -« b' (x) = -6 . -DP. .+ PV, -p, LV, > 5.21

Z( ) < ] i1 ) L) =0, (p] P gt Py T Pii1Yii (5.21)
=0

where a]. = yj/éc and j=1,..., M. From equation 5.13, we obtain the equation for the stream-

line slope,
al = é'lv./u. (5.22)
] c J ]

Equations 5.18 and 5.19, when evaluated on the strip boundaries, are a system of linear

algebraic equations in the a and bm in terms of the values of EE and 5;; on the strip boun-

daries.
M m
. a_ =p.u, 5.23
Z § %m = P (5.23)
m=0
M m
a. b =p.uyv, 5.24
Z ] m pJ 1] ( )
m=0
where j =0, ..., M in these relations.

Thus, in the application of the method of integral relations to the portion of the flow that
is initially subsonic, we have TM + 5 equations in TM + 6 unknown functions of X: uj, Vj, pj, pj,
a brn (where j, m =0, ..., M) and aj (where j =1,..., M). The TM + 5 equations are:

the boundary condition (5.10), which gives vy = 0; equations 5.16, 5.17, 5.23, and 5.24 in which
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i=0,..., M; and equations 5.20, 5.21, and 5.22 in which j =1, ..., M. The extra unknown

function appears because the boundary condition at y = Gc has not yet been employed.

Now we consider the application of the method of integral relations in the region that is

initially supersonic. We introduce in this region N strips bounded by the streamlines Vg = yk('f(),

k=M, ..., M+ N. The integral relations may be written in the form
Yk o
‘[ (Pu)‘;{dy = -(pkvk - pk-lvk—l) (5'25)
k-1
Ko 2 2
f (puv);dy = -(pk " P 1t P T P lvk-1> (5.26)
k-1
wherek=M+1,..., M+ N. Equations 5.6 and 5.7 become
o+ v 20/ - Do Jp, = 1 (5.27)
k 'k kK "k ’
_ Y
P, = Ekpk (5.28)
2 Y
where the terms Ek =[(y - 1)/27](1 - gk> are constants and wherek =M, ..., M+ N - 1.

Let us now consider the representation for pu to be substituted into equation 5.25. Using

equation 5.6 and the relation v(x, 5) = 0 we have, in the hypersonic limit,
~ ~-1
p=0[(1-0)"] (5.29)

as ; - 0, From equation 4.10 it can be seen that uc(§) has the same form of asymptotic be-

havior for y — Gc as u1(§) in the upstream boundary layer. It follows from equation I-30 that

~11/2
B =0O{[-log (1 - u)] / }
9u/ap = O{(1 - u)[-log (1 - W)]"" “} (5.30)
as ;- 5. In the boundary layer at x = 1, we see from equations I-19, I-25, and I-31 that

1/2

g =[2/(2k + )]/ “p d§ (5.31)
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Then equations 5.29-5.31 lead us to the results

3y/au = O{[-log (1 - G)]'l/z}
1-§/6 = 0{(1 - D-log (1 - 9]?) (5.32)
5 = o{(1 - 5/6) [-1og (1 - B2} (5.33)

as y — 0. Consistent with other applications of this method to boundary-layer problems [22],

we approximate the integral in equation 5.25 by employing an interpolation formula for EG
that omits the logarithmic factor

N
Fi = (1-§/0)7 ) e BG/0,)"

n=0

(5.34)

We introduce
(5.35)

where A is constant, as will be shown in equation 5.43. A nondimensional stream function 15 is

given by
Vo o
f (5.36)

which, from equation 5.34, becomes
o
N

1_0‘_> N ch(i)sn(a, ay)| (6.37)

N
~ o~ - -1
-y = GCE c (%) (1-¢) &"at = -0, |A log (1 - oy
— N n=0

E ~ 6 Y Y
where ¢ = y/ . and where Bn(a, aM) is given by

a
(5.38)

B (@, o) = fa - oM - na
M

For instance, [30 =0, Bl =a- oy BZ Y (1/2)(042 - ai&)’ etc. Thus, we have, from

equation 5.37,

37



WILLOW RUN LABORATORIES

N
-1,~ ~ 1 ~
L-3/0g = (1~ ay) exp |0 A) W - ¥y) - A7 5 e ()8, (@, @) (5.39)
n=0
We can write the isentropic relation 5.7 in the form
p/p p/p ) (5.40)

Then we substitute for p and p. from equation 5.34 and get

-y /5 chcn(Y/ﬁc)
B/p, = RS S (5.41)
1-3/5, )8 e G/8)

is the value of y on the same streamline at the critical point. Now we substitute for

where 370
the values of 1 - §/5c and 1 -

Y
~ n
uCch(Y/GC) A- Ac n, cP n,c an
exp ]:-1< AA > YZ( - :'(5.42)

yc/éc from equation 5.39.

6
c

_5__ B (1 - aM,C
p 1-a
M Z n,ce/0) c
In equation 5.42, Bn = Bn(a, aM), BM,c = ,BM(aC, on’ ), and cn,c = cn(—oo). For the pressure
PyiiN at the outer edge of the layer to remain bounded and nonzero
A= Ac = constant (5.43)
Then PrraN is given from equations 5.41 and 5.42 as
Py = Bl (1 - @y /(1= @] exp (-yh) (5.44)
where
-1 N
h=A Z[Bn,c(l, U e ™ Pl e, ()]
M=0
(5.45)
) -
pc - [ /2)/] Y/(?’

We see from equations 5.39 and 5.43 that ignoring the logarithmic factor in equation

5.32 in constructing a repfesentation for 53 is equivalent to assuming that
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a~1-fX exp[l,b/()A)] (5.46)

~

as ¥ - w.

With the interpolation formula 5.34 for pu substituted in the integral, equation 5.25 be-

comes
N .~ -1
Zﬁn(ak’ A X =0 vy - Py Vi) (5.47)
n=0

where k=M+1,...,M+N.

From equation 5.47 we see that E; is bounded and nonzero in the limit y —~ éc. Thus, an

appropriate interpolation formula for EG; in this case is
N n
pET = 57d, ®F/0,) (5.48)

and substitution of this relation into equation 5.26 gives us

N el 0l sy L g 2 2
Z n+1) < a 1\)d (x) = —Gc <pk " P 1 YAV " pk-l"k—l) (5.49)
n=0

where k=M+1,...,M+N.

Equations 5.34 and 5.48, evaluated on each strip in the supersonic region, give

N
n
Zakcn =(1- ak)pkuk (5.50)
n=0
N n
Zakdn = PV (5.51)
n=0
where k=M, ..., M+ N - 1. To utilize equation 5.47 for k = M + N, it is necessary to sub-
stitute for pM+NVM+N from equation 5.51. We note that uM+N =1, and obtain
11m
iy (pV) —Zd (5.52)
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From equation 5.8 we get
o &) = 'y, /u (5.53)
k c k ’
where k=M, ..., M+ N- 1.

This application of the method of integral relations for the region that is initially super-

sonic also can be applied across the entire layer in the case of a one-strip calculation.

In the application of the method of integral relations to the supersonic portion of the flow,

we end up with TN + 3 equations in TN + 4 unknown functions. The 7N + 4 functions are W Vi

M+N’
MaN = 0; equations 5.27, 5.28, 5.50,

5.51, and 5.53 for k=M, ..., M + N - 1; equations 5.47 and 5.49 fork =M + 1, . . ., M + N;

P> P O (wherek =M, ..., M+ N-1); c dn (wheren =0,...,N); Prien and v

The TN + 3 equations are the condition 5.11, which gives v

and equations 5.35 and 5.44. Here the extra unknown function appears because the boundary

condition at ¥ = 0 has not been employed.

When we compare the equations obtained for the supersonic region with the equations
obtained for the region that is initially subsonic, we see that the five dependent variables Up
Var Pare Par and U have been counted twice. Thus, there are 7(M + N) + 5 equations in

7(M + N) + 5 unknown functions.

In the preceding discussion we did not obtain a relation for evaluating the constant A,
defined in equation 5.35. When we expand P, and 56 for M0 - MO c and form the difference

2
Pg - P, We see that there are two possibilities for the selection of A.

~ {O(Mo - Mo,c) (5.54)

Ps = Po=lom -M_ )
o o,

In the first case, the perturbations in W Vk, pk, etc. are all of the same order of magnitude,
and the perturbations will decay exponentially in X as X - -0. The second case is obtained
when A is chosen so that the terms in 56 - P, of the order M0 - Mo,c vanish identically. Thus,
in this instance a relation for evaluating A is obtained, while in the first case no relation
determining A is found. In the present problem the boundary layer on the body is subcritical
(see sec. 2), and, after an acceleration described approximately in the first outer limit, the
boundary-layer profile reaches the critical state, in that <M_2> = 1. Therefore, the initial

condition for the equations in the second outer limit is special in the sense that the initial

profile is critical, and we can expect A to have a particular value, corresponding to the applica-

tion of the second part of equation 5.54.
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In support of the above argument, we will show that the second part of equation 5.54 is a

necessary condition for

(d5*/dpy), = 0 (5.55)

to be satisfied. Here 5* is the boundary layer displacement thickness, and 56 is the pressure
at y = 6. From equation I-35 and the definition of the stream function we have, in the hyper-

sonic limit,
w ~~ -~
o* =f (1/p%) a (5.56)
0

where 5% =%/ R;vl/ 21, and 1,!7-}7 = pu. We introduce a small perturbation in the pressure in a

neighborhood of the critical point and obtain

5

¢ c

AG* ~ f (Aﬁ/ypc)(l - MCZ) day ~ '(Af’o/ypc)f (Aﬁ/‘\ﬁa)<1 ) M;2> & (5.57)
0 0

as AD -0. From equation 5.55 we see that

AS* = o(AﬁG) (5.58)

as Aﬁé - 0 near the critical point. Also, from equations 4.17, 4.21, and 4.34 we have

f:c<1 - M;2>d§ =0 (5.59)

Thus, in view of the results expressed in equations 5.58 and 5.59 and since Af)/ASG is monotonic

in y, a necessary condition for the orders of magnitude in equation 5.57 to match is
AD - AS() = O(AEG) (5.60)

as Af)é — 0. This condition is equivalent to the second part of equation 5.54.

Thus, A is to be selected so that the second part of equation 5.54 is satisfied. The pertur-
bations in the dependent variables are not all of the same order of magnitude; they will decay

algebraically in X as X = -0. We find,' in this case, that along a streamline

V= O[(AM)3/ 2

]

as X - -0, which is consistent with transonic small-disturbance theory.

4]



WILLOW RUN LABORATORIES

In the use of the Bernoulli equation and the entropy equation in the application of the
method of integral relations to this problem, it is convenient to introduce the Mach number

as a new dependent variable. Then we may replace the Bernoulli and entropy relations by

- -1)
y-1 y-1_2 2\
P =55 [(1 + s Mi)(l - & >] (5.61)
-1/(y-1) -y/(y-1)
- Y- 12 2
pi—(1+ 5 Mi) (l-gi> , (5.62)
y-1.2 -1
Pi/pi=-yMi<1+ 5 Mi) M; (5.63)
y-1_2 -1
! - - [
pi/pi = Mi<1 + Mi) M (5.64)
Also, for adiabatic flow,
qi2 = uiZ + Vi2 (5.65)
Y - 2 y-1_2 -1
-1 y-1_2 -1
qi/qi =M, <1 * Mi) M; (5.67)
In the above equations,i=0,..., M+ N -1.

To proceed further it is necessary to specify the values of M and N.

