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1. Introduction

Practical scheduling problems require periodic decisions that consider future random
phenomena. Much of the scheduling literature, however, considers problems that are de-
terministic and static (see e.g. Graves [1981], Rinnooy Kan [1976] and Dempster et al
[1982]). Discussions of stochastic scheduling problems with machine disruptions have gen-
erally considered single machines and limited models (Glazebrook (1984, 1987, 1991], Pinedo
and Ross [1980], Birge and Glazebrook [1991], Mittenthal [1986]). An approach for dealing
with multiple machines was introduced in Bean and Birge [1986] for single disruptions or
disruptions that are well-spaced apart. In a previous paper (Birge and Dempster [1992]),
we provided a theoretical justification for this match-up scheduling approach, discussed
for deterministic systems in Bean et al [1991], through a general stochastic model. In
this paper, we elaborate on conditions that lead to these results and on examples of their

application, and make comparisons to deterministic models.

In contrast to many scheduling models, in which nonconvexities immediately appear
through disjunctive constraints, our basjc model relaxes this requirement to obtain a convex
region and convex objective function with decisions at discrete time intervals. It is similar
to the continuous time model in Solel [1987] (see also Dempster and Solel [1987]) but allows
us to treat a wider class of problems. We will show the general nature of these results,

however, in our examples.

Related results for stochastic optimization models appear in Dempster [1988], Flam
(1983,1985], Kushner [1972], Arkin and Evstigneev [1979], Rockafellar and Wets [1983]
and Hiriart-Urruty [1982). Turnpike theory for the deterministic case may be found in

McKenzie [1976].

To set the stage for our model, we assume a data process, w := {w, : t = 0,...} in
a (canonical) probability space (2, L, u). We also assume a decision process z := {z; :
t = 0,...} such that z is a measurable function z : w — z(w). The space of the decision
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processes is the space of essentially bounded functions, L2, = Loo(Q x N,X x P(N), pt x
#.R"), where P is the power set and # is counting measure. Associated with the data
process is a filtration IF := {E,}%,, where &; := o(w") is the o—field of the history process
w' = {wo,...,w¢} and the T, satisfy {0.Q} C Ty C - CE.

A fundamental property of the decision process at time ¢ is that it must only depend
on the data up to time ¢, i.e. x, must be ¥;-measurable. An alternative characterization
of this nonanticipative property is that x, = [E{x|Z;} as., t = 0,..., where [E{-|Z;}
is conditional expectation with respect to the c—field £,. Using the projection operator

[;:z—mz:=E{z|E,},t =0,...,on L7, this is equivalent to

(I-M)a,=0,t=0,... . (1)

We let A denote the closed linear subspace of nonanticipative processes in L and denote

by I := (Ilp, I}, . ..) the projection operator from L7, onto N.

Our general optimization model is to find

[e €]
infxe VI Y fi(w, 24(w), zip1(w)), (2)
t=0
where “IE” denotes expectation with respect to £. We use the notation x; and f; to denote

respectively z; and f; as functions of w, i.e. as random entities. Expression (2) then

becomes

infxenE ) i(xe, Xi41), (3)

t=0

with objective F(x) := EY jo, fi(Xe, Xe41).

We assume in (3) that the objective components f; are proper convex normal integrands

(see Rockafellar [1976]) with the following additional property:

Assumption 1: For any y = (x;,X;41), there exists ¥ > 0 (independent of t) such that

for 7 € 0fi(y) C (L%,)", the Banach dual space of L%, and for all w, either

(a)7 € Ofy(w),



or

(b) there exists z such that = € 0f;(z) and
fi(z) + 7(w - z) <fi(w) - 7lz - y|| as. (4)

for allt > 0. |

Note that uniform convexity implies the assumption which allows nonstrict convexity in-
volving a von Neumann facet. We use this more general assumption here because it allows
us to use the common scheduling objectives which involve linear tardiness and earliness
penalties. These objective functions are discussed in more detail in §3. Section 2 presents
the main results from Birge and Dempster [1992] on optimality conditions, turnpike results
concerning the optimality of cyclic policies and the asymptotic optimality of match—up
strategies. Section 3 provides motivation for the results in §2 through examples in stochas-
tic scheduling. Section 4 presents our conclusions and directions for extensions to nonconvex

problems.

