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Summary

Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase
identified as a key mediator of intracellular signaling by integ-
rins, a major family of cell surface receptors for extracellular
matrix, in the regulation of different cellular functions in a va-
riety of cells. Upon activation by integrins through disruption
of an autoinhibitory mechanism, FAK undergoes autophospho-
rylation and forms a complex with Src and other cellular pro-
teins to trigger downstream signaling through its kinase activity
or scaffolding function. A number of integrins are identified as
surface markers for mammary stem cells (MaSCs), and both
integrins and FAK are found to play crucial roles in the main-
tenance of MaSCs in studies using mouse models, suggesting
that integrin signaling through FAK may serve as a functional
marker for MaSCs. Consistent with previous studies linking
increased expression and activation of FAK to human breast
cancer, these findings suggest a novel cellular mechanism of
FAK promotion of mammary tumorigenesis by maintaining the
pools of MaSCs as targets of oncogenic transformation. Fur-
thermore, FAK inactivation in mouse models of breast cancer
also reduced the pool of mammary cancer stem cells (MaCSCs),
decreased their self-renewal in vitro, and compromised their
tumorigenicity and maintenance in vivo, suggesting a potential
role of integrin signaling through FAK in breast cancer growth
and progression through its functions in MaCSCs. This review
discusses these recent advances and future studies into the
mechanism of integrin signaling through FAK in breast cancer
through regulation of MaCSCs that may lead to development of
novel therapies for this deadly disease. � 2010 IUBMB
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INTRODUCTION

Breast cancer is the most common malignancy among women

in the United States and around the world. Both inherited and envi-

ronmental factors contribute to the high frequency of breast cancer.

Research in the last several decades have illuminated the roles of

multiple oncogenes, tumor suppressor genes, and their associated

signaling pathways in the development and progression of breast

cancer and other malignancies (1, 2). Early detection and novel

therapies based on these mechanistic understanding have signifi-

cantly improved the diagnosis and treatment of breast cancer in

recent years. However, breast cancer remains as a major health

threat, given its high incidence as well as being the second leading

cause of cancer-related death, in American women (from the

National Cancer Institute, available at http://www.cancer.gov) (3).

A major conceptual advance in cancer research recently is

the proposed role of cancer stem cells (CSCs) in the initiation

and progression of breast and other cancers (4–7). Experime-

ntal support for the CSC hypothesis was first provided by stud-

ies in human leukemia when Dick and coworkers showed that a

small population of leukemic stem cells could transfer the dis-

ease to the recipient mice in transplantation (8, 9). The CSC

model was extended to the solid tumors by identifying a subpo-

pulation of highly tumorigenic cells with stem cell properties

from human breast cancers and other tissue malignancies

(10–17). According to the CSC model, while the conventional

therapies could destroy the bulk of the tumor mass, even a

small amount of residual CSCs could lead to recurrence of the

cancer due to their stem-cell-like ability for self-renewal and

differentiation (5). Furthermore, there is evidence suggesting

that CSCs are more resistant to conventional cancer therapies

compared with the bulk of cells in the tumor mass (18–22),

which could further decrease the effectiveness of conventional

treatment strategies. Thus, the CSC model suggests that at least

part of the problems with the current treatments for breast and

other cancers is the possibility of not targeting and eradicating

the right cells (i.e., CSCs) in the tumor (4–7).
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Given the critical role of mammary cancer stem cells

(MaCSCs) in breast cancer development and progression,

increasing research is directed at the characterization of key sig-

naling molecules and pathways that regulate self-renewal and

maintenance of MaCSCs to gain insights into the mechanisms of

mammary carcinogenesis and to develop novel treatment strat-

egies targeting the MaCSC pool. These studies suggested that a

number of developmental signaling pathways such as Hedgehog,

Wnt, and Notch play important roles in regulation of MaCSCs, in

addition to their well-characterized functions in a variety of de-

velopmental processes including in normal tissue stem cells [e.g.,

mammary stem cells (MaSCs)] (4–7). The integrin family of cell

surface receptors and their major intracellular signaling mediator

focal adhesion kinase (FAK) also emerged as key regulators of

MaCSCs and MaSCs in breast cancer in recent studies. This

review will focus on these recent advance on the role of integrin

signaling through FAK in the regulation of MaCSCs, and the

readers are referred to a number of other excellent review articles

for general discussion on CSCs and the role of other important

signaling pathways in the regulation of CSCs (4–7) and for dis-

cussion on the role of FAK in cancer development and progres-

sion in general (23, 24).

