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Abstract: This study is motivated by issues in belt dynamics and paper forming where the oscillatory motion
of the contact point between the belt and pulley or the web and roll is important. The objective is to evaluate
the influence of the nonlinear contact boundary conditions on the dynamics of the belt or web. To accomplish
this objective, two models are analyzed using perturbation methods. The first model represents a string on
an elastic foundation (an approximation of the paper forming process) and the second model represents a
tensioned beam (accessory drive belt). The first correction to the fundamental natural frequency and the
dynamic belt/web length are determined as a function of the governing parameters. For both models, the

change in belt length is found to be proportional to the radius of the pulley/roll and the initial belt/web energy.
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1. INTRODUCTION

The vibration of belts and webs are often associated with a broad class of dynamical
systems referred to as axially moving materials (Mote, 1972). Examples of axially moving
materials include band saws, chains, belts, paper, webs, cables, vehicle tracks, and tapes.
These axially moving materials are principally driven through contact with rotating pulleys,
sprockets, rolls, drums, spools, and so on. Recent developments concerning the vibration
and stability of axially moving material systems are reviewed in Wickert and Mote (1988).

This investigation examines the dynamic contact of a belt or web on a curved surface
(e.g., pulley or roll). In particular, attention focuses on the dynamic wrapping and unwrap-
ping of the belt or web that occurs during free oscillations. This action is described by
nonlinear boundary conditions, which exist, of course, for translating and nontranslating
systems alike. A substantial understanding of such contact for chain/sprocket systems
developed early (Mahalingham, 1958), perhaps due to the relatively large impact loads
(and noise) induced by discrete polygonal action (Turnbull and Fawcett, 1973; Sueoka,
Kondou, and Tanaka, 1989 and Wang, Liu, Hayek, and Chen, 1992). By contrast, rela-
tively little attention has focused on the continuous contact generated in most other axially
moving material applications.

Doyle and Hornung noted through experiments that simply supported boundary condi-
tions are inappropriate for V-belts on pulleys (Doyle and Hornung, 1969). The contact of a
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band wrapped about two wheels was analyzed in Hwang and Perkins (1992) by consider-
ing globally large static band deflections. Dynamic contact at the belt/pulley interface was
analyzed in recent numerical studies (Yue, 1992a,b). The interpretation of these numerical
results is facilitated by the present analytical study. Moreover, the differences between
the numerical studies by Yue and this investigation are highlighted herein.

The present investigation revisits the problem of dynamic contact and, through applica-
tion of closed-form analysis, provides a fundamental understanding of the contact-induced
nonlinearities. The motivation for this study derives principally from paper forming ma-
chines and automotive accessory drive belts wherein changes in web/belt length due to
dynamic wrapping and unwrapping may be an appreciable fraction of the steady-state
free span length. Finite motions of the element (web/belt) alter the contact location and
contact boundary conditions. Such motions are considered herein in the context of two
models. The first model approximates the wet paper forming process as a flexible web
(string) on an equivalent elastic foundation in contact with a form roll. The second model
approximates an accessory drive belt as a tensioned beam contacting a pulley. A common
analytical procedure is used to capture the effects of the nonlinear boundary conditions.
The present analyses ignore the gyroscopic effects due to web/belt translation speed in
order to first focus on the effects of nonlinear contact. The procedures used, however, may
be readily extended to include gyroscopic effects.

Section 2 summarizes the initial/boundary value problems governing free response
for the two models. The first model, a string on an elastic foundation, is presented in
Section 3 and an analytical procedure is developed to evaluate free nonlinear oscillations
for this relatively simple, second-order system. Section 4 presents the second model,
a tensioned beam, and demonstrates how the procedure generalizes to this fourth-order
system. The results and conclusions are presented in Sections 5 and 6, respectively, and
serve to highlight the role played by the nonlinear contact for each model.

2. THE FREE RESPONSE PROBLEM

The system of interest is defined in Figure 1 a. The element shown is considered to be

either a belt or a web and is pinned at the (stationary) left boundary and makes contact
with a cylindrical surface at the right boundary. The origin of the Cartesian coordinate
system is located at the pinned end of the belt and the center of the cylinder is located a
distance La along the positive X direction and R along the negative Y direction. Variables
shown in Figure 1 appear in dimensionless form, with the upper-case dimensional variables
replaced by their lower-case dimensionless equivalents. The length scale used to normalize
distances is Lo/7r.