5.2. SOLUTION BY THE METHOD OF INTEGRAL RELATIONS FOR ONE STRIP
The simplest possible calculation to carry out is a single-strip application with M = 0,

N ='1. Then equations 5.27, 5.28, 5.50, 5.51, with k = 0; equations 5.47 and 5.49, with k = 1;

and equations 5.35 and 5.44 become, with Vo= =V = 0 and a, = 1:
o+ {29/l - DI Jp_ =1 (5.68)
o o’'"o
p, =[0r - 1)/2v]0] (5.69)
Cy*+Cy= A (5.70)
P, =p, exp (-yh) (5.71)
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_a-1 _ 2y/(y-1)
where h = A (cl,c - Cl) and P, = [y - 1)/27/](1)c .
¢ =6 Nd +d.) (5.72)
1 c o 1 ’
1., 1
5d] =-0.(p; - ) (5.73)
CO = pouo (5.74)
d =0 (5.75)
From equations 5.70 and 5.72 through 5.75, we obtain
(pu) =-6td (5.76)
0o c 1 )
d) =-267 (o, - p) (5.77)
1 c 1 o] )
from which we get the second-order, ordinary differential equation
(pu )" =20 %(p, - p) (5.78)
oo c 1 o} )

A form of the equations more convenient for carrying out the numerical solution is obtained
by introducing the Mach number M0 as the independent variable. From equations 5.64 and 5.67,
with i = 0, we have

-1
. -1 2 y-1_2 .
(pouo) = poquO <1 - MO )(1 t M ) M0 (5.79)

o]

Since X does not appear explicitly in the equations, the initial value of X is arbitrary, and we

can introduce a new X coordinate, X, depending upon MO such that
X = X(Mo) - X(1) (5.80)

Then the boundary condition M(0, 0) = 1 will automatically be satisfied. The differential equa-

tions in the new variables are

2
dx chouo 1- Mo (5.81)

dM_~ y-1.2
o %fMo 1+ =M

d(‘ﬁ) _ 4P,y - po)(l ) M(2)>

Wy " )
0] 2 o)

(5.82)
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The integration is to be carried out over the interval M

oc s M, = 1, and the values of X are
recovered from equation 5.80. In equation 5.81 we have chosen

(5.83)

so that dX/dMO > 0, which corresponds to a decreasing pressure. If d1 = +%_3 is chosen, we
would obtain AMO < 0 and Apo >0 for AX> 0.

We now obtain the asymptotic expansions for d1 and X as M0 - Mo c
with i = 0, we get

)

From equation 5.61

y-1_2 -1
p0~pc[1—yMo’c<1+ 5 Mo,c) AMO+...

(5.84)
as AMO - 0, where AM0 = M0 - Mo c For i = 0, equations 5.62 and 5.67 yield
u -~ u 1+M-1(1—M2 \)(1+y_1M2 )—IAM +
PoY po,c o,cC 0,C 0,C 2 0,C o (5.85)

so that, with equations 5.70, 5.71, 5.74, and 5.85, the expansion for Py is

-1 -1 2 y-1.2 \}
P, 7P, 1-yA po,cuo,cMo,c<1 - Mo,cj (1 + ——Z_Mo,c> X AMO ... (5.86)

as AMO - 0. Therefore, the expansion for P, - p,as AMO - 0is

y-1.2 -1 -1 -2 2
Py -Pp,~ wpcMo,c<l +—2—M0,c> [1 - A po’cuo’cMo’c X (1 -M , ﬂ AM_ +. (5.87)

The condition expressed in the second part of equation 5.54 implies, in this case, that P, - P
= o(AMo). This condition is satisfied when

A=p u M2 1—M2>
o,c o,c o,C

o,c (5.88)

The numerical value is A = 0.708. Thus, Py -Pp, = O(AMO)Z, and from equation 5.86 we get

d (di) / dMo ~ (constant)(AMO)2

e 0 as AMO - 0 because d1 = O(9), we have

(5.89)
Since d

d1 ~ (constamt)(AMo)a/2 (5.90)

44



WILLOW RUN LABORATORIES

3/2

as AMO - 0. Then§ = O[(AMO) as X - -o. We substitute equation 5.90 into the expansion

of equation 5.81 and get

dx/dMm_ ~ (constant)(AMo)_B/2

/2

X~ (consta.nt)(AMO)-1 (5.91)
The expansions for MO and d1 in terms of X are
M ~M_ + (constant)x'2 (5.92)
o} 0,C
-3
d1 ~ (constant)X (5.93)

as X - -w. Note that, in order to obtain the numerical constants in the expansions 5.90 and
5.91 or 5.92 and 5.93, it is necessary to carry out the expansion of P - P, to the order (AMO)z,

as AM_ - 0.
o}

When X - 0, it can be seen from equations 5.81 and 5.82 that

’1/2

Mo ~ 1 + (constant)|X

d; ~ d, (0) + (constant)x

In general, it is necessary to employ the asymptotic expansions for the dependent variables
in order to get the numerical integration of the differential equations started. In the special
case of one strip, however, the numerical integration of the differential equations 5.81 and
5.82 can be carried out without using the expansion for AMO - 0. The reason for this is that
d (dz ) /iMo is bounded at Mo = Mo,c’ and is also only a function of the independent variable

1

Mo' Once a value of d1 has been found at a point Mo > M0 ¢’ the integration of equation 5.81
may be started and carried out simultaneously with the integration of equation 5.82. The

numerical results will be discussed at the end of this section.

5.3. SOLUTION BY THE METHOD OF INTEGRAL RELATIONS FOR TWO STRIPS
The next step is to consider a two-strip calculation with M = N = 1. In the region that is
initially subsonic, the governing equations are 5.16, 5.17, 5.23, and 5.24 for j = 0, 1; 5.20,

5.21, and 5.22 for j = 1; and Vo T T 0. We also define a = a. Thus, we have the equations

w2+ 29/t - Db fo, = 1 (5.94)
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2 2
ul + Vl + [27/(7/ - 1)]p1/p1 =1

_ Y
po_Eopo

oY
Py =E;py

2\
where EO =(y - 1)/2y and E1 =[(y - 1)/2v] (1 - g1> ,

a'+la2a'—-6'1 v
ady T3 a1 =% Pi%y

Covla2, 1 2
ab, + g0 7by = -0 <p1 po+p1vl>

= 6(: Vl/ul

ozb1 = P14V

We solve for a5 bl’ a'l, and b'1 from equations 5.100 through 5.104 and obtain

a, = a-l(

1 P1Ug = Pl

-1
by=a pyuyvy

't _ -1 ' 1 -1
=@ [“’1“1) " (pguy) - 0, a1"1/“1]

1 -2 2

ro_ 1 v 5 -
bl—oz (plulvl) 6(: a “pvy

Then the differential equations 5.98 and 5.99 become

. ¢ -1 -1
(pouo) + (plul) = 6C a plvl[(aal/plul) - 2]

v s-1 -1 2 _
(plulvl) = -éc a [plv1 + 2a(p1 - poﬂ— F,

46
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(5.103)

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)



WILLOW RUN LABORATORIES

The relations derived for the supersonic region (discounting those already noted and with

Vo = 0, a, = 1) are, in this case,
¢, t ¢y =A (5.111)
Py =P [(1- a )/(1- a)]exp (-vh) (5.112)
where h = Anl[(l -a ), -(1-a)k,]
¢’ 1,c 1
-1
L. -
(1- oz)c1 = éc (d0 + d1 plvl) (5.113)
,1_2,__-1(_ ) z>
(1 - oz)d0 + 2(1 o )d1 = 6c Py - Py - PV (5.114)
C,tac; = (1- oz)plu1 (5.115)
do + ozd1 =p %Yy (5.116)

We find €y €y and c'1 from equations 5.100, 5.111, and 5.115 to be

-1

o =Pquy - a(l - a) "A (5.117)
c. =-p.u. +(1-0a)'A (5.118)

1 11 )
¢! =-(p,u) + 6_1A(1 - a)_zv /u (5.119)

1 11 c 1”71
Then equation 5.113 becomes

(pu) =6 t1-a)Ya-o) Av,/u, @ +d)+p,v. |=F (5.120)

11 "¢ 171 o 1 11 1 )

When we substitute the result in equation 5.120 into equation 5.109, we get

(p_u

o 0)' = 6;101_1(1 - a)_z{a[(l - 01)2211 - A:lvl/u1 +a(l - oz)(dO + dl)

-(1-0a)2 - oz)plvl}E F0 (5.121)

From equations 5.61, 5.62, 5.65, 5.66, and 5.67, with i = 0, 1 (these equations are equiva-
lent to equations 5.94 through 5.97) we have

(5.122)

2 )'7’/ (r-1)

v -1 v - 1,2
P, = 5y (l+ M0
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-1/(y-1)
_ Yy -1 2)
po_<1+ 5 Mo (5.123)
2 y-12 y-1 2 -1
u0=—2—M0<1+—2— 0> (5.124)
-yv/(y-1)
y-1 y -1 2>< .2)}7/
P =% l:<1+ 5—M, (1 - €] (5.125)
-1/(y-1) -v/(y-1)
[y y- 1.2 < i .2)
p1-<1+ 5 M1> 1 g, (5.126)
-1 y-1.2\1
Py p1=—M1<1+ 5 M1> M1 (5.127)
2 2 2
qq =y + vy (5.128)
y-1 2 y-1 2 -1
= TM1<1 + TM1> (5.129)
-1 1/, y-1.2\t
q, 9} =M, (1 + s M1> M} (5.130)

3 1 1 L 1 1] 1
Thus, we wish to express (pouo) , (plul) , and (plulvl) in terms of Mo’ Ml’ and Vl' The
in terms of M(') is given in equation 5.79. We note that

]

expression for (pouo)

t -1 ] -1 ] ) _
(plul) _plul<p1 py Ty, v -F1 (5.131)
. -1 -1 .0
(plulvl) =p4Y [(plu1 F,+v, Vl:l = F2 (5.132)
where F1 and F2 are defined in equations 5.120 and 5.110, respectively. We also have the
relations
-1 1 a\!
[ S - '
ugtuy =q,0q) Vl(l V1> V1 (5.133)
-1, -1, -1,
vivi=9, 9y ¢ V1 V1 (5.134)

Then from equations 5.79, 5.121, 5.127, and 5.131 through 5.134, the differential equations for

Mo’ M,, and V, are

1 1

M = F (5.135)
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1 ]
B, M} + B,V} =C, (5.136)

By M} + By,V) = C, (5.137)

where the Bij and Cj terms are given by

-1

1 2 y-1
B 11 =P 1 1 (1 Ml>(1 +—2—M?> (5.138)

9 -1
By, =-pu 1V1(1 Vl) (5.139)

-1 y-1.2 -1

le = pluquVIM1 (1 + ——2—-M1> (5.140)
B22 = pyuy9, (5.141)
C1 = F1 (5.142)
C V.F (5.143)

2 = Fy -3V Fy

We solve equations 5.136 and 5.137 for M! and V! and obtain

1 1
v -1
M) =D (C1B22 - CzBlz) (5.144)
-1
1 _ -
V1 =D (C2B11 CIBZI) (5.145)
where D is given from
D=B, B, -B,,B (5.146)

11722 12721

Substitution of equations 5.138 through 5.141 into equation 5.146 gives

1
2 3 -1 -1 2 2 /2
D = plq1 1 (1 5 1) [1 - <u1%1>:l (5.147)

Here a, is the local speed of sound on the strip y = aéc. Since this line is initially sonic

(q1 =2 ) and since the initial value of v

1c , and

is zero, then q1 c =Y
b

1 1,c

D =0 (5.148)

The implication of equation 5.148 will be discussed further when the asymptotic expansions

for X — -w are considered.

49



WILLOW RUN LABORATORIES

There is a fourth differential equation, deriving from equation 5.114. If we pick FO, defined
in equation 5.121, asthe fourth dependent variable, a relation equivalent to equation 5.82 will

be obtained when M0 is chosen to be the independent variable. From equations 5.116 and 5.121

we get
d =(1-a) tpuv. -aG (5.149)
o 111 :
d =-(1-a)'1puv +G (5.150)
1 111 :
where
G=0 F +p.q,V.{-(p,u )'1 a —(1-a)_zA}+a_1(1—a)—l(2-a) (5.151)
c o FPri"i 11 1 '

By differentiating equations 5.149 and 5.150, we obtain

' ] '1 "2 -1
d0 =-aG'+ (1 - @) F, + [(1 - a) PYYy " G}ﬁc vl/u1 (5.152)
L 1 '1 '2 -1 2
d} =G - (1-a) Fy-(1-a) 6, pv] (5.153)
so that equation 5.114 becomes
G' =-(1- a)—lF +2(1 - a)_zé-l (1- a)Gv,/u, - (p, -p,) +lp v2 (5.154)
2 c 171 2 1 2711 ’

We obtain the differential equation for FO by differentiating equation 5.151 and solving for F('):

Fl

-1, -1 -1 o1,
0=% G -0 p1q1V1{(p1q1) (pyap) +Vy'Vy

+ (plul)"zFl[a1 -(1- a)-ZAJ - (plul)_1

3

-1 -1 3,-1
X [a (Fl -F - Gc alvl/u1>- 2(1 - a) 6c Avl/ul]

- a'z(l - oz)'z(oz2 - 4o + 2)5;1v1/u1}5 F (5.155)

3

In equation 5.155, V'1 and G' are given by equations 5.145 and 5.154, respectively. Also, from

equations 5.132 and 5.135 we have

-1
-1 S | 2 y-1 2 ,
(ppap “(pyap)) =M, <I-M1>(l+ 5 Ml) M} (5.156)
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Thus, with MO as the independent variable, the differential equations, obtained from equa-

tions 5.135, 5.144, 5.145, and 5.155, are

2
dx Polo\l - Mo) _
I - ) —12—H (5.157)
o M (1 + XM )VF
o 2 o] o}
-1
dMl/dMO = HD (C1B22 - C2B12) (5.158)
-1
dVl/dM0 = HD (CZB11 - C1B21) (5.159)
dF2 2p u (1 - M2>F
o 0o 0/ 3
a 13 (5.160)
o M (1 +y—_—Mj
o 2 o}
1 9 -1/2
doz/dMO = Gc HV1<1 - V1> (5.161)
where X is defined in equation 5.80. In this case it is necessary to choose
2
F =+]F (5.162)
0 o}

in order to guarantee that dX/dMo is positive.