INTEGRIN SIGNALING THROUGH FAK

Integrins are a family of cell surface receptors involved in

mediating cellular interactions with extracellular matrix (ECM)

as well as cell–cell interactions (25, 26). Each integrin is a het-

erodimeric protein complex consisting of an a and a b subunit,

both of which are transmembrane glycoproteins with a single

membrane-spanning segment and generally a short cytoplasmic

domain. Eighteen a subunits and eight b subunits are found in

the human genome, which is known to assemble into 24 distinct

integrins. The extracellular domain of the a and b subunits as-

sociate to form the headpiece, which determine the specificity

for ECM ligands. The binding of ECM to integrins induces

integrin clustering at focal adhesions and formation of multipro-

tein complexes consisting of cytoskeletal and signaling mole-

cules at the cytoplasmic domain of integrins (26, 27). Hence,

integrins provide a physical link between ECM and actin cyto-

skeleton and intracellular signaling molecules at focal adhe-

sions, which allows the bidirectional transmission of mechanical

and biochemical signals across the plasma membrane to regu-

late a variety of cellular functions, including adhesion, migra-

tion, survival, growth, and differentiation.

Integrins have been shown to regulate multiple intracellular

signaling pathways through their coupling to cytoplasmic

kinases, small GTPases, and scaffolding proteins as well as

interaction and modulation of other receptors at the cell surface

(25, 26). One of the earliest identified and most prominent com-

ponents of integrin signaling is FAK, which is a nonreceptor

tyrosine kinase predominantly localized in focal adhesions of

adherent cells (28–32). FAK was identified in the early 1990s

as one of the major substrates of viral oncogene v-Src (33, 34)

and the first protein whose tyrosine phosphorylation is depend-

ent on integrin-mediated cell adhesion in adherent cells

(35–37). These early studies showing stimulation of FAK acti-

vation and phosphorylation by integrin-mediated cell adhesion

and oncogenic transformation provided a plausible molecular

mechanism for anchorage-independent growth of cancer cells,

one of their major hallmarks (35). Since these initial findings

18 years ago, numerous studies have linked FAK-mediated sig-

naling pathways to breast and other cancers as well as a variety

of different biological and disease processes.

FAK and its related kinase Pyk2 constitute a subfamily of

cytoplasmic tyrosine kinases, which is structurally distinct from

other nonreceptor tyrosine kinases in its lack of Src homology 2

(SH2) and SH3 domains. While FAK is widely expressed in

many tissues and cell types, Pyk2 has a more restricted expres-

sion mainly in nervous and blood systems (28–32). FAK is

highly conserved with greater than 95% amino acid identity

across different mammalian species and chicken (38). It is com-

posed of a central kinase domain flanked by an N-terminal

FERM (protein 4.1, ezrin, radixin, and moesin homology) do-

main and a C-terminal domain containing the focal adhesion

targeting (FAT) sequence responsible for FAK’s localization to

focal adhesions. In the inactive state (e.g., in suspended cells),

the amino-terminal FERM domain contacts the central kinase

domain directly through an intramolecular interaction, which

blocks access to FAK catalytic cleft and sequesters its activa-

tion loop as well as the key autophosphorylation site Y397 (39–

42). During activation, FERM domain is displaced by an acti-

vating protein (e.g., integrin b cytoplasmic domain, which can

interact with FERM domain (43) or other activators), which is

associated with a conformational change of FAK (44) allowing

rapid autophosphorylation of Y397 and its exposure for binding

other proteins including Src family kinases.