2. Optimality Conditions

The proofs of all these results may be found in Birge and Dempster [1992].

In general, the objective in (3) is infinite. We can avoid this difficulty by defining a
policy x* := {xq,x},...} as (weakly) optimal, as in McKenzie [1976], if it is not overtaken

by any other policy, i.e. if there does not exist x’ such that

limsup B [fi(x;, Xiy1) = fu(x], x040)] € =6, (5)

T =0
where € > 0.
We also assume that the objective functions satisfy a condition ensuring that no infinite
terms are present in the sum in (5).
Assumption 2: For any t and 6 < 0o, there exists € < oo such that ||x¢|| < § a.s. implies
IE fi(x¢, Xt41) > —€ and ||x¢41]| < € as. for x¢4 feasible. ]
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Given Assumption 2, we can subtract a constant from each f; and not change the weak
optimality of x*. By setting this constant equal to the expected objective value in each
period, we obtain an infimum of 0 in (3). Thus without loss of generality we assume a finite

infimum in (3) in the sequel.

The first result we give is that there exist prices supporting the objective terms in (3).
These price supports provide the optimality conditions in the following theorem that allow

decomposition of the conditions by time period.

Theorem 1. Suppose Assumption 2 holds and that x* is optimal in (3) with findte mnfimum,

and

(a) (nonanticipative feasibility) For any x € dom F (v.e., such that EY ;2 fi(x¢, Xe41) <

00), the projection of x onto N, Ix, 1s such that Y jo  fi(lexe, Myg1Xe41) < 00,

(b) (strict feasibility) For some x € N, such that [EY 2 fi(x¢,Xe41) < 00, there ezists

6 > 0 such that for all ||y — x|| < 8,y € L%, IEY 12 fi(ye, ¥i+1) < 0.

(c) (finite horizon continuation approzimation) There exists x' such that for all Ty in some
sequence {T}, Ty, ...}, and, for any x € dom F, (xT* VXT, 410 XT, 421 - ) 18 also feasible, and
the transition cost to x' is such that |E[fr, _\ (x1, 1, x7, ) +f1, (XT, , X, 4]l = 0ask — o0
and |IE[ka_1(ka_l,ka)+ka(ka,x’TkH)]l > |Elfr, -1 (x1, -1, X7, )+ 11, (X7, , X7, 41)]] for
k=1,...

Then, x* is optimal with given wnitial conditions x, if and only if there exist

p: € L}(E),t =0,..., such that
(1) p: is nonanticipative, 1.e. p; = E{p;|Z,} a.s. fort =0,...,

(11) IEo(fo(x0,X1) —PoXo+P1X1) 15 a.s. mimumazed by x; := x} over x; = E{x; | £}, and,
for t >0, IE¢(fi(xe, Xt41) = PeXt + Peg1Xe41) 15 as. minimazed by (X¢, Xeg1) = (X7, X74)
over Xy = IE{X; | Eg} and Xt41 = IE{XH.l | EH-I}! and

(111) IE py, (xt, —x;,) — 0 as ty — oo, for allx € dom F. |
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These optimality conditions (c) characterize optimal solutions which approach a com-
mon facet — the von Neumann facet - from any given starting condition xo. The main
implication of this result is that it is asymptotically optimal to match up with a decision
process that is optimal for a specific initial condition even if that initial condition changes.
This result is elaborated by showing that if the data process is cyclic then it is asymptot-
ically optimal to return to an optimal cyclic policy even if other conditions temporarily
obtain. These results justify the match-up scheduling policy in Bean et al [1991] and
extend the deterministic results in Bean and Birge [1986]. Discussion of specific scheduling
policies is however postponed to the next section. In this section, we continue to use the

general stochastic optimization model (3) which may be applied in a variety of contexts.