The classical linear equation for free response in nondimensional form is

where the time scale is (~r T pl /Lo. Here, T is the equilibrium tension, p is the belt
mass per unit length and the value 7r is introduced such that the wave numbers of the
linearized system are integers. The time scale has been selected such that the phase speed
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Figure 1. a) A beam or string contacting a circular surface of nondimensional radius r. The center of the circle
is located a distance x along x and -r along y. All distances shown are normalized with the length scale LO/7r.
b) Detail of the displacement at x = 7r in two deflected positions.

is unity in the limit;3 -> 0 and 6 --r 0. The dimensionless coefficients 3 = Ehr2/TLg and
6 = KL6/Trr2 measure the ratio of the element bending stiffness and foundation stiffness
to the tension (membrane stiffness).

The limit {3 ~ 0 results in the first model, defining a string on an elastic foundation.
The limit 6 -~ 0 results in the second model, defining a tensioned beam. The special
case {3 ~ 0 and 8 ~ 0 (a taut string) leads to a seemingly simpler model. This model,
however, requires consideration of all modes at lowest order that are drawn in by internal
resonances (Kevorkian and Cole, 1981).
Common to both models is the boundary condition at .x = 0 defining an immovable

support

In the beam model (,Q ~ 0), the additional boundary condition

defines a simple support.
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The boundary conditions at the opposite end x = I describe the mechanics of a string or
beam wrapped around a pulley of nondimensional radius r = R~r/Lo. The condition that
y(l, t) contact the pulley, applicable to both models, is

The change in the contact region Al is determined by satisfying the condition that the
belt remains tangent to the pulley at the contact point. The slope at x = l is the negative
reciprocal of the slope of the radial line at the contact point and is therefore

Here, fll is defined as positive to the right (and hence 61 as shown in Figure 1 b for the
lower curve is negative). Solving for 61 and substituting into (4) yields

where

represents the current nondimensional length of the free belt span. For the tensioned beam
model, the belt inherits the curvature of the pulley at _~ = I. Thus

is also required in the tensioned beam model.
To complete the free response problem, consider the initial conditions

where g(x) is the initial displacement, which induces an initial energy f2 defined by

The subsequent analysis focuses on weakly nonlinear belt oscillations induced by the
above initial energy. To this end, the boundary conditions at .r = 1, (6-8) are expanded in
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Taylor series about x = 7T assuming small amplitude deflections y(x, t) « 1. Third-order
approximations to (6) and (8) are .

using third-order approximations to (7). Notice that while the displacement at .r = I is

always negative, the approximate boundary condition, applied at x = 7T, is always positive
as illustrated in Figure 1 b. Equation ( 11 ) reveals that the lateral displacement at x = 7T is
proportional to the square of the local slope resulting in a quadratic nonlinearity in this
boundary condition. A quadratic nonlinearity also appears in (12) arising from the finite
beam curvature at the end. In the previous numerical studies (Yue 1992a,b), this boundary
condition is linearized. However, the nonlinearity in the curvature boundary condition
(12) is of the same order as that in the displacement boundary condition (11). Thus it is
inconsistent to linearize the curvature boundary condition while considering the exact or
higher-order approximations of the displacement boundary condition.

Note that while the boundary conditions (11) and (12) are nonlinear and quadratic to first
nonlinear order, the equation of motion (1) is linear. Specifically, (1) is linearized about
the trivial state y(.v, t) - 0. In the case of the string on an elastic foundation (second-
order system), finite-amplitude motion, resulting in stretching of the string centerline,
would contribute ciibic nonlinearities to the equation of motion. Thus, for this model, the
nonlinear boundary condition (11) is of lower-order and the (cubic) nonlinearities in the
equation of motion are presently neglected.

In the case of the tensioned beam model (fourth-order system), consideration of finite
amplitude motion and/or finite curvature of the beam centerline would again contribute
cuhic nonlinearities to the governing equation (1). In this case, however, a non-trivial

equilibrium solution also exists (refer to Section 4.1 ). Further consideration of weakly
nonlinear oscillations about this curved equilibrium state results in both quadratic and
cubic nonlinearities in the equation of motion. These quadratic nonlinearities scale with
the magnitude of the equilibrium curvature, which is bounded by the bending parameter
,C3/r. As described in Section 4.1, attention will focus on cases where 31r « 1 for which

the equilibrium solution is essentially trivial. Thus the (quadratic and cubic) nonlinearities
in the equation of motion are neglected in favor of the dominant nonlinearities in the
boundary conditions (11) and (12).