Upon its activation by integrin-mediated cell adhesion or other

stimuli, FAK becomes associated with several SH2 domain-con-

taining molecules including Src (45, 46) and p85 subunit of PI3K

(47, 48) through its autophosporylated Y397 residue. FAK bind-

ing to the SH2 domain of Src displaces Src Y527 binding to it,

relieving the autoinhibitory interaction, and leading to activation

of Src. Conversely, activated Src phosphorylates additional sites

on FAK, including residues Y576 and Y577 in FAK’s kinase acti-

vation loop, leading to further increased activity of FAK, and

Y925 to promote binding of adaptor molecule Grb2 to mediate

activation of Ras-MAPK signaling (49). FAK association and

activation of PI3K through autophosphorylated Y397 leads to

increased production of 30-phosphorylated phospholipid (50),

which can activate Akt kinase to inhibit apoptosis by regulating

various cell death machinery proteins (51, 52). In addition to its

function as a tyrosine kinase, FAK also serves as a scaffolding

protein to allow efficient Src phosphorylation of several other

molecules bound to FAK. The C-terminal region of FAK contains

a number of protein–protein interacting sites, including two pro-

line-rich regions, which serve as binding sites for a variety of

SH3 domain-containing proteins including p130Cas (53) and

269FAK IN MAMMARY STEM CELLS AND BREAST CANCER



endophilin A2 (54). FAK interaction with p130Cas has been dem-

onstrated to play a crucial role in the regulation of cell migration

and breast cancer progression (53, 55–58). FAK interaction with

endophilin A2 and its phosphorylation by FAK/Src complex

reduces its interaction with dynamin and decreases endocytosis of

MT1-MMP, leading to increased accumulation of MT1-MMP on

tumor cell surface and their enhanced invasive activity (54).

The major FAK-mediated integrin signaling pathways are sum-

marized in Fig. 1, many of which have been shown to regulate

breast cancer development and progression based on previous

research (28–32), and some of them may do so through their

regulation of MaCSCs and MaSCs as suggested by recent studies

(59, 60).

ROLE OF INTEGRIN SIGNALING THROUGH
FAK IN MaSCs

The mammary epithelium undergoes dynamic changes in

morphology and function during puberty, pregnancy, lactation,

and involution. Based on studies in past decades, compelling

evidence indicates the existence of MaSCs capable of self-

renewal and differentiation into the various cell lineages

comprising functional mammary glands (61–64). A single retro-

virally tagged MaSC was shown to give rise to a complete

mammary gland upon serial transplantation (61). The b1 and b4
integrins are expressed in mammary epithelium with preferen-

tially higher levels in the basal layer than the luminal epithelial

cells (65). While ablation of b4 integrin did not affect the nor-

mal development of mammary epithelium, the overexpression

of a dominant negative mutant of b1 integrin (66), or the condi-

tional knockout (KO) of b1 integrin in either luminal epithelial

cells (67, 68) or basal cells (59) significantly perturbed ductal

outgrowth and alveologenesis. Interestingly, populations

enriched in MaSCs have been isolated from mice using cell sur-

face markers CD24 and b1 (CD29) or a6 (CD49f) integrins in

recent studies (69, 70). Further analysis of these populations

revealed that they are basal epithelial cells and are negative for

steroid hormone receptor ERa (71). These studies suggest that

MaSCs reside in the basal compartment of the mammary epi-

thelium, and that integrin-ECM interactions may play essential

roles in MaSCs. In agreement with the idea that integrins serve

as ‘‘functional’’ markers for MaSCs (i.e., have a function in the

regulation of MaSCs rather than simply as a surface marker), a

recent study has shown that deletion of b1 integrin in basal

epithelial cells significantly impaired the regeneration potential

of MaSCs (59).