Proposition 1. Given Assumptions | and 2 and Conditions (a) - (¢) in Theorem 1, let
X* be the set of solutions (x7,x;, ) that are minamal in (12) of Theorem I for p; a set of
optimal supporting prices given the initial condition xo and let X' be an optimal decision
process given the initial condition xj,. Then, for any € > 0 and 6 > 0, there eists T < oo,

such that, for allt > T,

Plo tinfex <, pex; (ke Xeyr) = (X0 x40 )l > €} <& (6)

Theorem 2. Under the conditions of Proposition 1, we may conclude that as t — oo,

inf(e; g, ex; [1(Xe, Xeqr) = (X7, x741)[[ = 0 as. . (7)

For Theorem 2 to be fully applicable, we would like to have a method for determining
an optimal policy for some initial state so that the policy of matching up to that strategy
can be implemented. This determination is simpler if we can show that cyclic policies are
optimal. In this case, only a single cycle needs to be analyzed to determine the turnpike
optimal policy. An example of such a policy is given in the next section.
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In this development, we follow a similar approach to Arkin and Evstigneev [1979].
We first assume that the data process has a left tail, i.e. that wy can be interpreted as
...,w’,wy. An alternative is to assume some type of Markovian property of the data
process (see Arkin and Evstigneev). The data process is assumed to be cyclic with cycle k
if the measure j is invariant with respect to the k-period forward shift operator T, where
Tiw = w' such that wj := weyk, L., wy = Thwy = wigr as. It follows that we may define
T X, =X, fort=0,...,k—1. We also assume that the objective is invariant with respect
to Ty so that fi4x(Texe, Tixe41) = fi(xe,Xe41) as., where Tizy(w) := z¢(Tiw). In this

context, x 1s a cyclic policy if x¢4 = Ty x, a.s. and (3) becomes

k-2
infee M () f(xe,X001) + o1 (xe-1, Texo)). (8)
t=0

Corollary 1. Given conditions (a) - (c) of Theorem 1 and a cyclic data process with cycle

k, then there exists a weakly optimal policy with cycle k for any initial condition xq. ]

3. Application Examples

The primary concern of our analysis in §2 is in application to stochastic scheduling
problems. Our goal in this section is to show how the optimality conditions given there
can lead to solutions of specific stochastic scheduling problems and to characterizations of
optimality that can aid in constructing heuristic solutions. We also wish to illustrate the
differences between these problems and deterministic scheduling problems and how these

differences are reflected in practical solution quality.

Typically, a scheduling problem consists of a fixed set of known jobs, a fixed set of
available resources, and costs associated with the time each job completes. The decision
is then to sequence the jobs on the resources to minimize the overall cost. This leads to
various combinatorial formulations, see e.g. Dempster et al [1992].
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Our approach here is to view the problem dynamically so that decisions occur at each
instant in time. On the surface this may appear more difficult because of the number of
time intervals potentially involved, but our avoidance of prespecified sequencing rules has

advantages apparent in the convex optimization problem in (3) and its properties.

To illustrate some of these advantages, we first consider a small problem (which also
appears in Birge and Dempster [1992]) that involves a general type of scheduling objective
and meets our requirements for cyclic optimal policies. We show how the cyclic optimality

conditions for (8) are met and then contrast this problem with a deterministic counterpart.

Assume a single machine on which units of a single item are produced. The state z, of
the process is the amount of inventory (positive or negative) of the item at the beginning of
each period. One unit is demanded in each period ¢. One unit may be produced in regular
time in each period. An additional unit may be produced with overtime if the machine
is available. The uncertainty is in the availability of the machine. We assume that the

machine is available with probability 2/3 independently in each time period.

This model is a small stochastic version of the general deterministic example in Bean
et al [1991]. The objective includes a penalty (equal 10) for any backordered products,
unit holding costs for any positive inventory, regular time production at cost 2 per unit,
overtime production at cost 4 per unit, and a possible outside vendor purchase at cost p

per unit.