3. STRING ON AN ELASTIC FOUNDATION

For this model the bending rigidity is neglected (13 = 0) and the foundation stiffness is
retained (b ~ 0). This model is treated in Bhat, Xistis, and Sankar ( 19~2), Perkins ( 1990),
and Tan and Zhang (1994) for linear boundary conditions and is motivated by applications
of continuously supported conveyers and paper sheets.
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Present attention will focus on determining the effect of the nonlinear boundary condi-
tions in altering the frequency and mode shape of free oscillation. To this end, the method
of strained coordinates, also referred to as the Poincare-Lindstedt method (Kevorkian and
Cole, 1981), is used to evaluate the response problem of Section 2. Substituting T = wt,
where cv is the free oscillation frequency into (1) results in

The free oscillation frequency cv and the displacement y(x, T) are expanded in powers of
the small amplitude parameter E:

and

Substituting (14) and (15) into (2), (10), (11), and (13), then collecting terms of like order
in E results in the following sequence of linear initial/boundary-value problems.

3.1. The O(E) Problem

The O(E) problem is

Here,

denotes a linear partial differential operator.
Employing the separable solution

results in
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where A~ is the separation constant and

The eigenvalue problem (21) and (22) has the elementary characteristic equation

from which an = n where n = 1, 2, 3, .... Thus the general solution for S(T) is

where nn = ra’ + 61wo. The initial condition is assumed to be an initial displacement
(9a, b) and therefore B&dquo; = 0. Summing all modal contributions results in 

’.

Attention is now restricted to the case where the initial condition to leading order is
given by the fundamental mode, g(_r) = A, sin(_~). Selecting ujo = 1 + b, the natural
frequency of the fundamental mode, and then substituting (26) into (18) and making use
of mode orthogonality leads to

from which A, = 2/ ~r(1 + b). Thus

3.2. The o(E2) Problem

The O(t2) problem is
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where and

Note that y, rT in (29) is secular since it is not orthogonal to all solutions of the homogeneous
equation £Y2 = 0. The uniformly valid expansion (15) exists only upon selecting ~.01 = 0.
Thus there is no first-order frequency correction.

The general solution fory~ is decomposed into homogeneous and particular components.
The particular solution consists of a time-independent term and a term with ?r time
dependence; refer to the inhomogeneous terms in the boundary condition (30b). The

time-independent term is

and the time-dependent term is

Note that the denominator for Y22 vanishes for any 6 = (rn’- - 4)/3 where m = ?. 3. ~., ....
Under these particular conditions, 6 = 0, 5/3, 4, ... and 252, = S2&dquo;,. Thus, in these cases,
there exists a 2:1 internal resonance between the fundamental mode and mode m (Sanders
and Verhulst, 1985) and the expansions (14) and (15) are no longer uniform. These

particular cases are not considered here.
The homogeneous solution is described by the eigenfunction expansion:

Substituting the entire solution (32-34) into the initial energy condition (31) and using the
orthogonality properties of the eigenfunctions eliminates all terms in the homogeneous
solution except that associated with the fundamental mode. The resulting solution is

where



467

3.3. The O(E3) Problem

The first correction to the natural frequency due to the nonlinear boundary condition occurs
at the 0(E3) problem:

Secular terms arise from any terms in the boundary condition at x = 7r that have

frequency content equal to that ofy,. Substituting (28) and (35) into (38b) yields

Define the constant C as

Then, y~(~r, r) becomes

where NST represents all the nonsecular terms. The change of variable

is employed such that u3 satisfies homogeneous boundary conditions. This requires f and
g to satisfy the boundary conditions

Substituting (42) into (37) and using (28) results in

The secular terms in the brackets are combined by selecting f to be the solution of
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leading to

and D = 2/7r.
Thus the solvability condition is

from which

This frequency correction will be evaluated further following the present derivation of
the frequency correction for the tensioned beam model.

’- 

4. TENSIONED BEAM 
’

The previous analysis for the string on an elastic foundation model generalizes to the
present analysis of a tensioned beam contacting a rigid pulley. This model is motivated
by applications employing belts or bands in which the contact point between the pulley
and the belt varies with belt deflection. Globally large static deflections are considered
by Hwang and Perkins (1992) and weakly nonlinear dynamic deflections are evaluated
numerically by Yue (1992a,b). Here, the addition of bending rigidity leads to a nontrivial
equilibrium state. Thus analysis of free response about equilibrium begins first with an
analysis of the equilibrium state. 