To begin the numerical integration of equations 5.157 through 5.161, it is necessary to

utilize the asymptotic expansions for M0 - Mo e This is because dF(z)/dMo, for example, is

a function of M1 and V1 as well as Mo' Also, since P - P, = O[(AMO)Z} as AM0 - 0 and since

dVI/dMo and dF(z) /dMO are, in part, dependent on Py - P, it is necessary to carry out the

expansions to second order in AM0 as MO - M0 c
b

From the expansions 5.90 and 5.91 obtained in a single-strip calculation, we expect the

expansions to be of the form

My M J(ll)AMo + J(lz)(AMO)Z o (5.163)

v. ~3Dam 72 4 5@ am 2, (5.164)
1 2 o 2 o e ’

FO ~ J:(sl)(AMO)?’/2 + J:(?’z)(AMO)5/2 ... (5.165)
a~a + Jil)AMO + J‘(lz)(AMO)2 +... (5.166)
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Because the initial value of X is arbitrary, it is not required to obtain an expansion for X(Mo).
Since M1 = 1, we have Dc = 0 (see egs. 5.147 and 5.148), and

D = O(aM,) (5.167)

as AMO - 0. Then, to the order AMO, the expansions of equations 5.158 through 5.161 are

2
F, - O[(AMO) ] (5.168)
p, -p_=0|(aM )2} (5.169)
1 o o} )
p, -p_ =0|(AM )2} (5.170)
2 o] o ’
(1) (1) _
Dypdy ' +Dyqdy’ =0 (5.171)
where
o\ -1/, y-1.2 \'!
D42 = pouo(l - M0>M0 <1 t Mo,c> (5.172)
(1)
Dyq = -6,y (5.173)
We get from equation 5.168 the result
(1) (1) _
Dyydy  +Dygds’ =0 (5.174)
where
D..=a Y a® +2a -2>p 0. +(1-a)a (5.175)
12 c C C l,c ' 1,c c’1,c ’
D13 =-(1- ozc)tiC (5.176)
From equation 5.169, to order AMO, we obtain
(1) _ (1)
D21J1 = H2 (5.177)
where
y-1 2 -1
Dy, = Ml’c (1 + -Z—MI,C) (5.118)
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-1
(1) _ < y - 1.2 >
Hy =M (15 (5.179)

Now we require the expansion for Py From equation 5.112, we find

. -1 -1 (1) -1
Py pc{l + [(1 - ac) + YA pl,cul,c]J4 AMO - yA (1 - aC)A(plul)} (5.180)

while the expansion for Py, as AMO - 0 gives

2
Alpyuy) = O[(AMO) ] (5.181)
so that equation 5.170 becomes
(1) _ (1)
Dy, =Hg (5.182)
where
(1) _ (1)
H3 = H2 (5.183)
-1 -1 -1
D34 =y (1- ac) +A pl,cul,c (5.184)

When Jil) is calculated from equation 5.182, equations 5.171 and 5.174 become a system
of two linear homogeneous equations in ng) and Jél).

to exist, the determinant of the coefficients must vanish.

For a nontrivial solution of these equations

D yDy5 - Dy3Dyp =0 (5.185)

Now D43, through equations 5.173 and 5.184, contains A. Thus, equation 5.185 provides a re-

lation for determining A, and we get

1

D43 = D12D13D42 (5.186)
- -1..(1)
D34 = -GCD43H2 (5.187)
-1 107t
A= pl,cul,C[D34 -y (1- ozc) } (5.188)
However, now equations 5.171 and 5.174 are linearly dependent, and either J(zl) or Jél) will

remain undetermined. An additional relationship involving the first-order perturbations is
found from the second-order relations. In the second-order expansions of equations 5.158

through 5.161, we obtain
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D,,02) + D ) - (5.189)

D, 1% - H?) (5.190)
D, I -1 (5.191)

D I) + D, %) -u?) (5.192)

The coefficient matrix Dij is the same forallorders of magnitude. The nonhomogeneous terms,

ng), are functions of the first-order perturbation constants, J(l). But A has been chosen so

k
that the determinant of the coefficient matrix in equations 5.189 and 5.192 vanishes. Thus, we

must have
H(12) D3
-0 (5.193)
(2)
Hy " Dyg

and it appears that the last of the first-order perturbations is found from this equation.

Equations 5.189 and 5.192 now will contain only one independent relationship, and it appears
(2)
2

lationship equivalent to equation 5.198.

that one second-order coefficient, J, ’, for instance, will be determined by a third-order re-

In utilizing the asymptotic expansions 5.163 through 5.166 to start the numerical integra-
tion of equations 5.157 through 5.161, it is necessary for dMl/dMo’ dVl/dMo’ etc. to be correct
only to the second order. Hence it would be permissible to choose the value of Jg ), for
instance, arbitrarily, as this only incurs a relative error of the order AMO or smaller in the

initial estimates of the derivatives.

5.4. GENERALIZATION TO AN ARBITRARY NUMBER OF STRIPS
If an arbitrary number of strips were utilized in the application of the integral relations

5.20, 5.21, 5.47, and 5.49, we would expect to obtain differential equations of the form

dX/dMO = <1 - Mi)B/F (5.194)
2
=(1- 5.195
dMi/dMO = (1 MO>A1,i/AF ( )
2
=(1- 5.196
dVi/dMo = <1 MO> Az,i/AF ( )
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sz/dMO = <1 - Mi)C (5.197)
2
dozi/dM0 = (1 - M0>Bvi/uiF (5.198)
where F =+ l/Fz and wherei=1,..., M+ N - 1. In general, A has a simple zero at each of

the points where 1 - ui/ai =0. When M + N =2, A =D is given in equations 5.146 and 5.147.

In the case of strip boundaries that are initially subsonic, downstream boundary conditions
are obtained from the requirement that the solution be regular at the points where A = 0[22].

This condition takes the form

Ay ;=0 (5.199)

at the points where u, =a,. In the asymptotic expansions of Mi’ Vi’ and F, one perturbation
should be undetermined on each strip boundary. The solution is found by guessing values of
the initial perturbations in the Vi’ for example. Trial integrations are carried out until equa-
tion 5.199 is satisfied, and then the integral curves will pass through the saddle-point singu-

larities at the points where u =a,.

As an example, we will consider a three-strip calculation (M = 2, N = 1) where M1 c <1,
and M2 ¢ = 1. The asymptotic expansions of the dependent variables, to first order, are of the
form

~ (1)
AM1 J 1 AMO
~ (1)
AM2 J2 AMO
~ 1) 3/2
V1 J3 (AMO)
~ (1) 3/2
V2 J4 (AMO) (5.200)

~ (1) 3/2
F~J.'(aM)

~ (1
Aal J6 AMO

~ (1)
Aa2 J7 AMO

Then the J(ll) terms are related by the equations
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DHJ(SI)J(II) + D13J§1) ‘ DMJil) + D15Jél) =0 (5.201)
D23J:(31) s D24J511) + D25J(51) -0 (5.202)

D31J(11) - Hgl) (5.203)
D42J(21) - Hil) (5.204)
D57J,(71) - H(sl) (5.205)

Dggly s D65Jél)J(51) -0 (5.206)

D, I+ D75J,(71)J§_)1) -0 (5.207)

where the Dij and the Hgl) terms are known constants, except for D57, which will depend upon
A. Since there is one strip boundary that is initially subsonic, we expect one of the ng) terms
to remain arbitrary in the solution of equations 5.201 through 5.207. When we substitute for

J(ll) and J,(71) from equations 5.203 and 5.205, equations 5.201, 5.202, and 5.207 become three
(1) (1)
J

linear homogeneous equations in J3 s dg and J (51). The determinant of the coefficients in

these equations must vanish, providing a relation for A equivalent to equation 5.185, and one

(

of the coefficients, J31), for instance, remains undetermined. In the second-order equations,

the same coefficient matrix appears since the terms in J (12) and J (72) may be grouped with the
nonhomogeneous terms. Thus there appears to be a second-order equation in J(l), equivalent

3
to equation 5.193, and we do not seem to have the proper initial conditions in the subsonic

region.

Now let us consider a three-strip calculation (M = 1, N = 2) where M1 - 1 and M2 c > 1.
In this case, the relations for the ng) are the same as in equations 5.201 through 5.207 when

the subscripts 1 and 2, and 6 and 7 are interchanged except in that D, now has changed sign.

22
Thus, further investigation is required to distinguish between the initial conditions on strip
boundaries that are initially subsonic and the initial conditions on strip boundaries that are
initially supersonic. The difficulty may be related to the fact that the approximation 5-}-7 =0

as X — -w causes the characteristics to degenerate to the single family of lines X = constant.

A possible alternative approach for obtaining numerical solutions to this problem would

be to apply the method of integral relations only to the portion of the flow that is initially sub-
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sonic. Then one function remains undetermined, the normal velocity component on the stream-
line that is initially sonic. A numerical method of characteristics or a finite difference tech-
nique such as that employed by Baum [14] then would be applied in the supersonic region. Since
the subsonic portion of the layer is relatively thin, comprising less than 20 percent of the initial
thickness of the layer, a single-strip calculation by the method of integral relations for the sub-
sonic portion of the layer together with another numerical technique applied in the supersonic
region is likely to provide a relatively high degree of accuracy. Also, it would not be necessary
to carry out trial integrations of the equations in this instance. However, further investigation
to ascertain the proper treatment of the initial conditions in the subsonic region would be

required in this case also.

5.5. EVALUATION OF RESULTS AND COMPARISON WITH EXPERIMENTAL DATA

The numerical integration of equations 5.81 and 5.82 applicable in a single-strip calculation
(M = 0, N = 1) has been carried out by using the IBM 7090 digital computer at The University of
Michigan Computing Center. The algorithms employed are programmed in the MAD language
[19]. The numerical technique applied is the Runge-Kutta fourth-order method, which is a
standard computer library subroutine [20, 21]. First, d (d?)/dMo, which is only a function of
1= 0) to
a point where AMO = MO - M0 c is small. Now the integration of dX/dM0 in equation 5.81 can

?

be started since a finite value of d1 has been calculated. An asymptotic expansion for X(Mo)

as M0 - M0 c is not required since the initial value of X is arbitrary. Then, integration of

)

equations 5.81 and 5.82 proceeds step by step up to the corner where M0 = 1. X(1) is deter-

the independent variable Mo’ is integrated from the initial point, M0 = M0 c (where d

mined, and the value of X at each point is recovered from equation 5.80. The numerical results

for y = 1.4 are presented in table IV.

When the results of our calculations for the first approximation are plotted as a function
of 2/61 = (x - L)/gl’ they are independent of the Reynolds number R_ (see, for example, eq. 3.58,
the composite solution for ﬁ/_ﬁe in a first approximation). Also, the results in a first approxi-
mation are the same for a wedge as for a cone. The only conical effect is a factor of 1/v3

that appears in the formula for the boundary-layer thickness 51 (see eq. I-37).

These premises can be tested by replotting Hama's [6] data as a function of (x - L)/51.
In figure 4, some of Hama's wall-pressure-ratio data for laminar flow (which appears as fig. 4
of ref. 14) are presented. The ratio I_)O/Ee,i is plotted against x for three different Mach num-
bers, where 198 is the measured surface pressure and pe,i is the surface pressure predicted by
inviscid-flow theory. These data are replotted in figure 5, with abscissa ;(/61 = (x - L)/gl.

The necessary calculations for the reduction of Hama's data are presented in appendix III. The
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reference values Me and p, are chosen to correspond to the measurements at the static-
pressure orifice farthest upstream from the corner. This orifice is located at (x - L) = -1.5 in.,
where L =4.783 in. The largest experimental Mach number presented here corresponds to

Me ~ 4.02, RW 12X 104, and 51 ~ 0.10 in. Although even this value of Me might be rather

low for use of a hypersonic theory, the other sources of error to be considered seem to be at

least as important.