The result is that, without production, the state moves from z; to z;4; = z; — 1 from
t tot + 1. The cost of this transition is x, if ; > 0 or =10z, if z; < 0. The value of z,4,
given z, is the production/purchase decision. Production is only possible if the machine
is available. The cost is 2(zi41 + 1 — ;) if ¢ > 2441 > 7 — 1 or 24 4204y — z4) if
i+ 12> x4 > x4 If the machine is not available, then outside purchases are possible at

a cost p(Ze41 + 1= z¢).

The objective function is then



=10z +plagr+ 1 —2) fey<0and =1 <zypy — 2, <0,
ft(Wg+1,13¢,1!t+1) = Ig+p(£€;+1+1—1’t) ifJ't ZUand —15.’(fg+1 — Iy SU, (9)
00 otherwise,

if w4 corresponds to “machine unavailable.” If wyy; corresponds to an available machine,

we have
—101’;+2+4(171+1—.’L'g) ifx,(Oand 0<1'¢+1—l‘¢$1,
—101’;+2(It+1+1—1‘g) ifl‘g < 0 and —1_<_$L'¢+1—1'; SO,
fr(wesr, 2o, 2e41) =< 2 + 24+ 4(ze4 —xy) ifz;>0and 0< g4y — 2y <1,
It+2(l'¢+1+1—1';) ifz',ZUand -1 _<_l'l+1—.'lfg SU,
I’} otherwise.
(10)

Note that the functions in (9) and (10) are convex and satisfy Assumption 1. Finite values
over an infinite horizon can be obtained as in §2 by subtracting constants in each period
corresponding to the expected values of contributions from weakly optimal schedules. The

data process here is Markovian, so we have the conditions for an optimal stationary strategy.

We seek an optimal solution to (3) with a cycle of length k := 1. The penalty term p
is used as the price of obtaining one unit of the product elsewhere. For finite p, an optimal
solution exists in L,. To simplify the analysis, we consider optimal solutions for p — cc.
Results for finite p can be easily obtained as perturbations (depending on p) from the
results below. The solution of these problems only requires the determination of additional

parameters corresponding to the levels at which outside products should be purchased.

This problem can be interpreted as an abstract linear program. Suppose w4 = 0

if the machine is unavailable, and w4, = 1 if the machine is available. The one period
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optimization for (3) becomes:

inf E[10x] +xT + 2y, +4y;,,[T]
s.t.xf —x; =x, as,
Ex|Z] =x; as.,
Xe41 = Tx; as.,

Xt + yzl+1 + Y;l+1 =xi41 +1 as,

0 S X?,O _<. X,—,O S yzl+1 S 1u/;+1=110 S y;-‘+1 S lw,.H:I as. .

An optimal solution occurs at an extreme point of the feasible region of stationary
distributions for x;. In our case, the solution occurs at a discrete distribution with atoms

spaced units apart. There are two classes of these extreme solutions:-

&1: solutions corresponding to z;4+1 = z; + 1 if the machine is available and z, < «

and z¢4, = z; — 1 otherwise.

&y: solutions corresponding to 2441 = x; + | if the machine is available and z, <a-1,
Zi41 = zy if the machine is available and « > z, > « = 1, and z,,, = z, — | otherwise.
Note that a stationary solution cannot have a wider range of regular time production of
units since we can never achieve any higher r,4, than «. The optimal value of « and the

corresponding optimal strategy remain to be determined.

For &, we consider « := 3. This yields the stationary distribution :
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T, machine status probability

4 up é

4 down &

3 up i-

3 down i

2 up é

2 down -1%

1 up 7

1 down ﬁ

| up ()b
-l down (F)(3)!

The expected objective value is then 65
For &,, the stationary distribution for « := 3 is:

T; machine status probability
3 up %

3 down %

2 up é

2 down %

1 up %

1 down ﬁ

- up (F5)(5)*!
-l down (%)(%)’“

Here the expected value is 62%.