4.1. Equilibrium Analysis 
’

First consider the static displacement y,.(x) of the beam induced by wrapping it around a
single pulley. The governing equation (1) reduces to

augmented by the boundary conditions (2, 3, 11, and 12).
The solution

satisfies (49) and the linear boundary conditions (2) and (3). The integration constants A
and C are selected to satisfy the remaining nonlinear boundary conditions (11) and (12).
This results in a pair of coupled quadratic equations for A and C leading to four solutions.
The physically realizable solution is selected by imposing an impenetrability condition at
the pulley; see examples shown in Figure 2. Observe that for the highly tensioned beam
considered in Figure 2 (,3 = 0.001) the curvature of ys is restricted to a boundary-layer
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Figure 2. Examples of static equilibrium solutions for 0.1 > ¡3 > 0.001 and pulley radius r = 1. Key: ¡3 = 0.1
&horbar;&horbar;, ~ = 0.01 -.--.. (y//3) x 10. ~ = 0.001 - - - - (y//3) x 100.

region near the pulley of length Lbl < 0.05Lo. Even in the case of /.3 = 0.1 the curvature
is limited to less than 1/3 of the domain.

The curvature of the equilibrium solution is proportional to the coefficientA in (50) and
is bounded from above by the parameter ,Q/r. As ,Q/r -> O( 1 ), the curvature of the static
solution becomes significant throughout the domain. However, the governing equation ( 1 )
neglects the geometric nonlinearities, and in particular the quadratic nonlinearities, that
affect the weakly nonlinear response about a curved equilibrium state. Because these

quadratic nonlinearities scale with the curvature of the static solution, the present model is
applicable for the parameter range (3/ r « 1. In this parameter range, the curvature in the
domain is exceptionally small. In reference to Figure 2, observe that in this parameter range
the static solution is nearly trivial (0((3». Thus this equilibrium is approximated as trivial,
which greatly simplifies the mathematical description of subsequent nonlinear oscillations.

4.2. Free Oscillation

The beam oscillates freely following a small initial displacement with strain energy t2 2

defined in (10). Weakly nonlinear oscillations are again examined using the perturbation
series (14) and (15). Expanding in powers of E as before leads to the following sequence
of linear initial/boundary-value problems.

4.3. D(E) Problem

The 0(c) problem is
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Here

denotes a linear partial differential operator.
Separation of variables, with separation constants An , leads to the solution

Attention is restricted to the case where the initial condition defines a deflection in the

fundamental mode at this order. As in the previous model, higher modes do participate and
are subsequently excited by the coupling produced by the nonlinear boundary conditions
(11) and (12). Thus Wo is selected to be the natural frequency of the fundamental mode
Wo * À] = ~ + 1. Moreover, .

where

is selected to satisfy the initial energy condition (53).

4.4. O(E2) Problem

At o(e2) the response problem is

As before, the term on the right-hand side of (58) is secular and no secular term appears
in the boundary conditions (59); thus w, = 0. Using (56), (59a) and (59b) become
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where

The general solution forY2 is decomposed into homogeneous and particular components.
The particular solution satisfies the non-homogeneous boundary conditions (61) and (62)
and can be further decomposed into a time-independent term and the term with 2T time
dependence. The time-independent term is

and the time-dependent term is

where

and

Here the quantities a and b are

Note that the denominator for B~2 is singular if a = n. In general, if 2,B, is equal to any of
the other eigenvalues An (n = 2, 3, ...), then i = n as was the case in the previous model.
However, for the present model, such a 2 : 1 internal resonance exists only for vanishing
flexural rigidity ({3 = 0).
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The homogeneous solution is described by an eigenfunction expansion of all modes.
Substituting the total solution (homogeneous and particular components) into (60) and
using eigenfunction orthogonality leads to

where

4.5. 0 (E3) Problem
At third-order, the first correction to the natural frequency due to the nonlinear boundary
conditions is determined. At this order, the response problem is I-

Unlike the O(E~) problem, secular terms arise from the boundary conditions and must
be eliminated together with the secular term on the right-hand side of (73) as follows.
First the nonlinear boundary conditions (74a) and (74b) are examined for terms that have

frequency content equal to that of the lowest order solution yi. Substituting (56) and (71)
into (74a) yields

Introducing the constant C,

permits (75) to be decomposed as
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where again NST represents all the nonsecular terms. Similarly, (74b) becomes

Defining C2

results in

A variable transformation is now employed, which results in homogeneous boundary
conditions for the new unknown Ll3’ Select

where f and g satisfy the boundary conditions

Substituting (81) into (73) results in

By selecting f and g such that

and
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the secular terms can be combined. The functions f and g thus have the form

where the constants Bf and Df are chosen to satisfy the boundary conditions (82c) and
(82d) and similarly for the function g.

