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Abstract: One of the principal objectives of vibration isolation technology is to isolate sensitive equipment
from a vibrating structure or to isolate the structure from an uncertain exogenous disturbance source. In this
paper, a dynamic observer-based active isolator is proposed that guarantees closed-loop asymptotic stabil-
ity and disturbance decoupling between the vibrating structure and isolated structure. The proposed active
isolator is applied to a uniaxial vibrational system and compared to an optimal linear-quadratic design.
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1. INTRODUCTION

One of the principal objectives of vibration isolators is to either isolate sensitive equipment
from a vibrating structure or to isolate the structure from an uncertain exogenous disturbance
source. Vibration suppression between a base body (containing the disturbance source) and
an isolated body can be achieved by intrastructural damping approaches or active isolation.
In intrastructural damping approaches to isolation, a damping energy dissipation mechanism
is inserted between the two bodies, which can be implemented passively (e.g., viscoelastic
dampers) or actively (e.g., piezoelectric actuators). However, since such isolation members
transmit vibrational energy in the process of dissipating energy, they simply reduce the
resonance peaks of the isolated body response but do not reduce the broadband nonresonant
response. Alternatively, active isolation approaches that combine intrastructural actuation
and inertial sensing can prevent vibration transmission into the isolated body and hence
suppress the resonant and nonresonant responses over a broad frequency band (Hyland
and Phillips, 1996). In this paper, we extend the single-input/single-output active vibration
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isolation framework proposed by Hyland and Phillips (1996) to multi-input/multi-output,
multi-degree-of-freedom systems. Specifically, a dynamic observer-based active isolator
is proposed that guarantees closed-loop asymptotic stability and disturbance decoupling
between the base body and the isolated body A practically useful feature of the proposed
active isolator is that only rate measurements are required. The proposed active isolator is
applied to a uniaxial flexible structure and compared to an optimal linear-quadratic controller,
which requires measurements of both position and velocity

2. PRELIMINARIES

In this section, we establish notation and definitions used in the paper. Let R denote the set
of real numbers, let R&dquo;xm denote the set of real n x m matrices, let ( )T and ( )* denote
transpose and complex conjugate transpose, respectively, and let In denote the n x n identity
matrix. Furthermore, we write M > 0 (M > 0) to denote the fact that the Hermitian matrix
M is nonnegative (positive) definite.

A Lyapunov stable transfer function is a transfer function each of whose poles is in the
closed-left half-plane with semisimple poles on the JOJ axis. An asymptotically stable transfer
function is a transfer function each of whose poles is in the open-left half-plane. A square
transfer function G(s) is called positive real (Anderson and Vongpanitlerd, 1973) if G(s) is
Lyapunov stable and G(s) + G* (s) is nonnegative definite for Re[s] > 0. A square transfer

function G(s) is called strictly positive real (Wen, 1988) if G(s) is asymptotically stable and
G(jco) + G* (3w) is positive definite for all real cv. Note that a minimal realization of a

positive real transfer function is stable in the sense of Lyapunov, while a minimal realization
of a strictly positive real transfer function is asymptotically stable.

3. ACTIVE ISOLA’POR MODEL -

Consider the linear time-invariant controllable and observable system

n d d nxn nxd ._ dxn
where x E II8 , w E 1(8 , y E 11~ , A E IE~ , D E M , and C E ILg . To reject
the uncertain exogenous disturbance w, we introduce a linear time-invariant dynamic filter
between the disturbance source w and the plant as shown in Figure 1. In particular, to ensure
disturbance rejection, we construct a feedback control signal u(t) predicated on the output
signal of the plant y(t) and the filter output signal yf(t). This feedback interconnection is

characterized by
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Figure 1. Block diagram of active isolator model.

where (5) and (6) represent the dynamic filter andxf E 1R , nf u E 1R d ,Yf E 1R d ,Af E 1R nf xnf ~ ,
Bf, Df E 1R nf xd C,f E 1R dxnf and E, Ef e 1R dxd The filter matrices (Af, Bf, Cf, Df) and the
feedback gains (E, Ef) will be designed to guarantee disturbance rejection and closed-loop
stability. We assume that (Af, Bf, Cf) is minimal. Note that the -1 block in Figure 1 is added
to ensure that the signal u(t) driving the plant is equal in magnitude but opposite in sign to the
signal fed back to the filter. Now, it follows from (3) and (7) that ifEf - 0, then disturbance
decoupling between y(t) and w(t) is achieved.