To show the optimality of x;], consider changes from the values of y;, ;, which we can
consider as nonbasic variables in (11). Note that, since xj is stationary, we must have
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Ely!,, + yi1] = 1. Since Efy},,] = 2/3, it cannot be increased. The only possible
changes are then to decrease y;,, and to increase y? . We never would reduce y/,,
before reducing y, , to 0, so consider first an € reduction of ¥i41 for any subset of Q4(3) of
measure § > ( where z7(w) = 3 for all w € Q*(3). Correspondingly, we must increase y;.
on Q(3). The resulting stationary distribution x} < x} a.s. with P{x}, = x} —¢} = 6 and

P{x; =x}} =1/3 - 6. So, the difference in expected inventory cost from x; to x} is

§(—eP{x; > 0} + 10eP{x] < 0}) = 6¢(3/8).

Thus, both inventory and production costs would increase in this case. The only other
alternative change in the strategy is to keep y},, = 1,,=1 and to translate the distribution.
In this case, however, any ¢ increase in « yields an expected cost increase of %c, and, as
before, an ¢ decrease in « yields an expected cost increase of gc. With a finite penalty p

the results are similar. For example, if p = 1000, then the same « value is optimal and the

distribution is truncated at [ = 35.

The results of §2 show that it is asymptotically optimal to match up with this strategy
regardless of our initial conditions. A match-up strategy to accomplish this is simply not
to produce if inventory is greater than 3, to produce one unit for inventory equal 3, to
produce to obtain one plus é for inventory of 2 + 6 for § > 0, and to produce two units for

inventories of 2 or less.

A typical approximation to solving a stochastic problem such as (11) is to form a
deterministic model by replacing the random variables with their expectations. Unfortu-
nately, this procedure is always optimistic (see, for example, Birge and Wets [1986]) and

underestimates the true cost considerably. The mean value problem corresponding to this
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deterministic version of (10) is:

inf 1027 + o + 200, + 4%,
s torf -z =1,
Ty = T-’l’t y (12)

I+ y¢1+1 + y¢2+1 =z +1,

2

2
0<af,0<27,0<yy 300 < 3,

3 )

which clearly has an optimal solution, y}j_l = %, and y;";l = %, with all other variables
equal zero. The optimal value of (12) is 2%, which, as mentioned, far underestimates the

true optimal expected cost of 6.

The above solution to (12) is not feasible for the original stochastic problem (11) in
every period since processing is not always possible. A policy with the same expected
value for y, as this solution is possible, using y/3, = Hupi=1) and yi5) = %(I{w,.“:l])'
This policy, however, results in a stationary distribution for x, concentrated on points at

intervals of -;— satisfying the equations:

L1 . 2 N T 1 1

P{x,_z}—§P{xt_1+l}+§P{x¢_1—5},1—0,:t§,:!:1,:i:1§,..., (13)
Y (P{xc =2} + P{x; = 2+ 1} + P{x, = =2} + P{x, = =2 - 1}) = 1. (14)
1=0

Equations (13) and (14) thus do not have a solution in the class of discrete probability mea-
sures since they imply a uniform distribution on {0, :t%, +1, :i:l%, ...}. Hence the ezpected
cost of the mean value solution modified for feasibility in (11) is infinite. The difference
between this cost and the expected cost of the stochastic solution to (11) is called the
value of the stochastic solution (see Birge [1982]), which represents the additional objective
value gained by modeling the randomness in the problem explicitly. The result here says
that using the mean value problem solution (modified for feasibility) is infinitely worse in
the stochastic model although the mean value problem (12) gives a deceptively low value.
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Even truncating the distribution at some point leads to extremely high storage and penalty

costs.

Our first example included an objective with tardiness or shortage penalties and hold-
ing costs that are common in scheduling models with randomness confined to the machine
availability. Other scheduling models with varying degrees of uncertainty can also be in-

corporated into our general stochastic optimization model.