We see in figure 5 that the wall-pressure-ratio measurements are independent of the
Reynolds number RW within a discrepancy of AEO/EO ~ 0.02 over the range 1.2 X 104 = RW =
4.4 % 104. Thus, the theoretical prediction of Reynolds number independence appears to be

confirmed by the experimental data.

Also presented in figure 5 is the wall-pressure-ratio solution in the first outer limit for
Me = 4.02, the solution in the second outer limit (which is independent of both Mach and Reynolds
numbers) for the one-strip calculation by the method of integral relations, and the composite
solution for Me =4.02. The discrepancy between the calculated solution and the experimental
data is observed to be |A1_30/50| ~ 0.06 or less. This is a fairly good result, as compared
with the sort of accuracy usually obtained in a one-strip calculation by the method of integral
relations (see ref. 22 and app. II). This may be because the calculation by the method of integral
relations comprises only part of the solution; the equations in the first outer limit have an

exact solution.

The changes in velocity profile for the accelerating boundary layer are shown in figure 6
by plots of ﬁ/ﬁe vs. z; The two solid curves represent the initial velocity profile E/ﬁe = (-, §)
= g(B) and the profile u/ u, = (0, ¥) given by the upstream solution 4.10 at X = 0. It is evident
that the initial acceleration of fluid particles along streamlines is significant primarily near
the wall, but plots of H/Ee vs. ¥ would show that the resulting displacement of streamlines is
significant all across the layer. For the solution in terms of x and ¥, it is probably consistent
with a one-strip calculation by the method of integral relations to choose only a linear varia-
tion of U with ¥.

u=u + (1- uo)y/éC (5.208)
If equation 5.37 is specialized for a one-strip calculation, we have
Y = -GC[A log (1 - y/dc) + cl(x)y/Gc] (5.209)

These two equations can be combined to give plots of G/Ee vs. Y for X - -0 and X = 0. The
plots are shown as dotted curves in figure 6. Rather good agreement is obtained between the

approximate form for U as X — - and the solution 4.10 for 4 at® =0.
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3
Solution in the First
Outer Limit
----------- Solutions in the Second Outer
5 Limit: One-Strip Calculation

FIGURE 6. AVELOCI/’\I‘Y PROFILE AT THREE STATIONS:
X = -0, X = 0(x = -00), AND x = 0

We shall now consider the implications of some higher order effects. The chief correction
required because of finite Reynolds number probably involves the sublayer displacement thick-
ness effect. The relative sublayer displacement thickness, SSL/—G_I = O(Rv_vl/4> (see eq. 6.35),
also causes a pressure disturbance, AE/Ee = O(Rv_vl/ ) In Hama's experiment, R;Il/‘l = 0.10

for M_ = 4.02. Since B§ < 0, the sublayer thickness §_. will decrease monotonically, and, since

SL
lf);l increases monotonically as (x - L)/51 - 0, the sharpest decrease in 6. will occur near

the corner. This will tend to cause a further increase in |§;| near the corrsli:r. The overall
drop in the pressure, [E(O, 0) - Be]/ﬁe, is fixed because of the sonic condition at the corner.
Thus, an increase in II—);| near the corner will be balanced by a decrease in ‘I—);{| farther up-
stream, and a calculated wall-pressure-ratio distribution that includes the correction for the
sublayer effect will lie above the solution for the first-order theory shown in figure 5. Thus,
the sublayer effect may account for a substantial part of the discrepancy between the predicted

and measured values in figure 5.

Disturbances in the pressure of the order R‘—Vl/4 also arise when (x/L)- 1 = O<R;]3/8>
(see eq. 3.38). It would be consistent to treat this effect in conjunction with an analysis of the

sublayer.

Another Reynolds number effect appears through the displacement effect of the boundary
layer on the outer inviscid flow. The order of magnitude of this effect is characterized by the
_1/2. In Hama's experiment, M_R_ 1/2
w ew
in reference 14 that viscous interaction has a noticeable effect is raising the initial pressure

interaction parameter, MeR = 0.04, and it is pointed out
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1/2

Ee' The parameter MeR\_V also is a measure of the three-dimensional effect in flow over a

cone (see sec. 3).

The most significant Mach number effect is a result of the solution in the first outer limit.
An increase in Me should result in a greater upstream influence and thus a lower value of
ﬁo/ﬁe for a given value of (x - L)/51 (see fig. 5). However, the experimental results in figure 5
do not seem to bear this out. This predicted Mach number effect may be obscured by the sub-
layer influence previously discussed. Since in the experiment, the test conditions for larger

values of Me also have smaller values of RW, the two effects tend to offset each other.

Another Mach number effect appears if we attempt to calculate higher-order terms. It is
then also necessary to consider a limit 3.54 in which X Ml/5

e
we find Ap/p = 0<M;2/ 5).

is held fixed, and, in this limit,

In principle, it would be possible to generalize the present theory by the following pro-

cedures:

(1) Include the viscous sublayer effect by carrying out the calculations suggested in
section 4.
(2) Obtain a solution for the limit 3.54 with X Mé/s fixed

(3) Generalize the equations to include nonadiabatic and real gas effects

We shall now examine certain aspects of the application of the method of integral relations
to this problem. The system of nonlinear partial differential equations is reduced to a system
of quasi-linear, first-order, ordinary differential equations. The character of the downstream
boundary condition in the subsonic region where the equations are elliptic is simplified to
consist of one downstream condition on each strip boundary that is initially subsonic (see
eq. 5.199). Also, the procedure for obtaining the numerical solution of the equations is well
adapted to the use of high-speed electronic digital computers. Increased accuracy in the
numerical solution is achieved, in principle, by increasing the number of strips used in the
application, rather than by increasing the number of iterations in a relaxation technique, for

example.

However, in the application of any integral technique, certain properties of the full equa-
tions may be only approximated or obscured. Although accurate representations for the flow
properties along the strip boundaries might be attained with the method of integral relations,
profiles normal to the strips are found only by interpolation of the values on the strip boundaries.
In the present study, the property profiles at x = L are of particular interest since they would

provide the initial conditions for a calculation of the near wake of the body.
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In the present application of the method, we have found that
Mo ~1+ (constant)l;cll/2 (5.210)

as X = 0. This behavior for x ~ 0 is also found by Gold and Holt [23] in a one-strip integral-
relations calculation of supersonic flow past a flat-faced cylinder. However, results obtained
by Vaglio-Laurin [24] and by Fal'kovich and Chernov [25], for example would seem to suggest

that the correct behavior is

2/5

M~ 1+ (constant) | x| (5.211)

as x — 0 instead of equation 5.210. A possible explanation of this discrepancy is that the
integral relations resemble a description of a generalized one-dimensional flow as discussed

by Shapiro [26] where, for instance,

sz/dx = G(x)(1 - MZ)'1 (5.212)

(see eq. 8.71a in ref. 26). When G(x) # 0 at the point where M = 1, the expansion for M near

the sonic point is similar to that obtained in equation 5.210. In general, there is a requirement
that G(x) = 0 when M = 1, and equation 5.212 has properties similar to those of equations 5.195
and 5.196. Belotserkovskii, Sedova, and Shugaev [27] avoid this difficulty for the related problem
of inviscid supersonic flow over a blunt axisymmetric body with a corner. They obtain a solu-
tion by the method of integral relations, with strip boundaries equally spaced between the axis

of symmetry and the limiting characteristic, and join their result with Vaglio-Laurin's solution

near the corner.

SOLUTION |N6THE SUBLAYER
6.1. DORODNITSYN TRANSFORMATION
The sublayer equations describe a compressible boundary layer which extends upstream to
infinity. Problems of this type are discussed by Neiland [28], and a numerical solution for the
boundary layer approaching a corner is given by Matveeva and Neiland. In the present work,
we employ Dorodnitsyn's method [22] to derive the integral relations for N = 1 and 2. The ap-

propriate form of the Dorodnitsyn transformation in this case is (see app. I)

%
£=j Uﬂo&
o Pe

(6.1)
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T
y
n= UJ pfayt
0

where p_ = (y-1)/2yand U = Txo/ﬁe; U is the velocity just outside the sublayer. This velocity

is found by setting y = 0 in the composite solution for the outer part of the boundary layer.

- i
/0% = UL a/08 + n~ 0/0n
Py X

a/ayt = upTa/an
Since

o 1
ygn—(l/p U)E

we have
’r] B
yl- J (1/p" ), dn
¢ Joy 3
Differentiating 7 (x, yT) with respect to &,

- T 2
Ng = Mgy A/

Hence

2pf (7
ne=-p'U p—f (1/pf/0), an
X P, Jo 3
For adiabatic flow of a thermally and calorically perfect gas over an insulated body, the density

can be obtained from the integrated energy equation,

-

ho? e 2By (6.2)
p

Also, the X-momentum equation, 3.66, evaluated at the edge of the sublayer, yields (since uJr =
1 here)

_dp'/d% = ;E_Z—l-pT (1 - vy ludu/az (6.3)

while, in terms of the Mach number M0 at the outer edge of the sublayer,

-1
U2= y—°1M2<1 LY 1M2>
2 7o 2 7o

2,-1

a-vHly!

U " du/dx = M;IdMo/d)?
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Thus, the transformed equations are

T = 5
ug * w17 =0 (6.5)
I 12\ f
ulug W =<1—u )MO/MO+uTm (6.6)
where Mo denotes dMO/dg, and where
N p
W= -pTuTUJ (l/pT U)g dn + pT—i vT (6.7)
0 p
The boundary conditions are
W0 =wiE, 0=0,0(5, 01 (6.9)

6.2. SOLUTION BY THE METHOD OF INTEGRAL RELATIONS
To obtain the integral relations, we follow reference 22 and introduce a set of smoothing

functions fk(uT) wherek=1,2,...,N. The f, terms are defined to have the properties

£(0=1
lim fk(uT) =0 (6.9)
uT -1
k=1,2,...,N

' and add the results. Then we integrate

We multiply equation 6.5 by fk and equation 6.6 by fk

on 7 from 0 to «, obtaining

©
M 2 0
3 t 3 o T .
l:a—£—<fku ) +a—n(fkw):’ dn = ﬁ(; <1 -u >fkdn + Jo fku7777 dn (6.10)
0 0
)-1

T

Introducing © = (auT/ am) ~, changing the variable of integration from 7 to u', and integrating

by parts, we get

1 1
fi (0) 1f”

M 2
a T T _"o T g T ok | kgt
az fku Odu' = Mo <1 -u )fk@du - —60 . ) du (6.11)

0 0

When uJf ~ 1, © becomes large. In the case of an adiabatic constant-pressure boundary layer,

equation I-30 gives the velocity &(8) for 8 — «. It follows that, as 8 — o,

65



WILLOW RUN LABORATORIES

¢ ~ (constant) exp (-62/2) ~ (constant) B(1 - &)

and

B ~ (constant) [log (1 - g)]l/2

€ ~ (constant) (1 - g)[-1og (1 - g)]l/2

The same kind of behavior is expected when there is a pressure gradient,with 7 playing a sim-

T

ilar role to 8. Sincey' oc 1 as n — o in the present notation,

auT/an ~ (constant) (1 - uT)[-log - uT)]l/2

as 1 =w. The procedure in the present method [21] is to approximate the singularity in © by

omitting the logarithmic factor, We assume instead that

1

0=0[(1-u)
as uT - 1. To guarantee that the integrals exist, we let
i) =@ -uh) (6.12)
where k=1, 2, ..., N, and we represent © by
N-1 m
PR f
©=(1-u) Zam(z)u
m=0
1 Nl m (6.13)
5= (1-u )Z b_(£)u
m=0
where the am(g) and the bm(E) terms are related via
-1
N-1 Tm N-1 Tm
Z DBy = | ) Ta () (6.14)
m=0 m=0

where ul =k/N,andk=0,1,...,N- 1. That is, the expressions for © and 1/0© are required
T

to agree at N equally spaced values of u'.

When N = 1, we have

o= - uT)-lG)O(E) (6.15)
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_ i
fl—l— u
oL 6.16
f1=-1 (6.16)
f1=0
and equation 6.11 becomes
1 y 1
M
At gt 0 fvo qul o L
dgj u ®0du Y J 1+u )®0du 5
0 0% 0
or
d6(2) 1{/Io 2

Upon multiplication by the factor Mg, equation 6.17 can be integrated directly, giving

1/2
0. = 2M‘3 : MO 4 (6.18)
0~ o o © £ ’

It follows from equation 4.29 and the definition of U that U = 0(1/;) as X - -. If the velocity
on any streamline in the sublayer decreases in this manner, then the distance of the streamline
from the wall must increase linearly with X. The constant of integration in equation 6.18 has
been chosen so that yT obtained below in equation 6.22 has the required form for X -~ -w. As
pointed out following equation 6.35, this behavior appears to permit an upstream matching with

Lighthill's [8] results.