Consistent with it being a key intracellular mediator of signal

transduction by integrins, several lines of evidence suggest that

FAK may also play an important role in the regulation of

MaSCs. It was shown recently that human MaSCs and progeni-

tor cells can form mammospheres in suspension culture and

propagate in vitro (72). Previous studies showed that most of

primary MaECs undergoes apoptosis upon detachment (a pro-

cess termed anoikis); the ability of MaSCs to propagate in sus-

pension culture suggests that they can survive and proliferate in

an anchorage-independent manner. Interestingly, MDCK cells

become resistant to anoikis after expression of the constitutively

active FAK by gene transfer (73). As resistance to anoikis is a

prerequisite for mammosphere formation, these results together

suggest that selective activation of FAK in MaSCs may be im-

portant for their self-renewal and maintenance in vitro and pos-

sibly in vivo. Consistent with such a possibility, we have shown

previously that deletion of FAK in MaECs caused a severe

lobuloalveolar hypoplasia and lactational deficiency due to sig-

nificantly decreased proliferation and differentiation of MaECs

(74), implicating a role for FAK in MaSCs as the rapid expan-

sion of the mammary gland in pregnancy and lactation requires

a functional pool of MaSCs. Direct analysis of these mice using

the newly identified markers showed that ablation of FAK sig-

nificantly reduced the content of MaSCs in vivo. Furthermore,

FAK-null MaSCs exhibited decreased self-renewal as deter-

mined by mammosphere assays in vitro as well as limiting dilu-

tion transplantation assays in vivo, suggesting that inactivation

Figure 1. FAK mediated integrin signaling pathways. Integrin-

mediated cell adhesion to ECM activates FAK by disruption of

an auto-inhibitory interaction of the kinase and amino terminal

FERM domain. The activated FAK undergoes autophosphoryla-

tion and binds to Src and other intracellular signaling molecules

to trigger multiple downstream pathways to regulate different

cellular functions such as survival, proliferation, migration, and

invasion.

270 GUAN



of FAK severely impairs the self-renewal of MaSCs responsible

for their decreased content in FAK conditional KO mice (Luo

and Guan, unpublished results). These recent studies provided a

more direct evidence for a role of FAK in MaSCs.

ROLE OF FAK REGULATION OF MaSCs IN
MAMMARY TUMORIGENESIS

The potential link of FAK to breast cancer was first estab-

lished by the findings that FAK expression at both mRNA and

protein levels were significantly elevated in invasive and meta-

static breast tumor specimens in comparison to paired normal

tissues, suggesting a role of FAK in promoting breast cancer

invasion and metastasis (75). Subsequent studies showed that

FAK expression was minimal in benign breast epithelium but

was strongly positive in ductal carcinoma in situ (DCIS), sug-

gesting that FAK overexpression is not restricted to the invasive

phenotype, but rather appears to be an early event in breast

tumorigenesis (76, 77). In a large population-based study of

breast tumor samples, high FAK expression was shown to be

associated with an aggressive phenotype exemplified by high

mitotic index, estrogen and progesterone receptor negativity,

and HER-2/neu overexpression (78). FAK expression is

required for the early phase of lung metastasis of mammary

adenocarcinoma in a rat syngeneic xenograft model (79). Fur-

thermore, intrinsic FAK activity controls orthotopic breast carci-

noma metastasis through the regulation of urokinase plasmino-

gen activator expression (80) and promotes a MAPK-associated

angiogenic switch during breast tumor progression (81). There-

fore, these studies using clinical samples of breast cancer as

well as experimental models strongly implicate an important

role of FAK in the development and progression of breast can-

cer (23, 24).

One important prediction of the CSC hypothesis is that

reduced pools of stem/progenitor cells in the normal tissue

should substantially decrease the probability of cancer formation

in the corresponding tissue (4, 5). Interestingly, inactivation of

FAK as well as b1 integrin significantly compromised self-

renewal of MaSCs leading to their reduced pool (59) (also Luo

and Guan, unpublished results), raising the possibility that integ-

rin signaling through FAK may promote mammary tumorigene-

sis through regulation of MaSCs. Indeed, very recent studies by

several groups, including us, showed that ablation of FAK sup-

pressed mammary tumorigenesis and progression in mouse

models of breast cancer (58, 60, 82, 83). Furthermore, our stud-

ies demonstrated directly that deletion of FAK reduced the pool

of MaCSCs in primary tumors developed in FAK conditional

KO mice (60). These studies suggest a causal role of FAK in

promoting breast cancer in vivo and also lend further support

for the CSC hypothesis.

In addition to breast cancer, McLean et al. have shown

recently that inactivation of FAK in the epidermis significantly

suppressed both tumor formation and malignant progression in

the skin (84). It would be interesting to determine whether dele-

tion of FAK in the epidermis also reduces the pool of epidermal

stem cells as a mechanism of suppression of tumor formation

and progression. Although this possibility has not been directly

tested, it is worthwhile to note that inactivation of FAK in kera-

tinocytes did not affect their survival and proliferation in vitro

(84); this is in contrast to the findings from us and others that

FAK deletion in MaECs significantly decreased proliferation of

MaECs and mammary tumor cells both in vitro and in vivo (58,

60, 74, 82, 83). Thus, it remains possible that integrin signaling

through FAK may play a preferential role in MaSCs in breast

cancer development while affecting the formation and/or pro-

gression of cancer through other mechanisms in the skin or

other tissues.