For example, consider a model with several commodities i = 1,... n processed ac-
cording to random processing times p(i), random release dates r(:) and random due dates
d(7), with a penalty weight of w; for every period after the due date in which process-
ing is not completed. We wish to model a situation in which orders for each item arrive
randomly (according to r(i)), in varying amounts (according to p(i)), and with random
due dates (d(¢)). The random entities, r(z), p(i), d(z), correspond to sequences of times,
{r(w,4,1),r(w,7,2),.... }, {p(w,1,1),p(w,1,2),...,}, {dw,i,1),d(w,i,2),...,}, for each or-
der number 1,2,.... The data process is defined so that when the jth order for i arrives
at t = r(w,1,j), then the processing time p(w,1,j) and due date d(w, 1, ;) are also known.
Thus X; distinguishes r(w, ,{),p(w, ,{),d(w,1,1) for 1 <1< j, but not for I > j.

Decisions are the amount of processing performed on each item i in each period ¢. Since
the state of each item is reduced by the processing requirement at each due date, the total
processing in period ¢ is X;41(7) — x(¢) if t is not a due date (¢t # d(¢,7) forany j = 1,2,...)
or X¢41(8) + p(7,7) — x¢(7) if ¢ is a due date (¢t = d(, j)). The decisions are constrained so
that no processing can occur if an item is not released (¢t < r(i,j)) and processing in each
period on each item is at most one. Other restrictions on feasible processes appear in an

indicator function é(w, Xy, X¢4+1) which considers all resource availabilities.

The only costs in this model are due to tardiness. A penalty w; is charged in each
period for every unit of item i backordered (x;(¢) < 0). The total tardiness cost at time
t given w is then ) ! w;(—z¢(w,i))*. The objective is to minimize the expected total
tardiness.
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The single period objective contribution is thus:

fo(xe, Xe41) Zf Xe(2), Xeg1(2)) + 6(w, X¢, Xe41), (15)
where

—wix (1) i 07 = Lezaqiy P(i §) < Xep1 (i) — xo(d)
< er Meze(iinP(i,3) = Le=agy (i, 5),

_ ‘ . x¢(1) < 0as.,
£ (% (1), xe41(2)) = ¢ 0 iF Y02 = Le=ai ) Py §) € Xeyr(4) = xi(d)
< et Yo P(i,J) = Lu=agi )y PG ),

x¢(i) > 0 as.,

\ 00 otherwise.

This noncyclic model is a generalization of the model with cyclic data process (with cycle
k) in Birge and Dempster [1992]. In that model, it is assumed that r(i,j + 1) - r(s, ),
d(,7) — r(i, j), and p(i, j) are all identically distributed and that r(i, j) < d(i,j) < k as.

for all 5.

The data process is assumed to determine the availability of the resources (such as
machines, labor and tools) for processing all commodities. We allow the & indicator term
to represent feasibility generally by assuming a value of “0” if x4, is feasibly reached from
x; and “oo” otherwise. For example, suppose that each process i requires a resource m(3)
where m(1) € {1,..., M}, the set of resources, and each resource can process at most one
unit during a time interval if available and cannot process anything if unavailable. In this
case, wy can be interpreted to have several components such that the first M components
form an M-vector of ones and zeroes corresponding to availability and unavailability of

resources. We then have

0 i 350, Lj=mey (Xea1(8) = %¢(3) + P(i) 1 1= agiyy)
6(w, X, Xe41) 1= Swij)forj=1,..., M,

oo otherwise.

Other constraints can also be represented in this way. Our only requirement is that §(w, -, )

1S convex.

This model is a basic multiple-processor, minimum expected weighted tardiness prob-
lem. With the convexity assumption, it meets the criteria for optimality and asymptotic
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stability given in Theorems 1 and 2. In some cases, the stationary distribution for this
model follows a deterministic path between disruptions and an optimal match point is
achieved as quickly as possible (cf. Bean et al [1991]). To see this, let x* be an optimal
turnpike schedule in X, the set of optimal turnpike schedules. Assume that some state
xo < x5 a.s. is the initial state instead of xjj. Let x’ be an optimal trajectory given x{. In
Birge and Dempster [1992], it is shown that a trajectory x that starts at x| and matches
up with x* at the earliest feasible ¢ can be constructed with the same objective value as x’
for the cyclic problem. Essentially the same proof mutatis mutandis yields this result for

the current noncyclic problem.