Then from equations 6.2, 6.15, 6.18 and the relation © = (auT/an)_1 we obtain

(1- uT)Mg
aul /an = g 73 (6.19)
6
2 <£OOMO d£>
Integration on 1 and £ fixed yields
ul =1 - exp <-M§n/2§1/2> (6.20)

where
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£
6
€ = —ooMO dé
(6.21)
X
¢ = J Uﬂdx
0 Pe
The normal coordinate is found from
T
f_oy-1(" T2
y = 5p + UJO [1-(@m U ]Odu
¢ ] 1/2
(J Mod§
= <7’ —Tl -%® 3 [—(1 - Uz) log (1 - uT) + Uz(uT +%U2>J (6.22)
yp U MO

in the case N = 1. Since d¢ = Ug— dx and both U and M are of the order 1/X as X — -, it fol-
e

lows that yT = O(x) as X — - for uf = constant. Further evaluation of the properties in the

sublayer requires numerical integration of the integrals for specified Mo(i).

When N = 2, the procedure for obtaining the integral relations is as follows. Equations
6.12 and 6.13 become

b= (1-u)
f'l =-1
fi' =0
(6.23)
£y=(1- uh)?2
£y = -2(1 - uf)
ry =2
0=(1- uT)‘l[eou - 20Ty + ®1uT:I
<1 g:* . %:) (6.24)

and equation 6.11 becomes
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1 i (L
d i ¥ Tl .7 0 i il 1,7, 1
—| ui6.(1-2u')+06.u du=-——S(1+u)®(1-2u)+@u du' +—= (6.25)
dESO {0 1 ] M00 [0 1 ] @0

1 am (1 2
%S uT(l - uT) [@0(1 - 2uT) + OluTJ duT = __—QS <1 - uT >[®0(1 - ZuT) + Gluq duJr

M
0 0Jo
1
i i
PPN I Y R N T P (6.26)
0 © 0
0 0 0 1
so that one gets the differential equations
M
' 0 34 32
Oy + 37190, + 70) = 5= - 5~ (6.27)
o] 0 1
M
L0 _20 16
Ol + I\_/I;(4@0 + 6@1) = @0 - 61 (6.28)

For a specified MO(E), equations 6.27 and 6.28 can be integrated numerically to find @0(£ } and
61(5). The first of equations 6.24 gives, for £ fixed,

1 1 T
©,-20)———=-1]+0 —>i|du
[ ! 0<1—uJr > 0<1—uT

i

dn

"

(6.29)

- (8, - ©,) log (1 - uly - (6, - 20

T =
|

1 0

Again, the normal coordinate, yT, is recovered from equations 6.2 and the solution for ©.

6.3. DISPLACEMENT THICKNESS

A displacement thickness of the sublayer may be defined by

5

SL _

Bgpx = 1-L% gy (6.30)
0 pouo

- - * —* -
where Py and uy are the density and velocity just outside the sublayer. Let GSL = SSLAWIQL'

Then, in terms of the nondimensional stretched variables in the sublayer,

of -r /4 001 pTquT (6.31)
SL ™~ "w . "o Y :

0]
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Changing the integration variable to uT, with dyT =1 /pTU) dn and dn = @duT, and using equa-

tion 6.2 and the equation of state to eliminate pT, we obtain

pl/oy = - 1A - wo®r? (6.32)
/6" =222 - ') (6.39)
2yp
and
1
+ o 1/4[y -1 f R N S

.. =R (1-u)(1+u)u”0du (6.34)

SL “w <27/pTU> 0

when N=1, 0= @0/(1 - uT) and where 90(§)_is given by equation 6.18. Thus, the integration

in equation 6.34 yields

o~ i 1/2
1 J‘ Mop—lde
5 =R‘1/4<7’ - 1> 2 iy (6.35)
SL T 3 :
W YPT M0

The N = 2 result can be obtained in a similar manner.
~ - i~ ~ *
Since U = O(x 1) and M = O(1/x) as x - -w, it follows from equation 6.35 that GSL =

o(R'l/ 4I§l> as X - -, Lighthill's [8] estimate of upstream influence is (X/L) - 1 = o(R;f’/ 8),
ie., x= O(R‘lv/8>. For X of this order, the above result for displacement thickness may be ex-

pressed by
_—— -5/8)
GSL/L = O<Rw (6.36)

which is consistent with the sublayer thickness given by Lighthill.

7
CONCLUSIONS

In the present study we have developed a description of the acceleration of a laminar
boundary layer approaching a sharp corner in the limit of large Reynolds number R and large
external Mach number M , with M R -1/2 tending to zero. Because of the large pressure gra-

dient near the corner, the viscous effects are found to be confined to a sublayer thinner than
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1/4

the boundary-layer by a factor of the order R:N . In a first approximation, the effects of the

viscous sublayer are neglected, and the inviscid rotational equations govern the flow.

Numerical results are obtained for hypersonic, laminar, adiabatic flow of a perfect gas
over a slender wedge or cone. The approach can be generalized to apply to nonadiabatic flows

of real gases.

The outer inviscid flow in the accelerating layer is characterized by two distinguished
limits. In a first outer limit, R = [x/L) - 1)]/MeR\—;v1/2 andy = ?/R;Nl/z L are held fixed, and
the flow deflection angle is of order M;l throughout the layer. The normal pressure gradient
can be neglected in this case, and the governing equations in this limit are inviscid boundary-

layer equations, which may be integrated directly.

In a second outer limit, X = [(X/L) - 1)]/R:Wl/2 and y = Y/R;Vl/z L are held fixed, and the
flow deflection angle 6 is of the order unity in the layer. The full inviscid equations govern
the flow in this case. Now 0 remains of the order M;l at the outer edge of the layer, and in

this limit the boundary condition 6(x, &) = 0 is imposed.

In the first outer limit, a decrease in the pressure is associated with a corresponding de-
crease in the layer thickness since the changes in stream-tube area for the subsonic portion
of the layer are dominant. This is designated as the subcritical condition. Eventually a further
decrease in the pressure would cause the layer to become thicker instead of thinner. Further
acceleration of the layer is accomplished by the sharp turning of the streamlines near the cor-
ner. This turning corresponds to the flow description in the second outer limit. This is desig-
nated as the supercritical condition, with d6*/dp < 0. The critical point, where d&*/dp = 0,

occurs at a distance o(MeR;Vl/2 L) upstream from the corner.

This clear distinction between subcritical and supercritical flows arises as a result of
taking the hypersonic limit, Me - . Another result of the limit Me - oo is that the boundary-

layer thickness is clearly defined and is equal to the displacement thickness. This is a useful
simplification in our application of the method of integral relations to the system of equations

in the second outer limit.

A composite expansion for the wall-pressure ratio, formed from the solutions in the first
and second outer limits, compares reasonably well with Hama's experimental data for a wedge
with Me = 4.02. Hama's wall-pressure ratio data at three Reynolds numbers are correlated

when plotted as a function of (x - L) /31, in agreement with the theory.

The most important second-order correction appears to be the sublayer effect, since

R\—)vl /4 = 0.10 in Hama's experiment. The governing equations in the sublayer are the boundary-
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layer equations with a pressure gradient. We are able to derive integral relations for the sub-
layer velocity and displacement thickness. Other higher order effects may, in principle, be
considered in the analysis by studying a limit where Q -0,%x - -c0, and )T:/Ml/5 is held fixed,

1/8 €

and a limit where x — - with ;(/RW held fixed.

In addition to the numerical solution in the second outer limit found with a single-strip
application of the method of integral relations, the integral relations for a two-strip applica-
tion are derived. In principle, any number of strips can be considered. However, it is neces-
sary to carry out asymptotic expansions of the equations to the second order as X — -« in order
to start the numerical integration technique, and the procedure for applying the initial ¢onditions

is not yet clear.

Another approach to solving the equations in the second outer limit might be to use the
method of characteristics or a finite-difference method in the supersonic region, and a one-
strip application of the method of integral relations for the portion of the flow that is initially

subsonic.
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Appendix |
COMPRESSIBLE LAMINAR BOUNDARY LAYER AT CONSTANT PRESSURE
As a preliminary to the analysis of boundary-layer acceleration at a corner, it is neces-
sary to calculate the development of the boundary layer upstream from the interaction region.
The velocity profile evaluated at the corner then provides the upstream boundary condition for
the interaction calculation. For this reason and for the convenience of having the results avail-
able in notation consistent with other parts of this work, the solution of the constant-pressure
laminar boundary layer on a wedge or cone, in the limit of large Mach and Reynolds numbers,

is given here.
In this boundary-layer calculation, the following idealizations are made:

1) Thermally and calorically perfect gas

(

(2) Unity Prandtl number

(3) Linear viscosity-temperature relation
(

4) Adiabatic wall

However, these simplifications are not essential to the approach employed to analyze boundary-

layer acceleration at a corner.

To establish order estimates for flow properties just outside the boundary layer on a wedge
or cone, we shall consider the oblique-shock relations for high-speed flow past a slender

wedge (see fig. 1). We are concerned with the limit

M —-©
0

ROO - (I-1)
T-0

If also
L _on) (1-2)
M 77
0

then it can be shown (for example, see Hayes and Probstein [1]) that

1/2

(I-3)

and also
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2
(o/TM
M2 - °°2 5 (1-4)
(o/7 - 1)[1 + yMOOT (0/1’)]

- o(r Y (I-5)

Here f)e and Me are the pressure and Mach number at the outer edge of the boundary layer, 7
is the wedge half-angle, and o is the shock-wave angle. Although equations I-3 and I-4 are

applicable only for a wedge, equation I-5 is valid also for a slender cone.

A power-law viscosity-temperature relation of the form

/B, = @T/T,)" (1-6)

=

is assumed. Since Teﬁoo = O<M3072> and T‘W/-’fe = O(T_z), we have the order estimates

R, - O[(MOOT)_szOO} 1

RW _ O{TZw+Z(MOOT)—2wROOJ (1-8)

where Re = peueL/ue and RW = pwueL/uW are the Reynolds numbers based on the thermody-
namic properties at the outer edge of the boundary layer and at the surface of the body, re-
spectively. Later in the calculation, the exponent w will be set equal to one. Since T/TW =
O(1) for any point inside the boundary layer, TI‘—W is a proper reference temperature. Then the

order estimate for the boundary-layer thickness at the trailing edge of the body is
= -1 /2)
5,/L=O[R, (1-9)

Since from equations I-2 and I- 3 we have o/7 = O(1), the requirement that the boundary-layer

thickness be much smaller than the shock layer thickness becomes
T 1R:Vl/ 2.0 (1-10)

The limit expressed by equations I-1, I-2, and I-10 can be written in terms of local boundary-

layer properties as

R —~w (I-11)
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It is appropriate, in view of the order estimate for the boundary-layer thickness given in

equation I-9, to introduce the stretched coordinates

x=%x/L
37=§/R;V1/2L (1-12)
r=r/7L

Then, in the limit expressed in equations I-11, the leading terms in asymptotic representations

for the x- and y-velocity components, pressure, and density are
ﬁme ~ux,y) +. ..

‘V/ﬁe ~ R;Vl/zv(x, V) +... w13
I-

2
p/p U, ~ (v -1)/2y+ ...

p/by, ~ P&, y) +.

In the first approximation for the hypersonic limit, the equations describing laminar boundary-

layer flow become

(purk)x . (pvrk)§ -0 (1-14)
p(uux + vu§) = (uu§)§ (I-15)
p=(1-u)! (I-16)

where k = 0 for a wedge, and k = 1 for a cone. For a linear viscosity-temperature dependence,

p=T=p (I-17)
where u = ﬁ/ﬂw and T = T/TW Note that
2 /2 g 2\ 2
u /q = <1 + M ) =1 +0(M' ) (1-18)
e max v-17"%e e

in the hypersonic limit.

