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ABSTRACT

The available data on ferroelectric ceramics
regarding tunability and temperature are presented
in chart form (e-T-E Surfaces). The 21 charts are
by no means a comprehensive survey of available
materials because of the rapidly expanding
development in this field. They represent the
data currently available in a continuing materials
study.
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€-T-E SURFACES OF FERRCELECTRIC CERAMICS

1. Purpose

This report presents a series of charts which display for a number of
available materials the variation in relative dielectric constant, €, as both
temperature and electric field are varied.

The charts are in two sections. Section 1 (Figures 1-12) deals with
materials in standard production where fairly consistant results have been obtained
from batch to batch. Section 2 (Figures 13-21) deals with experimental samples
of new materials furnished by various laboratories. Since these materials are
not in standard production, the data in each case were usually obtained from one

sample, and thus no information on reproducibility is available.

2. e-T-E Surfaces

Surfaces are represented in isometric projection, with e plotted
vertically. The electric field axis is inclined downward to the right with the
electric field increasing to the right. The temperature axis is inclined downward
to the left. In most cases temperature is increasing from right to left, but this
was reversed where necessary to make a clearer presentation of the surface.
Tunability of the material at any temperature is obtained by inspecting the
variation of € along the appropriate constant temperature line. The value of € at
any point may be scaled vertically from the appropriate datum line using the €

scale given on each chart.
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TABLE OF CHARTS

Section 1 Standard Materials

FIG. NG. TITLE CURI’(E) TEMP. €rax PAGE
C

1 Aerovox Hi-Q 4O 27 6,400 5
2 Aerovox Hi-Q 41 35 3, 300 6
3 Aerovox Hi-Q 20 40 2,500 7
L Aerovox Hi-Q 80 07 1,900 8
5 Centralab D-31 20 4,800 9
6 Centralab D-51 ite 5, 300 10
7 Centralab D-T1 30 1,500 11
8 Centralab D-13 128 3,140 12
9 Glenco K-3300 (1953) 15 3,800 13
10 Glenco K-3300 (195k) 0? I, 500 1k
11 Mucon VSE 63 k4,700 15
12 Mucon VSR 25 15,000 16

Section 2 Experimental Materials

FIG. NO. TITLE CURLE TEMP. €y PAGE
C
13 Aerovox BKC-1 30 2,900 17
14 Aerovox BKPC 20 3,700 18
15 Aerovox BKP1A 30 8,100 19
16 Aerovox B K50 25 3,300 20
17 Aerovox B2KL45 20 4,100 2]
18 General Electric 69 ER 63 10,000 )
19 General Electric 71 ER 12 6,000 23
20 General Electric 213ER 13 6,600 ol
21 General Electric 21L4ER 80 5,400 25
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3. Data

In all cases the data were taken on the BLAREl automatic recording
equipment. The small signal value of € was measured at 1000 cycles, and the
electric field was varied cyclically between zero and (in most cases) LO KV/cm
at a slow rate (4O to 80 seconds per cycle). The temperature was held constant
during cycling by immersing the specimen in a stirred oil bath. Where hysteresis
effects were observed, the data were presented only for the part of the cycle

when the electric field was increasing from zero to a maximum.

4. Applications

The e-T-E surfaces were primarily drawn up for design work in dielectric
tuning applications. However, the surfaces may be used for a wide variety of
applications, ranging from variable filter design to the design of dielectric
amplifiers. Above a few megacycles, the dielectric loss increases with frequency.
Thus, in design problems where the loss must be considered, the e¢-T-E surface
must be supplemented by additional data.

The technique of constructing the capacitor generally has a major effect
on the high frequency loss characteristics. Greatly improved results in the 20-

400 me region are possible when special construction techniques2 are used.

1. "Wide-Range Tuning Methods and Techniques Applicable to Search Receivers",
Quarterly Progress Report No. 13 Task Order EDG-4, University of Michigan,
Engineering Research Institute, Ann Arbor, Michigan, October 1954.

2. See for example, "Miniature Non-Linear Capacitors, " University of Michigan,
Electronic Defense Group Technical Report No. 5&, by H. Diamond, to be
published. 3
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5. General Remarks

The zero field value of € is quite temperature sensitive,having a
maximum value at the so-called Curie temperature of the material. The Curie
temperature and meximum value of € are given in Table 1. Materials with low
temperature sensitivity generally have a low dielectric constant and exhibit
little variation in e with applied field.

The Curie temperature generally increases as the electric field is applied
Thus, if the ceramic is operated at the zero field Curie temperature, it will
have a positive temperature coefficient of dielectric constant when an electric
field is applied.

For applications where close tolerances on the capacitance are required,
it is usually necessary to apply temperature control devices to satisfy these

requirements.

6. Conclusions

Although only a limited and not necessarily representative amount of
data areavailable, it is felt that publication at this time will assist the

increasing number of workers now employed in applications of these materials.
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FIG. 5
€-T-E SURFACE

CENTRALAB D-3I



FIG. 6
€-T-E SURFACE

CENTRALAB D-5I
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€-T-E SURFACE
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FIG. 10
€-T-E SURFACE

GLENCO 3300 (1954)
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FIG. I3
€-T-E SURFACE

AEROVOX BKC-I
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FIG. 15
€-T-E SURFACE

AEROVOX BKP 1A
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€-T-E SURFACE
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€-T-E SURFACE
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FIG. 21
€-T-E SURFACE

FOR GENERAL ELECTRIC 2I4ER
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