Next, with x(0) - 0 and xf(0) - 0, (3) through (7) have the frequency-domain
representations given by

Defining the system transfer function from -u to y and the filter transfer functions from u to
yf and w to yf, respectively, by

equations (8) and (9) can be written as
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Substituting (10) into (14) yields

or, equivalently,

Hence, letting Ef - 0 guarantees that the system output y is decoupled from the uncertain
exogenous disturbance w.

Next, we give conditions on the filter gains (Af, Bf, Cf, Df) and the feedback gains (E,
Ef) such that the closed-loop system (3)-(7) is asymptotically stable with w - 0. For this
result, we assume that G(s) is feedback positive real, that is, there exists F E 1[gdXd such that
[I - G(S)F]-IG(S) is positive real.

Theorem 3.1. Consider the closed-loop system (3)-(7) with frequency-domain representation

Let Gf(s) be strictly positive real and assume G(s) is feedback positive real, that is, there exists
E E R dxd such that H(s) ~ [Id - G(s)E] -’G(s) is positive real. If Ef 0 0 is positive real,
that is, Ef -~ Ef > 0, and there exists a > 0 such that E = a Ej. then the closed-loop system
(18)-(20) is asymptotically stable with w - 0. Furthermore, letting Ef - 0 the system output y
is decoupled from the disturbance w.

Proof. Disturbance decoupling is immediate. To show asymptotic stability, note that, using
( 17) and the definition of H(s), (20) can be written as

where
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Next, since H(s) is positive real, it follows that G(s) is Lyapunov stable. Furthermore,

which, using E = a Ei where a > 0, yields

Hence, G(s) is positive real.
Now, to show asymptotic stability of the closed-loop system (18)-(20) (with w = 0),

it need only be noted that (18)-(20) or, equivalently, (19), (21) corresponds to a negative
feedback interconnection of Gf(s) with G(s). Hence, since by assumption, Gf(s) is strictly
positive real and G(s) is positive real, it follows that the negative feedback interconnection
of Gf(s) and G(s) is asymptotically stable (Joshi and Gupta, 1996). 11

Remark 3.1. In Theorem 3.1, we assumed that G(s) is feedback positive real. A necessary
and sufficient condition that guarantees G(s) is feedback positive real is if the transmission
zeros of G(s) are in the closed-left half-plane with semisimple zeros on the 30-) axis and G(s)
has relative degree {r¡, r2, ..., rd~ _ {I, 1, ..., I} so that det(CD) ~ 0 (see Abdallah et al.,
1991).

Remark 3.2. Note that the feedback gain Ef can be used to trade off asymptotic stability
with disturbance rejection. Specifically, asymptotic stability requires Ef # 0 while complete
disturbance rejection requires Ef ~ 0. Furthermore, the filter parameters (Af, Bf, Cf, Df) can
be used to shape the force/displacement transmissibility frequency response.

Remark 3.3. It is important to note that the closed-loop control scheme proposed in this
section assumes knowledge of the exogenous disturbance. Hence, alternatively one can
design an open-loop feedforward scheme to cancel out the disturbance. However, such a
scheme does not allow the designer to obtain desired closed-loop performance since it is
predicated on open-loop control. Furthermore, using a two-stage feedback and feedforward
scheme results in controllers that need frequent readjustment as disturbance conditions
change. No such adjustment is necessary with the proposed method. Finally, for certain
exogenous disturbances, the complexity involved in data processing and control decision
algorithms can render two-stage control schemes impractical.

Remark 3.4. As shown by Hyland and Phillips (1996), the feedback controller proposed in
this section is physically realizable using active isolation fittings. Such devices have been
built and applied on actual vibrational systems. The reader is referred to U.S. Patent No.
5,626,332 by Phillips et al. (1997) for the physical realizability of the controller proposed in
this paper.
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4. APPLICATION TO VIBRATION ISOLATION OF MATRIX SECOND-
ORDER SYSTEMS