The differential equations I-14 and I-15 can be converted to the form for plane incompres-
sible flow by the Dorodnitsyn transformation (see Belotserkovskii and Chushkin [22]), which,

in this case, simplifies to

X
gzj r2kdx
0
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k(Y .-
n=r J pdy (I-19)
0

3/0x = era/ag 0 3/0m

3/dy = prka/an

Ny = -(37“5/%)%‘x

n
= pr3kJ (prk)‘,E (or*y 2 ap
0

Integration of the continuity equation gives

v = Jon [(purk)ngk + nx(purk)n] (ory L an
Then the resulting differential equations are
u.£ + W77 =0 (I-20)
uu, + wu77 = u7777 (I-21)

where

i

-k k k k-2

W= pvr  + pur J (or )g(pr) dn
0

The boundary conditions are

u(0, n) =1
u(¢, 0 =0 (1- 22)
w(£,0)=0
u(é, w) =1

The system of equations I-20, I-21, and I-22 has a similarity solution originally found by
Blasius (see Rosenhead [29]). Equation I-20 can be satisfied identically if we define a stream

function, ¥, by

£ (1-23)
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Then equation I-21 becomes

¥ v ¥ = 1-24
no&n &M (I-24)
In terms of a similarity variable

8- @5 V2,

(I-25)
the stream function has the form

v= 26 %)

(I-26)
and equation I-24 transforms to the ordinary differential equation

g+gg=0 (1-27)
where the dot denotes differentiation with respect to 8. The boundary conditions are
g(0) =
£(0)

]
_ O O

g(w) =

(I-28)
Rosenhead [29] tabulates the solution to equations I-27 and I-28 and gives

2(0) = 0.4696 (1-29)
In the limit of large 8,
. -1 -3
g(B) ~1 - 0.331(¢

cteatl ) e (28F) (1-30
where =53 - 1,21678.

The values of our original variables are found from

(I-31)

(I-32)
Integrating by parts and using equation I-27, equation I-32 becomes

y= (Zﬁ)l/zr‘k(ﬁ - gg - g + 0.4696)

(I-33)
Also,r=x,u=g,andp= (1 - g’z)_l, while the boundary-layer thickness is given by
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1/2 -k 1/2 -k

= ,,-1/2 SO

5/R / L=(2¢% lim (8- g& - g+ 0.4696) = 1,68638(2¢) (I-34)
w Bco

In the hypersonic limit, the boundary-layer thickness is finite and equal to the displacement

thickness 6*, where

Now E/ﬁe = O<M;2) in the hypersonic limit so that
/5% - 1=0(1) (1- 35)
At the trailing edge, x = r = 1, and hence

1
T (I-36)

1/2
2 ) (1-37)

= o-1/2
5, /R L—1.68638<m

In the analysis of boundary-layer acceleration at a corner, it is necessary to generate the
function ¢(8). This is carried out by transforming equation I-27 to a system of first-order
equations and integrating numerically by the Runge-Kutta fourth-order method [21]. We intro-

duce new dependent variables

Yl =g
Vo =8 (I-38)
V5= 8
and obtain the differential equations
Vi =Yy
Vo =Yg (1-39)
V5= -¥iV3
with the initial conditions
v,(0) =0
¥,(0) = 0 (1-40)
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y4(0) = 0.4696

To start the integration process, we utilize the expansions of g, &, and ¢ for small 8:

125 11 38

“B " 120 P * Z0330% P

1 24 11 3.7

gNQB‘——aB +5040 B

54 (I-41)

1136

e, 123
Era-gr B+ P

where a = 0,4696,

Appendix li
APPROXIMATION BY THE METHOD OF INTEGRAL RELATIONS
COMPARED WITH THE EXACT BLASIUS SOLUTION
The transformed relations for a boundary layer without a pressure gradient are equa-
tions 1-20, I-21, and 1-22. Since, in this case U =1 and Mo = 0 (see sec. 6), the integral rela-

tions, equations 6.11, become

1
f' (0) 1
d k k
ng f uOdu = - 5 —J 6du (I1-1)
o} 0
0
wherek=1,2,...,N, When N =1, we have
f1 =1-u
f! =-1
fl =0
Assuming a similarity solution for u,
o= (u/an) L = 267201 - w7} (11-2)
and
u=1-exp (—n/2£1/2) (I1-3)

-1/2

= —4
un(O) 0.5¢ (I1-4)
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A nondimensional displacement thickness is

0 1 1/2
6% = j (1-u)dn-= J (1 - uwOdu=2.0¢ (II-5)
0 0
When N = 2,
f1 =1-u
to L
f1 =-1
f'l' =0
2
f2 =(1 - )
f'z = -2(1 - u)
f'z' =2
-1
©0=(1-u) [60 + (61 - 2@0)u] (11-6)
1
5= (1-uBy+ (B, - 2B0)u] (I1-7)
Thus, from equation 6.14, B0 = 661, B1 = 46;1, and equation II-1 becomes
de. /dt = 34071 - 32071 (II-8)
0 0 1
do, /d¢ = 200, " - 1607 (11-9)
1 0 1

When we assume a form of solution similar to equation II-2,
0 -/ (11-10)

where i = 0, 1, When substituted into equations II-8 and II-9, equation II-10 yields

-1)1/2

A0 =2(17 - 16x = 3.1555 (I1-11)

A, = 22(17 - 163" 1)1/

. = 3.4793 (11-12)

where A = (13 + V33)/17. When N = 2, the result for the nondimensional wall shear stress is

un(O) - 0.317{1/2
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while the displacement thickness is given by

5% = 1.74&1/2

Table V is a comparison of the results of the method of integral relations for N = 1 and 2
with the Blasius solution and the Pohlhausen approximation. It can be seen that when N = 2
the method of integral relations is comparable in accuracy with a Pohlhausen calculation. For
a more complete assessment of the accuracy of the method of integral relations in a variety

of problems, see reference 22,

TABLE V. COMPARISON CF SOLUTION BY THE INTEGRAL RELATIONS
METHOD WITH THE BLASIUS BOUNDARY-LAYER SOLUTION AND A
POHLHAUSEN CALCULATION

Method of Pohlhausen
Blasius Result Integral Relations Calculation [30]
N=1 N=1
ﬁl/zun(O) 0.332 0.5 0.317 0.343
g1/ 25x 1.729 2.0 1.74 1,752
Appendix Il

REDUCTION OF HAMA'S WALL-PRESSURE DATA

In this appendix, the calculations carried out in reducing Hama's wall-pressure ratio data

[6] (shown in fig. 4) to the form given in figure 5 are explained.

The Mach number given is Me Y and the wall pressure po is divided by pe 0 where M
b ’ I

and P ; are the values of Mach number and pressure at the surface which would be predicted

by inviscid-flow theory. Also, the value of the Reynolds number Re is specified.

There are three sets of experimental conditions:

M R
e,i e

5

4.02 2.16 x 10

3.15 1.34 x 10°

2.35 1.97 x 10°

We wish to express the results in terms of Me’ RW and to calculate 31. We choose the

static pressure orifice farthest upstream (X - L = -1.5 in.) as the reference point for measur-
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ing f)e. Then Io‘o/‘f)e can be calculated from the relation
p,/P, = (ﬁo/ﬁe’i)/(_pe/ﬁe,i) (ITI-1)

Since |Me - Me,i [/Me,i is considerably smaller than |pe - pe,i '/pe,i’ we will take

M =M ..
e e,i

The Reynolds number based upon the thermodynamic properties at the wall is found from

M2>-(w+1)

R, = (0, /) (o /F R, = (1475~ R (11-2)

e

and, in our calculation, w = 1 and y = 1.4. The boundary-layer thickness is calculated from

5, - V§(1.68638)R‘_V1/ 2y, (I11- 3)
(see app. I), with L = 4.783 in.
The results are as follows:
_ 01
Me pe/r)e,i Rw (in.)
4,02 1.070 1.2 x 104 0.104
315  1.048  15x10°  0.093
2.35 1.020 4.4 X 104 0.054
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ATTN. RACZKA, J. G.

30 COMMERCE ROAD

STAMFORD, CONNECTICUT 06902
COPY NO. 212

BATTELLE MEMDRIAL INSTITUTE
COLUMBUS LABDRATORIES
ATTN. UNGAR, EDWARD W.
505 KING AVENUE
COLUMBUS, OHID 43201
COPY NO. 213

BELL TELEPHONE LABORATORIES, INC.

ATTN. SINCLAIR, ROBERT 0., JR.
RM. 38-103
WHIPPANY ROAD
WHIPPANY, NEW JERSEY 07981
COPY NO. 214

BENDIX CORPORAYION

SYSTEMS DIVISION

ATTN. BITONDD, DOMENIC

3300 PLYMOUTH ROAD

ANN ARBOR, MICHIGAN 48105
COPY NO. 215

BENDIX CORPORATION

SYSTEMS DIVISION

ATTN. KRESSE, ARTHUR O.

3300 PLYMOUTH ROAD

ANN ARBOR, MICHIGAN 48107
COPY NO. 216

BENDIX CORPORATION

SYSTEMS DIVISION

ATTN. LIBRARY

3300 PLYMOUTH RDAD

ANN ARBOR, MICHIGAN 48105
COPY NO. 217

BLOCK ENGINEERING, INC.
ATTN. BLOCK, MYRON J.
19 BLACKSTONE STREET
CAMBRIDGE. MASS. D2139
COPY NO. 218

BOEING COMPANY

ATTN. ADAM, WILLIAM B.

P. 0. BOX 3707

SEATTLE, WASHINGTON 98124
CoPY NO. 219

BOEING COMPANY

MISSILE AND INFORMATION SYS.

ATTN, AXTELL, DR. JAMES C.

P. 0. BOX 3999

SEATTLE, WASHINGTON 98124
COPY NO. 220

BOEING COMPANY

AERO-SPACE DIVISION

ATTN, MC DONALD, RICHARD K.

P. 0. BOX 37027

SEATTLE, WASHINGTON 98124
cory 221

BOEING COMPANY

ATTN., THACKER, GEDRGE H.

P. 0. 80x 3707

SEATTLE, WASHINGTON 98124
COPY NO. 222

BOEING CDMPANY

MISSILE # INFD. SYSTEMS DIV.

ATTN. TURNER, T. E.

BOX 3737/7755 E. MARGINAL wWAY

SEATTLE, WASHINGTON 98124
COPY NO. 223

BURROUGHS CORPORATION

ATTN. LOMSE, EDWARD

PAOLI, PENNSYLVANIA 19301
COPY NO. 224

CALIFORNIA INSTITUTE OF TECH.
JET PROPULSION LABORATORY
ATTN, CANTER, LOUIS, MANAGER
LIBRARY SEC. 111-113
4800 OAK GROVE DRIVE
PASADENA, CALIFORNIA 91103
COPY NO. 225



CALIFORNIA. UNIVERSITY OF

LAWRENCE RADIATION LABORATORY

ATTN. CRAIG, CLOVIS G.

P. 0. 80X 808

LIVERMORE, CALIFORNIA 94550
COPY NO. 226

CHRYSLER CORPORATION
SPACE DIVISION
ATTN. VEHKO, V. J.
POST OFFICE BOX 29200
NEW ORLEANS, LA. 70129
COPY NO. 227

CHRYSLER CORPORATION
DEFENSE SPACE GROUP
ATTN. BIASELL, L. R,
PDST OFFICE BOX 1827
DETROIT, MICHIGAN 48231
COPY NO. 228

CHRYSLER CORPORATIDN

MISSILE DIVISION

ATTN, ERICKSON, ROBERT P.

P. 0. BOX 2628

DETROIF, MICHIGAN 48231

VIA. TECHNICAL INFORMATION CENT
COPY NO. 229

CONDUCTRON CORPORATION
ATTN. RITT, ROBERT K.
L IBRARY
343 S. MAIN STREEY
ANN ARBOR, MICHIGAN 48108
COPY NO. 230

CORNELL AERONAUTICAL LAB., INC.
ATTN. CHAPMAN, SEVILLE

P. 0. BOX 235, 4455 GENESEE STREET

BUFFALD, NEW YDRK 14221
COPY NG. 231

LIBRARIAN
CORNELL AERONAUTICAL LAB., INC.
ATTN. DESMOND, JOSEPH
4455 GENESEE STREET
BUFFALO, NEW YORK 14221
COPY NO. 232

CORNELL AERONAUTICAL LAB., INC.
ATTN. KAUSHAGEN: W. MAURICE
4455 GENESEE STREET
BUFFALD, NEW YDRK 14221

COPY NO. 233

CORNELL AERONAUTICAL LAB., INC.
ATTN. KELL, ROBERT E.
BOX 23574455 GENESEE STREET
BUFFALO, NEW YORK 14221

COPY NO. 234

CORNELL AERONAUTICAL LAB., INC.
ATTN. WURSTER, DR. WALTER H.
4455 GENESEE STREET
BUFFALD, NEW YORK 14221

CDPY NO. 235

DALMO VILCTOR COMPANY

DIVISION OF TEXTRON, INC.

ATTN. KRASNO, MAXWELL R.