After combining the secular terms, the solvability condition yields

5. RESULTS

5.1. String on an Elastic Foundation

Inspection of (40) and (48) reveals that the frequency correction W2 depends on two
parameters: r and 6. The dependence on r is simply that W2 r-v r and thus the influence
of the nonlinear boundary condition (11) increases with the square of the roll radius r.

However, the dependence on 6 is not monotonic. This fact is illustrated in Figure 3,
which shows how W2 depends on 6 for the case r = 1. Note the singularities that exist at
6 = 0, 5/3, 4, .... These singular points correspond to particular values of 6 for which
there is an internal resonance with the fundamental mode. For instance, b = 0 corresponds
to 2Qj = Q2, 6 = 5/3 corresponds to 252, = Qi, and so on. The expansions (14) and (15)
are no longer uniform in a neighborhood about these particular values of 6. Between these
values of 6, W2 decreases monotonically with increasing 8.

Recall that the initial conditions considered herein excite exclusively the fundamental
mode at first-order. Higher-order linear modes, however, are drawn into the response
through the nonlinear boundary condition (11). The particular higher-order mode that
participates at order E2 depends strongly on the value of 6. Figure 4 compares the non-
linear mode shape y EYI + E2yz and the linear mode shape Eyl for an example case
for which 6 = 0.01, E = 0.01, and r = 1. Observe that Y(7r) fO for the nonlinear mode
as required by the nonlinear boundary condition (11). For 6 ~ 0, V2 converges to the

second mode. This is already apparent from Figure 4 (6 = 0.01) because y crosses
y, only once near x = 7r/2. Figures 5 and 6 illustrate how other linear modes are
drawn in depending on the value of 6. For 6 slightly less than 5/3 as in Figure 5, y
crosses y, twice near x = ~r/3 and x = 27T/3 as Y2 resembles the third linear mode.
For 6 slightly greater than 5/3 as in Figure 6 there is again evidence of the third linear
mode, though the phase of Y2 is now opposite that of Figure 5. As 6 approaches each
higher-order internal resonance, Y2 approaches that of each higher-order linear mode in
sequence.

In the motivating problem of the paper web contacting a form roll, web oscillations
may alter the forming length due to the nonlinear boundary condition considered herein.
Such dynamic changes in forming length have serious implications for product variability
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Figure 3. Frequency correction W2 versus b for string
on an elastic foundation. In this example, r = 1.

Figure 4. Nonlinear mode shape y = Ey, + E2y2
(...... ) compared to the linear mode shape eyi (-) )
for string on an elastic foundation. In this example
b=0.01,r=l,ande=0.01.

Figure 5. Nonlinear (...... ) and linear (-) mode
shapes for string on an elastic foundation. In this ex-

ample, 6 = 1.65, r = 1 and e = 0.01.

Figure 6. Nonlinear (...... ) and linear (-) mode
shapes for string on an elastic foundation. In this ex-

ample, 6 = 1.68, r = 1 and e = 0.01.

(e.g., thickness) and quality. An estimate of this dynamic length change is

(refer to [5]). Figure 7 illustrates how this estimated Al depends on 6 for the example
case r = 1 and é = 0.01. For the range 0.02 < 6 < 0.4, the change in length is
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Figure 7. Change in length Al versus 6 for string on an
elastic foundation. In this example, r = 1 and e = 0.01.

Figure 8. Change in length A/ versus e for string on
an elastic foundation. In this example 0.02 < 6 < 0.4
andr=1. Key: 6 =0.02-, 6=0.1 ....... 6 = 0.4
- - - - ,_

approximated within 10% with the simple linear relation Ol ~ Er. This approximation is
readily observable in Figure 8, illustrating the change in length versus c for several values
of 6.