In this section, we specialize the results of Section 3 to matrix second-order vibrational
systems controlled by a dynamic filter whose structure is constrained to have the same form
as the vibrational system. Specifically, consider the matrix second-order vibrational system
with proportional damping and rate measurements given by

where q E ll~r represents the generalized position coordinates, u E JR d is the control signal,
y E M represents the rate measurements, M E l~grxr is the positive definite inertia matrix,
C E R rxr is the nonnegative definite energy dissipation matrix, A&dquo; E ~rxr is the nonnegative
definite stiffness matrix, and B E JR Next, consider the dynamic filter

where qf E R rf represents the filter states, w E ll8d is an uncertain exogenous disturbance,
yf E R d represents the filter outputs, v E ll8d is the drive voltage of the actuator, flv C R
represents the strain/voltage constant of the actuator, E > 0, and ku E JR , Mf, Cf,
Kf E JR Bf,17f E 1[gr‘ xd are constant gain matrices such that Ku, Mf, Cf, and Kf
are positive definite. Furthermore, assume that the piezo actuatorpvv has the input-output
representation

is Lyapunov stable
with no poles at the origin.

Now, substituting (28) into (27) yields , -
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In the frequency-domain, with q(0) = 0, q(0) = 0, qf(0) = 0, and qf(0) = 0, the closed-
loop system (23)-(26), (29) can be represented by (18)-(20) where

Furthermore, note that Gf(s) is asymptotically stable since Cf, Kf > 0. Hence,

is positive definite for all real cuife > 0 such that Cf - E Mf > 0. Hence, Gf(s) is strictly
positive real for sufficiently small c > 0. Next, note that

is Lyapunov stable by assumption. Furthermore,

where

and hence H(s) is positive real. Now, using Theorem 3.1, the closed-loop system (23)-(26),
(29) is asymptotically stable for ,uf < 1 andu > 1. Furthermore, letting pf - 1, y is

decoupled from the disturbance w.

Remark 4.1. Note that even though (24) restricts sensor measurements to rate measurements,
in the single-input/single-output case, that is, d = 1, our results also apply to the case where

In this case, it can be shown that, with
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feedback interconnection (23), (25), (29), (30)-(31) is asymptotically stable. Furthermore,
letting,uf -~ 1, y is decoupled from the disturbance w. This special case corresponds to the
result reported by Hyland and Phillips (1996).

5. ILLUSTRATIVE NUMERICAL EXAMPLE

Consider the vibrational system shown in Figure 2(a). Here we are interested in isolating the
mass m from the base body by reducing the displacement transmissibility from the exogenous
displacement disturbance w to the mass displacement q using the active vibration isolation
model shown in Figure 2(b). This system is characterized by the dynamic equations

where we assume m

and using the relationships
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(32)-(34) can be characterized by

Now, using

where ku > 0, (39)-(43) is equivalent in form to (23)-(26), (29). Finally, note that, using
(38), (41), and (43), yields

which, using (34), implies

Hence, the system shown in Figure 2(b) with f given by (44) is asymptotically stable for

l<~<l+&horbar;,~f<l, and > 0. Furthermore, letting /if ~ 1, ~ is decoupled from the~ ~ 

u
disturbance w where q is defined by (35). Fitted active vibration isolator.

Figures 3 through 5 compare the displacement response q(t) and the actuator force f (t)
for a unit impulse input disturbance of an optimal linear-quadratic regulator (LQR) design
based on the performance measure
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and the active vibration isolation design given by (44). As can be seen from these figures, the
active vibration isolation design given by (44) yields considerable improvement in reducing
the mass displacement q(t). Note that as shown in Figures 4 and 5, Ef or, equivalently,
( 1 - flf)ku can be used to enhance disturbance rejection. Figure 6 shows the frequency
response of the transmissibility transfer function of the open-loop and closed-loop systems.
Note that the active vibration isolation design achieves over 150 dB attenuation over the
broadband frequency range of 1 to 100 rad/s. Finally, Figure 7 compares the displacement
response q(t) to a sinusoidal disturbance w(t) = sin(100-’t) for the two designs.

6. CONCLUSION

A dynamic observer-based active isolator for multi-degree-of-freedom structural systems
is proposed that guarantees closed-loop asymptotic stability and disturbance decoupling
between the base body and the isolated body While the proposed active isolator is not
based on an optimality criterion, numerical calculations indicate that its performance is
superior (state response and broadband disturbance rejection) to optimal linear-quadratic
controllers. An additional benefit of the active vibration isolator as compared to the optimal
linear-quadratic controller is the fact that the active vibration isolator requires only rate
measurements, whereas the optimal linear-quadratic controller requires both position and
velocity measurements.
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