1515 INDUSTRIAL wWAY

BELMONT, CALIFORNIA 94002
COPY NO. 236

GRC, INCORPORATED

ATTN. TECHNICAL INFORMATION OFFICE

6300 HOLLISTER AVENUE
GOLETA, CALIFORNIA 93017
COPY NO. 237

DOUGLAS AIRCRAFT COMPANY, INC.

ATTN. ARNQUIST, DR. WARREN N, G-25

3000 OCEAN PARK BLVD.
SANTA MONICA, CALIF. 90405
COPY NO. 238

DOUGLAS AIRCRAFY COMPANY, INC.

ATTN. AVIONICS SECTION

3000 OCEAN PARK BOULEVARD

SANTA MONICA, CALIF. 99405
CaPY NO. 239

DDUGLAS AIRCRAFT CO., INC.
MSSD
ATTN. KARNES, DAVID M.
3000 OCEAN PARK BOULEVARD
SANTA MONICA, CALIFORNIA 90406
viA. BOYCE, C. E.

OIRECTOR - SECURITY

COPY ND. 240

DOUGLAS AIRCRAFT COMPANY, INC.

ATTN. TECHNICAL LIBRARY

3000 OCEAN PARK BOULEVARD

SANTA MONICA, CALIF. 90426
OPY NO. 241

DOUGLAS AIRCRAFT COMPANY, INC.
MISSILE + SPACE DIVISION
ATTN, NUTTALL, RICHARD D.
SANFA MONICA, CALIF. 90406
COPY NO. 242

DYNAMICS RESEARCH CORPORATION
ATTN. TECHNICAL LIBRARY
38 MONTVALE AVENUE
STONEHAM, MASS. 02180
COPY NO. 243

EDGERTON, GERMESHAUSEN + GRIER INC

ATTN, DOCUMENT CONTROL CENTER

P. O, 80X 384, KENMORE STATION

BOSTON, MASSACHUSETTS 02215
COPY NO. 244

ELECTROMAGNETIC RESEARCH CORP.

ATTN. LIBRARIAN

5001 COLLEGE AVENUE

COLLEGE PARK, MARYLAND 20740
COPY NO. 245

ELECTRD-OPTICAL SYSTEMS

ATTN. LIBRARIAN

300 N. HALSTEAD STREET

PASADENA, CALIFORNIA 91107
COPY NO. 246

FEDERAL SCIENTIFIC CORPORATIDN
ATTN. LIBRARY
615 WEST 131ST STREET
NEW YORK, NEW YORK 10027
COPY NO. 247

AERONUTRONIC DIV., PHILCO CORP.

ATTN. CARLSON, DONALD J.

FORD ROAD

NEWPORT BEACH, CALIF. 92663
COPY NO. 248

GENERAL DYNAMICS CORPORATION

POMONA DIVISION

ATTN. DIVISION LIBRARY

P. C. 80X 1011

POMGONA, CALIFORNIA 91769
COPY NO. 249

GENERAL DYNAMICS CORPORATION
ASTRONAUTICS DIVISION
ATTN. DORIAN, MARK F.
MAIL ZONE 596-00
BOX 1128, 5001 KEARNY VILLA RD.
SAN DIEGD, CALIFORNIA 92112
COPY NO. 250

GENERAL DYNAMICS CORPORATION
ASTRONAUTICS DIVISION
ATTN. ENGINEERING LIBRARY
BOX 1128
SAN DIEGD, CALIF. 92112

COPY NO. 251

GENERAL DYNAMICS CORPDRATION
GENERAL ATOMIC DIVISION
ATTN. HAYS, STANLEY D.
P. 0. BOX 1111
SAN DIEGO, CALIF. 92112
¥IA. CHIEF., TIS

COPY NO. 252

GENERAL DYNAMICS CORPORATION
ATTN. DE TONNANCOUR, P. R.
CHIEF, LIBRARIAN
P. 0. BOX 748
FORT WORTH, TEXAS 76101
COPY NO. 253

GENERAL ELECTRIC COMPANY
TEMPO DIVISION
ATTN. LIEBHOLD, KLAUS
DIRECTOR, DASA DATA CEN.
735 STATE STREET, DRAWER QQ
SANTA BARBARA, CALIF. 93101
Y NO. 254

GENERAL ELECTRIC COMPANY
ELECTRONICS PARK
ATTN. AMEIGH, RICHARD M.
ELECTRONICS LABORATORY, BLDG. 3
SYRACUSEs NEW YORK 13201

COPY NO. 255

GENERAL ELECTRIC COMPANY

E. LAB. BLDG. 3, RM 107

ATTN, LECCESE, FRANK M.

ELECTRONICS PARK

SYRACUSE, NEW YORK 13201
COPY NO. 256

GENERAL ELECTRIC COMPANY
ELECTRONICS PARK
ATTN. DOCUMENTS LIBRARY
Y. BURKE
BUILDING 13
SYRACUSE, NEW YORK 13201
COPY NO. 257

WILLOW RUN LABORATORIES

GENERAL ELECTRIC COMPANY
LIGHY MILITARY ELECTS. DEPT.
ATTN. LIBRARY
901 BROAD STREET
UTICA, NEW YORK 13501

COPY NO. 258

RE-ENTRY PHYSICS LIBRARY
GENERAL ELECTRIC COMPANY
MISSILE + SPACE VEHICLE DEPT.
ATTN. LIBRARIAN

SPACE TELHNOLOGY LIBRARY RM. 1343L

VALLEY FORGE, PA. 19481
COPY NO. 259

GENERAL ELECTRIC LOMPANY
RE-ENTRY SYSTEMS DEPT.
ATTN. BOTJE, JACDBUS M.
3198 CHESTNUT STREET
PHILADELPHIA, PA. 19104

COPY NO. 260

GENERAL ELECTRIC COMPANY
MISSILE + SPACE DIVISION
ATTN. GUTTMAN, ANDREW
P. 0. BOX 8555
PHILADELPHIA, PA. 19101

COPY NO. 261

GENERAL ELECTRIC COMPANY
MISSILE + SPACE DIVISION
ATTN, LEW, HENRY G.

RM. 9167-L

SPACE TECH. CENTER P. 0. BOX 8555

PHILADELPHIA, PA. 19101
COPY NO. 262

GENERAL ELECTRIC COMPANY
MISSILE + SPACE DIVISION
ATTN. RAYL, GEORGE J.
P. O. HOX 8555
PHILADELPHIA, PA. 19101

COPY NO. 263

GENERAL ELECTRIC COMPANY
MISSILE + SPACE DIVISION
ATTN. RIETHOF, THOMAS R.
P. D. BOX 8555
PHILADELPHIA, PA. 19101

COPY ND. 264

GENERAL ELECTRIC COMPANY
MISSILE + SPACE DIVISION
ATTN. SCALA, SINCLAIRE M.
P. 0. BOX 8555, SPC, RM. M3539
PHILADELPHIA, PA. 19101

COPY NO. 265

GENERAL ELECTRIC COMPANY
MISSILE + SPACE DIVISION

ATTN. OOCUMENTS LIBRARY, RM 1343L

THORKELSON, WILLIAM L,

SPACE TECH. CENTER P. 0. BOX 8555

PHILADELPHIA, PA. 19101
COPY NO. 266

GENERAL MOTORS CORPORATION

AC ELECT. DEFENSE RES. LABS.

ATTN. PRIMICH, ROBIN I.

6767 HOLLISTER AVENUE

GOLETA, CALIFORNIA 93017
COPY NO. 267

GENERAL MOTORS CORPORATION

AC ELECTRONICS DEF. RES. LABS

ATTN. SHAAR, CAMILLE, M. JR

6767 HOLLISTER AVENUE

SOLETA, CALIFORNIA 93017
COPY NO. 268

GENERAL MOTORS CORPORATION
AC ELECT. DEFENSE RES. LABS.
ATTN. STEINBERG, MARTIN
6767 HOLLISTER AVENUE
SOLETA, CALIFORNIA 93017

OPY NO. 269

GENERAL MOTORS CORPORATION
DEFENSE SYSTEMS DIVISION
ATTN. BURT, RDBERT T.
LIBRARIAN
P. P POXT
SANIA Bakbaka, LALlF. 93105
COPY NO. 270

GENERAL MOTORS CORPORATION
DEFENSE RESEARCH LABORATORIES
ATTN. MAIDEN, COLIN J.

BOX T
SANTA BARBARA, CALIF. 93102
COPY NO. 271

GENERAL PRECISION, INCORPORATED
LIBRASCOPE DIVISION
ATTN. SANDS, NATHAN J.
SUPERVISOR LIBRARY SERV.
808 WESTERN AVENUE
GLENDALE, CALIF. 91201
COPY NO. 272

GENERAL RESEARCH CORPORATION

ATTN. STULL, VINCENT R

P. 0. BOX 3587

SANTA BARBARA, CALIF 93105
COPY NO. 273

GCA CORPORATION
ATTN, TECHNICAL LIBRARY
NAZZARCy L.
BURLINGTON ROAD
BEDFORD, MASSACHUSETTS 01730
COPY NO. 274

GCA CORPORATION
PHYSICS RESEARCH DIVISION
ATTN. PRESSMAN, JEROME
BURLINGTON ROAD
BEDFORD, MASS. 01730

COPY NO. 275

GODDARD SPACE FLIGHT CENTER
ATTN. BURDETT, GERALD L.

CODE 4
GREENBEL¥s MARYLAND
COPY NO. 276

HELIODYNE CORPORAT ION

ATTN., FELDMAN, SAUL

7810 BURNET AVENUE

VAN NUYS, CALIFORNIA 91405
COPY NO. 277

HUGHES AIRCRAFT CDMPANY

MAIL STATION B-108

ATTN, CRAVEN, WILLIAM A., JR,

FLORENCE AVENUE + TEALE STREET

CULVER CITY, CALIF. 90230
COPY NO. 278

HUGHES AIRCRAFT COMPANY

SPACE SYSTEMS DIVISION

ATTN. STROUP, RICHARD E.

EL SEGUNDO, CALIF. 90245
CTOPY NO. 279

HUGHES AIRCRAFT COMPANY
SROUND SYSTEMS GROUP
ATTN. HAIRE, MARY LOU
TECHNICAL LIBRARY
FULLERTON, CALIFORNIA 92634
COPY ND. 280

HUGHES AIRCRAFT COMPANY
SPACE SYSTEMS DIVISION
ATTN. SION, ELIO
BLDG. 366, MAIL STA. 781
P. O. BOX 90919
LOS ANGELES, CALIF. 90009
COPY NO. 281

INSTITUTE FOR DEFENSE ANALYSES

ATTN. BIBERMAN, LUCIEN M.

400 ARMY-NAVY DRIVE

ARLINGTON, VIRGINIA 22202
COPY NO. 282

INSTITUTE FOR DEFENSE ANALYSES

ATTN. CLASSIFIED LIBRARY

400 ARMY-NAVY DRIVE

ARLINGTON, VIRGINIA 22202
COPY NO. 283

INSTITUTE FOR DEFENSE ANALYSES
ATTN. MARTIN, DR. JOHN J.
400 ARMY-NAVY DRIVE
ARLINGTON, VIRGINIA 22202
COPY NO. 284

INSTITUTE FOR DEFENSE ANALYSES

ATTN. MENKES, JOSHUA

400 ARMY-NAVY DRIVE

ARLINGTON, VIRGINIA 22202
COPY ND. 285

INSTITUTE FOR DEFENSE ANALYSES
ATTN. RUBENSTEIN, ALBERT M.
400 ARMY-NAVY DRIVE
ARLINGFON, VIRGINIA 22202
VIA. DOCUMENT CONTROL

COPY NO. 286

INSTITUTE FOR DEFENSE ANALYSES

ATTN. SCHULTIS, WILLIAM J.

400 ARMY-NAVY DRIVE

ARLINGTON, VIRGINIA 222032
COPY NO. 287

INSTITUTE FOR DEFENSE ANALYSES

ATTN. WALSH, JOHN L

400 ARMY-NAVY ORIVE

ARLINGTON, VIRGINIA 22202
COPY NO. 288

INSTITUTE FOR DEFENSE ANALYSES
ATTN. THOMSON, JAMES A. L.
400 ARMY-NAVY DRIVE
ARLINGTON, VIRGINIA 22202
COPY NO. 289

87
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INSTITUTE FOR DEFENSE ANALYSES

ATTN. VOSBURGH, MALCOLM C.

400 ARMY-NAVY DRIVE

ARLINGTON, VIRGINIA 22202
COPY NO. 290

INSTITUTE FOR DEFENSE ANALYSES

ATTN. WOLFHARD, HANS G.