5.2. Tensioned Beam

Inspection of (87) shows that W2 is a function of r and 3 through the quantities C,
(76) and CZ (79). Further examination of these quantities reveals that C, N r-’ whereas
C2 ~ r’-+ I 11. The constant C, results from the application of the displacement boundary
condition (11) and is thus analogous to the constant C for the model of a string on an elastic
foundation (38b-40). The constant C,, which embodies information from the (higher-
order) curvature boundary condition (12), introduces a non-monotonic dependence on r
as illustrated in Figure 9 for the case fl = 0.01.
The dependence of the frequency correction W2 on (3 is also non-monotonic as illustrated

in Figure 10 for the case r = 1. In this example, the frequency correction reaches a
maximum near)3 = 0.002 and then decreases with further increase in flexural rigidity (3.

The nonlinear mode shape y = Ey, + 62V, is plotted for three values of 13 in Figure 11 for
the case 6 = 0.01 and r = 1. In contrast to the elastic foundation model, internal resonances
do not exist for the tensioned beam model except, of course, for the degenerate case ¡3 = 0.
Thus, in this model, only the second linear mode participates at order f2. Higher modes
enter only at corresponding higher-orders of e. Note that the magnitude of the second
linear mode increases with decreasing flexural rigidity (3 and begins to resemble that for
the string/foundation model of Figure 4.

Similarly, the change in length Al increases dramatically with decreasing flexural
rigidity 3. This trend is illustrated in Figure 12 where Al is plotted versus (3 for the
case r = 1, E = 0.01. Here again, a simple linear relation Ol ~ 1.15Er approximates
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Figure 9. Frequency correction W2 versus radius r for
tensioned beam. In this example, /3 = 0.01.

Figure 10. Frequency correction c~2 versus J for ten-
sioned beam. In this example, r = 1.

Figure 11. Nonlinear mode shape y versus position x
for tensioned beam. In this example 0.001 < ¡3 < 0.1,
r = 1 and e = 0.01. Key: Q = 0.1 -, i3 = 0.01
......~R=0.001-__ .

Figure 12. Change in length 01 versus {3 for tensioned
beam. In this example, r = 1 and E = 0.01.

the change in length for the range 0.01 < ,Q < 0.1 within an error of 10%. This result

agrees with the numerical studies by Yue (1992a,b), who also found that the so-called
vibrating length is proportional to the pulley radius r. However, the dependence of the
natural frequency and vibrating length on the strain energy and stiffness parameters are not
presented in the studies by Yue (1992a,b). Note also that in automotive accessory drive ap-
plications, dynamic length changes create dynamic fluctuations in belt/pulley contact and
thus dynamic fluctuations in belt/pulley traction. Moreover, dynamic belt/pulley traction
may promote belt slip, chirp, and squeal (Hwang, Perkins, and Ulsoy, 1994).
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6. CONCLUSIONS

Two models are presented for evaluating the dynamic wrapping and unwrapping of an
element (web or belt) on a smooth surface (roll or pulley). The first model is motivated by
the wet paper forming process and consists of an elastically supported string (web or wire)
contacting a form roll. The second model is motivated by automotive belt applications
and consists of a tensioned beam (belt) contacting a pulley. Modeling of weakly nonlinear
oscillations reveals that dynamic contact introduces quadratically nonlinear boundary con-
ditions to first nonlinear order. Subsequent analysis of free nonlinear oscillations reveals
that the first correction to the natural frequency w2 depends solely on two parameters.
For the string on an elastic foundation, these parameters are the (nondimensional) pulley
radius r and the foundation stiffness 6. For the tensioned beam, these parameters are the

(nondimensional) pulley radius r and the bending rigidity ,3.
For both models, energy, which originates in the fundamental linear mode, ultimately

excites higher-order linear modes. For the string on an elastic foundation, the particular
higher-order linear mode that participates at the first nonlinear order (6 2) depends on the
foundation stiffness 6. Internal resonances separate the regions of 6 associated with each

higher-order linear mode. By contrast, internal resonances do not exist for the tensioned
beam model and the first linear mode ultimately excites only the second linear mode to first
nonlinear order (E2). For both models the stiffness parameters 6 and /3 strongly influence
the amplitude of the higher-order linear modes.

The change in free span length Al due to dynamic wrapping and unwrapping is of
interest in both paper forming and automotive belt applications. The models analyzed
herein reveal that Al is proportional to the pulley radius r and the amplitude of oscillation
e as determined by the initial conditions. The dependence on the stiffness parameters 6
and,3 is not, however, monotonic.
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