Theorem 3. Suppose x* s optimal from xi above in the tardiness model, find
infxen xo=x; as. EY 2, fi(xe, xi41) groen xj) > x4y a.s., with £, defined in (15), and that
there exists a feasible solution x such that x = x|, a.s., and X, = X} a.s. for some 7 < 00,

then there exists an optimal solution x' quven x) such that X, = x:,t > 1 a.s. . ]
4 g 0 t 2t 2

To illustrate the use of this result, we consider a one-machine, multiple commodity
version of the model \yith single period objective (15). In this case, M := 1 and m(¢) := 1
for i = 1,...,n. For simplicity, we also assume that w; := 1 for ¢t = 1,...,n. With these
assumptions, the familiar earliest due date scheduling policy is optimal. To define this
policy, suppose that r(w,i,j(w,t,1)) <t < r(w, j(w,t,i) + 1) and that d(w,i;,j(w,t,i;)) <

d(w, i3, j(w,t,12)) < -+ < d(W, in, j(w,t,in)) and define Ti41(w, 17) recursively from [ = 1

to ! =n by:

Zep1(W, 1) = 20(W, 1) = Lmd(w i, jwein P, i, 5 (w, 2, 0r)
-1
+ Lyw,(1)=1)(min{l - Z(T!-H(w»is) - ry(w, i) (16)

s=1

+ 1{!:(‘(&',",,5(0},!,i,))}[)(wr iS)J(wy tv il))yp(w| iI,J(w,t, il))'
Equation (16) then forces production to occur up to the machine availability in due date

order on any items that have not yet reached the order quantity p(u,i;,}(w,t,i;)). This
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definition implies that order j for item i is always completed before order j + 1 is released,
i.e. that Xg(; j)(i) > 0 as. This assumption can be relaxed by allowing due date order to

apply also to previous orders j < j(w,t,i) that are not yet complete.

Theorem 4. An optinal solution to problem (3) with objective defined by (15), M =1,
xo:=0, and m(?) := L,w; ;= 1 fori=1,...,n 15 to process items according to earliest due

date of released items first, i.e. according to (16).

Proof: The optimality of this policy can be proved by assuming an optimal policy x* such
that some item is processed out of due date order and showing that processing can always be
shifted to an earlier due date item without increasing total cost at any horizon point under
any outcome w. Let processing occur on item i’ at time ¢ under w although i is available,
incomplete (z}(w,i,j(w,t,i)) < p(w,i,j(w,t,1))) and has an earlier due date than . To
simplify notation and without loss of generality, we assume that t < d(w,i,j(w,t,1)) <
d(w,,j(w,t,7"), z,(w,1) > 0, z,(w,7') > 0, and that there exists 6 > 0 such that
plw, i j(w,t, i) = 27 (w, i) 2 6,
zip(w,1) = 2 (w, 1) 2 6,

p(w,i,j(w,t,1)) = 7} (w,i) > 6 (17)

Ty (w, 1) —zh(w,1) =0, forr=t,...,t' =1,
$;1+1(W,i) - .‘l::;(w, l) Z 6
We assume in (17) that some point t' exists with z},,(w,1) = zj.(w,1) > 6. This may be

relaxed by allowing t' — co. We use the assumption on the initial state, xo = 0, to ensure

that states with z;(w,1) > 0 and z;(w,7’) > 0 can be obtained.

Suppose the set of w satisfying (17) is Q7. Then, define a policy x’ such that

X741 1<r<t,
xlr+l = x;+1 +6(e,~ - 6,‘/)10”, r=t,...t'-1, (18)
X741 r>t -1,

where e; is the ith unit vector in ®". In this way, x' is obtained from x* by shifting
production from 7’ to ¢ in period ¢t and from i to ¢ in period t'. This switch is feasible
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because ¢ units of additional production are available for 7 in period t according to (17)
(and for ¢’ in period t').