400 ARMY-NAVY DRIVE

ARLINGTON, VIRGINIA 22202
COPY NO. 291

ITEK CORPORATION
VIDYA DIVISON
ATTN. DOCUMENT CONTROL
RAGENT, BORIS
1450 PAGE MILL RDAD
PALO ALTO, CALIFORNIA 94304
COPY NO. 292

ITT FEDERAL LABORATORIES
ATTN. LIBRARY
392 WASHINGTON AVENUE
NUTLEY, N. J. O7110
COPY NO. 293

JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY

ATTIN. FOLLIN, DR. JAMES W., JR.

8621 GEORGIA AVENUE

SILVER SPRING, MARYLAND, 20910
COPY NO. 294

JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY

ATTN. LIBRARIAN

8621 GEORGIA AVENUE

SILVER SPRINGS, MD. 20910
COPY NO. 295

KAMAN ATRCRAFT CORPORATION

NUCLEAR DIVISION

ATTN. CLASSIFIED DOCUMENT BRANCH

GARDEN OF THE GODS RDAD

COLORADO SPRINGS, COLO. 80907
COPY NO. 296

K M S INDUSTRIES, INC
ATTN. KATZ, HAROLD W
229 E. HURON
ANN ARBOR, MICHIGAN 48108
VIA. SECURITY OFFICER
COPY NO. 297

ARTHUR D. LITTLEs, INC.

ATTN. ESPINOLA, RONALD P.

ACORN PARK

CAMBRIDGE, MASS. 02140
COPY NO. 298

ARTHUR D. LITTLE, INC.

ATTN, LORAH, LAWRENCE D.

ACORN PARK

CAMBRIDGE, MASS. 02140
COPY NO. 299

LOCKHEED-CALIFORNIA COMPANY

ATTN. KUTZSCHER, DR. EDGAR W.

P. 0. BOX 551

BURBANK, CALIFORNIA 91503
CoPY NO. 300

LOCKHEED-CALIFORNIA COMPANY
ATTN. CENTRAL LIBRARY

DEPT. 77-14, BLDG. 170, PLANT B-1

BURBANK, CALIFORNIA 91503
COPY NO. 301

LOCKHEED AIRCRAFT CORPORATION
MISSILE + SPACE DIVISION

ATTN. KOZUMPLIK, DR. WM. A. (LIB)

TECH. INFORMATION CENTER
3251 HANOVER STREET
PALD ALTO, CALIF. 94304
CJPY NO. 302

LOWELL TECHNOLOGICAL INSTITUTE

RESEARCH FOUNDATION

ATTN. MIRANDA, HENRY A., JR.

450 AIKEN STREET

LOWELL, MASSACHUSETTS 01853
COPY NO. 303

MARTIN COMPANY
DENVER DIVISIOI

N
ATTN. ADVANCED TECHNOLGGY LIBRARY

P. 0. BOX 1176
DENVER, COLORADO 80201
COPY NO. 304

MASSACHUSETTS INSTITUTE OF TECH.
LINCUOLN LABORATORY
ATTN. BILLUPS, ROBERT R.

PRESS FIELD STA., APO 555, BOX 58

SAN FRANCISCO, CALIF. 96555
COPY NO. 305

MASSACHUSETTS INST. DF TECHNOLOGY

LINCOLN LABORATORY

ATTN. BALSER, MARTIN

P. 0. BOX 73

LEXINGTON, MASSACHUSETTS 02173
COPY NG. 306

MASSACHUSETTS INST. OF TECHNOLOGY
LINCOLN LABORATORY
ATTN, CHATTERTON, EDWARD J.
P. O. BOX 73
LEXINGTON, MASS. 02173
CoPY NO. 307

MASSACHUSETTS INST. OF TECHNOLOGY

LINCOLN LABORATORY

ATIN. EDELBERG, SEYMOUR

244 WOOD STREET - P. D. BOX 73

LEXINGTON, MASSACHUSETTS 02173
OPY NG. 308

MASSACHUSETTS INST. DF TECHNOLOGY
LINCOLN LABORATORY
ATTN. GRANESE, MARY A,
DOCUMENTS LIBRARIAN
P. 0. BOX 73
LEXINGTON, MASSACHUSETTS 02173
COPY NO. 309

MASSACHUSETTS INST. OF TECHNOLOGY

LINCOLN LABORATORY

ATTN. MC NAMARA, FRANK L.

P. 0. BOX 73

LEXINGTON, MASSACHUSETTS 02173
COPY NO. 310

MASSACHUSETTS INST. OF TECHNOLOGY

LINCOLN LABORATORY

ATTN. PIPPERT, DR. GLEN F.

P. 0. BOX 73

LEXINGTON, MASSACHUSETTS 02173
LOPY NO. 311

MASSACHUSETTS INST. OF TECHNOLOGY

LINCOLN LABORATORY

ATTN. SLATTERY, RICHARD €.

P. 0. BOX 73

LEXINGTON, MASSACHUSETTS 02173
COPY NO. 312

MELPAR, INCORPORATED

ATTIN. TECHNICAL INFO. CENTER

3000 ARLINGTON BOULEVARD

FALLS CHURCH, VIRGINIA 22046
COPY NO. 313

MINNEAPOL IS-HONEYNELL REG. CO.

MILITARY PRODUCTS GROUP

ATTN., SLADKY, M. A.

2600 RIDGWAY ROAD

MINNEAPOLIS, MINNESOTA 55413
COPY NO. 314

MITHRAS, INCORPORATED

ATTN. LIBRARY

701 CONCORD AVENUE

CAMBRIDGE, MASSACHUSETTS 02138
COPY NO. 315

MITHRAS, INCORPORATED

ATTN. 0SS, DON H.

380 PUTNAM AVENUE

CAMBRIDGE, MASSACHUSETTS 00139
COPY ND. 316

MITHRAS, INCORPORATED

ATTN. RUBIN, EUGENE S.

701 CONCORD AVENUE

CAMBRIDGE, MASSACHUSETTS 02138
coPY NO. 317

LIBRARY SERVICES
MITRE CORPORATION
ATTN. CLAFLIN, JEAN E.
LIBRARIAN
POST OFFICE BOX 208
BEDFORD, MASS. 01730
COPY NG. 318

MITRE CORPORATION
ATTN. LIBRARY
MCNAUGHT, JOAN E. (LIB)
BEDFORD, MASSACHUSETTS 01730
COPY NGO, 319

NORTH AMERICAN AVIATIDN, INC.
ROCKETDYNE DIVISIDN
ATTN. GOLDEN, DR. STANLEY A.
D/591-351, Z-11
BOX 552
CANOGA PARK, CALIF. 91343
cory 320

NORTH AMERICAN AVIATION, INC.

ROCKETDYNE DIVISION

ATTN. LIBRARIAN

5633 CANDGA AVENUE

CANOGA PARK, CALIF. 91304
COPY NO. 321

WILLOW RUN LABORATORIES

NORTH AMERICAN AVIATION, INC.

AUTONETICS DIVISION

ATTN. TECHNICAL LIBRARY

3150 E. IMPERIAL HIGHWAY

DOWNEY, CALIFORNIA 90242
COPY NO. 322

NORTH AMERICAN AVIATION, INC.
COLUMBUS DIVISION
ATTN. REAGAN, JAMES F.
4300 EAST FIFTH AVENUE
COLUMBUS, OHIO 43219

COPY NO. 323

NORTHROP SPACE LABORATORIES

ATTN. LANDRUM, BOBBY L.

3431 W. BROADWAY

HAWTHORNE, CALIFORNIA 90250
COPY NO. 324

PAA/GMRD
ATTN. MARQUIS, DENNIS C.
MAIL UNIT 841, BLDG. 989
PATRICK AFB, FLA. 32925

COPY NO. 325

PERKIN-ELMER CORPORATION

ATTN. BACKUS, RICHARD W.

MAIN AVENUE

NORWALK, CONNECTICUT 06851
OPY NO. 326

PERKIN-ELMER CORPORATION
ELECTRO~-OPTICAL DIVISION
ATTN, WOOD, MARGARET D. (LIB)
CENTRAL LIBRARY
MAIN AVENUE
NORWALKs CONNECTICUT 06851
COPY ND. 327

PHILCO-FORD COMPANY

SPACE + REENTRY SYSTEMS DIV.

ATTN, BURCH, DARRELL E.

FORD ROAD

NEWPORT BEACH, CALIF. 92663
COPY NO. 328

PHILCO-FORD COMPANY

SPACE + REENTRY SYSTEMS DiV.

ATTN., BYRON, STANLEY

FORD ROAD

NEWPORT BEACH, CALIF. 92663
COPY ND. 329

PHILCO-FORD COMPANY

SPACE + REENTRY SYSTEMS DIV.

ATTN. GEANAKDS, JAMES J.

FORD RDAD

NEWPORT BEACH, CALIF. 92663
COPY NO. 330

E. H. PLESSET ASSDCIATES, INC.

ATTN. SECURITY LIBRARIAN

2444 WILSHIRE BOULEVARD

SANTA MONICA, CALIF. 90403
COPY NO. 331

RCA SIGNATURE PROCESSING

RCA SERVICE COMPANY

ATTN. ROLLINS, JOHN

BOX 4036, BLDG. 989, MUBI11

PATRICK AFB, FLORIDA 32935
COPY NO. 332

RADIO CORPORATION OF AMERICA
ATTN. BACHINSKY, ROBERT D.
MARNE HIGHWAY + BORTON LANDING
MOORESTOWN, NEW JERSEY 08057
COPY NO. 333

RADIO CORPORATION OF AMERICA
SYSTEMS ENGINEERING
ATTN, CONANT, LUTHER C.
MARNE HIGHWAY + BORTON LNDG. RD.
MOORESTOWN, NEW JERSEY 08057
VIA. TECHNICAL LIBRARIAN

COPY NO. 334

LIBRARIAN

RADIO CORPORATION OF AMERICA

MISSILE + SURFACE RADAR DIV.

ATTN. PUSHNER, GERTRUDE P.
ENGINEERING LIBRARY

BUILDING 127-223

MDORESVOWN, NEW JERSEY 08057

COPY NO. 335

RAND CORPORATION

ATTN. AROESTY, JEROME

1700 MAIN STREET

SANTA MONICA, CALIFORNIA 90406
COPY NO. 336

RAND CORPORATION

ATTN. CUNNINGHAM, DR. SAMUEL P.

1700 MAIN STREET

SANTA MONICA, CALIF. 90406
COPY NO. 337

RAND CORPORATION

AERD-ASTRONAUTICS

ATTN. GAZLEY, CARL, JR.

1700 MAIN STREET

SANTA MONICA, CALIF. 90406
COPY NO. 338

RAND CORPORATION

ACRO-ASTRONAUTICS

ATTN. GROSS, DR. JOSEPH F.

1700 MAIN STREET

SANTA MONICA, CALIFORNIA 90406
COPY NO. 339

RAND CORPORATION

ATTN. HUNDLEY, DR. RICHARD 0.

1700 MAIN STREET

SANTA MONICA, CALIFORNIA 90406
OPY NO. 340

RAND CDRPORATION
AERO-ASTRONAUTICS
ATTN. KRASE, WILLIAM H
1700 MAIN STREET
SANTA MONICA, CALIF. 90406
COPY NO. 341

RAND CORPORATION

ATTN. LIBRARIAN

1700 MAIN STREET

SANTA MONICA, CALIF. 90406
COPY NO. 342

RAND CORPORATION

ATTN., MUNDIE, LLOYD G.

1700 MAIN STREET

SANTA MONICA, CALIF. 90406
COPY NO. 343

LIBRARIAN

RAYTHEON COMPANY

MISSILE + SPACE DIVISION

ATYN. BRITTON, ISABELL N.

HARTWELL ROAD

BEDFORD, MASSACHUSETTS 01730
COPY NO. 344

RAYTHEON COMPANY
EQUIPMENT DIVISION
ATTN, HIGGINS, H. M., LIBRARIAN
CADPO
1415 BOSTON-PROVIDENCE TURNPIKE
NORWOOD, MASSACHUSETTS 02062
COPY ND. 345

RIVERSIDE RESEARCH INSTITUTE

ATTN. CRESSMAN, HELEN

532 WEST 125TH STREET

NEW YORK, NEW YORK 10027
COPY NO. 346

RIVERSIDE RESEARCH INSTITUTE

ATTN. KENNEDY, JAMES M

532 W. 125TH STREET

NEW YORK, NEW YORK 10027
COPY NO. 347

SANDIA CORPORATION
LIVERMORE LABGRATORY
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