The objective change from x* to x' is

t'-1

F(x") = F(x) = IE[l{wen”}(s(z L d(w,ijw i) = Lr>dw it jw.iny)] 20, (19)

T=t
since d(w, 1, j(w,t,7)) < d(w, 7, j(w,t,7')). Thus, F(x') < F(x*). Indeed, the objective con-
tribution over the finite horizon to ¢’ does not increase. The amount of switched processing
(8) can be increased until either z;,,(w,1) = p(w, i, j(w,t,1)) or 7}, (w,?) — zj(w,?') = 0.
In either case, this violation of due date order is corrected without increasing objective
costs. The procedure can be repeated on all sets Q;7 satifying (17) with positive proba-
bility for any ¢, 7 and i'. Hence, all violations of due date order can be removed without

increasing costs, which proves the result. .

The result of Theorem 4 for due date order are not valid (even with equal weights) in
cases where penalties are charged only when jobs are finished. In such cases, the optimal
order follows due dates if all jobs can complete on time, but the optimal order switches to
shortest processing time if all jobs are late. The result of Theorem 4 does apply, however,
if processing times and due dates follow the same order (see Birge et al [1990], Lemma 2.3).
It also applies if the weights are ordered in decreasing order from earliest due date to last

due date.

Due date order is optimal here regardless of processing time because, according to
(17), charges are incurred only on the incomplete portion of each job. This assumption is
practical if an order is large and small batches within the large order can be shipped to
the customer as they are finished. This ability to break up jobs is the critical factor in our

convexity assumptions.

Processing available jobs in due date order according to Theorem 4, provides a long
run optimal solution provided the initial system is empty (or that we can assume some
point in time at which we have nonnegative processing on all released jobs. We would like
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to show that this policy satisfies the conditions for match-up optimality in Proposition 1

and Theorem 2.

Assumptions 1 and 2 are valid since the costs are just piecewise linear with fixed
increment in each period and the set of possible states is at most a unit. L, -distance from
the current state. For condition (a) in Theorem 1 (nonanticipative feasibility), note that the
feasibility conditions only depend on information available when an order is accepted. The
second condition (b), strict feasibility, is satisfied if we assume that the system has sufficient
slack such that the objective can be obtained without completely using all available capacity
in some period. We assume this is possible (although an optimal solution may use all
capacity). The third condition (c), finite horizon continuation, is that we can at some

point reach a trajectory starting from, for example, the empty inventory state.

With these assumptions and following Theorem 3, the optimal policy for any initial
inventory state is to match up with the state from the empty inventory position as quickly as
possible. The alternative initial states in Theorem 3 would correspond to entering period 0
with some overdue orders causing initial negative inventories for these items. The optimal
match up response then corresponds to processing any items with negative inventories
before proceeding to items with zero or positive inventories. The result is that one reaches
by time t the same state as in the zero initial inventory state whenever the cumulative

excess capacity up to time ¢ is greater than the total negative inventory at time 0.

5. Conclusions

We have described a general stochastic optimization model with discrete time periods
and infinite horizon. We showed that optimality conditions allow for characterizations of
turnpike and cyclic optimal solutions that justify match-up strategies, in particular, for

scheduling problems.

We showed how optimal policies can be derived in two examples. In one case, the
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optimal policy is found through a stochastic linear program (with recourse) that yields a
low-cost solution when stochastic parameters are included. However, when deterministic
mean values are substituted for random parameters in this program, the resultin linear
program yields a solution which, after correction for feasibility in the stochastic program,
yields a very poor policy indeed! In the other case, we showed how a simple policy based

on the model structure is optimal. In each case, we showed how match-up strategies could

be derived.

The results to date on match-up scheduling are based on the ability to obtain equiv-
alent convex optimization problems. The fundamental element of this assumption is the
divisibility of orders into small shipping quantities. A remaining question is whether these
results carry over to problems with integer variables or other nonconvexities. In these cases,
duality gaps appear that void direct use of supporting prices. The addition of facet-defining
constraints may allow similar results, but will require not inconsiderable further study of

the structure of dynamic scheduling polyhedra.
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