FAK PROMOTION OF BREAST CANCER PROGRESSION
THROUGH REGULATION OF MaCSCs

Accumulating evidence from both clinical and experimental

studies strongly support a role of FAK in the progression and

metastasis of breast and other cancers (23, 24). The role of

integrin signaling through FAK in promoting cell survival and

proliferation contributes to tumor growth and metastasis by ena-

bling tumor cells to survive in different environments and to

colonize in distal organs. Several FAK signaling pathways have

also been well characterized to promote migration and invasion

of different cells, thus facilitating tumor angiogenesis and

metastasis (see Fig. 1). One pathway involves FAK complex

formation with Src and subsequent phosphorylation of the adap-

tor molecule Cas by the FAK/Src complex (55, 57, 85–87) to

promote cell migration via a downstream signaling route,

including Crk, Dock180, and Rac (55, 57). A second mecha-

nism of FAK promotion of cell migration involves its interac-

tions with PI3K and an adaptor molecule Grb7 (88, 89). FAK

has been shown to directly phosphorylate Grb7 in a manner

dependent on the production of 30-phosphorylated phosphoinosi-

tides by PI3K to promote cell migration (88–90). In addition,

FAK has also been shown to promote cell migration through

direct modulation of key proteins involving in the remodeling

of the actin cytoskeleton, including the Rho subfamily of

small GTPases (91–93), N-WASP (94), and the Arp2/3

complex (95).

Recent studies using mouse models of breast cancer provided

direct in vivo evidence for the role of FAK in promoting breast

cancer progression (58, 60, 82, 83). In one report, Lahlou et al.

showed that conditional KO of FAK in MaECs blocked mam-

mary tumor progression in a model where the efficiency of Cre-

mediated FAK deletion in MaECs was estimated at 64.3% (82).

Under this relatively low-excision efficiency, mammary carcino-

mas developed in the FAK conditional KO mice all express

FAK, while FAK-null MaECs, although present in premalignant

mammary hyperplasia, failed to progress to advanced carcino-

mas and subsequent metastases, suggesting a critical role of

FAK in promoting mammary tumor progression. Using a

different MMTV-Cre transgenic mouse strain with a higher
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deletion efficiency of 96.4%, Pylayeva et al. reported that dele-

tion of FAK in MaECs significantly suppressed both mammary

tumorigenesis and progression (58). Interestingly, this study

also indicated that virtually all the primary and lung metastatic

tumor lesions found in the FAK conditional KO mice expressed

FAK, suggesting that they had originated from the minority of

MaECs that had not undergone Cre-mediated deletion of FAK.

They also demonstrated a critical role of FAK signaling path-

way through Cas in the regulation of mammary tumor invasion

in vitro as well as tumorigenicity in vivo.

Although the above study indicated an important role of

FAK signaling in mammary tumorigenesis and progression, the

fact that FAK is expressed in all malignant primary tumors and

metastatic nodules derived in the FAK conditional KO mice

prevented analysis of a potential role of FAK in promotion of

breast cancer progression through regulation of MaCSCs

in vivo. Our studies used a third MMTV-Cre transgenic mouse

line that confers Cre-mediated recombination at early embryonic

stage to obtain 100% of FAK deletion in the MaECs (74). In

this model, we found that deletion of FAK in MaECs signifi-

cantly suppressed mammary tumor formation, growth, and me-

tastasis (60). Mammary tumors were eventually developed in

FAK conditional KO mice, but with decreased multiplicity and

retarded growth, and they did not express FAK. Similar results

and the absence of FAK in PyMT-induced mammary tumors of

FAK conditional KO mice were also reported by another group

(83). Using our mouse model that completely ablates FAK

expression in mammary tumor cells, we showed that inactiva-

tion of FAK reduced the pool of MaCSCs in primary tumors

developed in FAK conditional KO mice, decreased their self-

renewal in vitro, and compromised their tumorigenicity and

maintenance in vivo (60).

In MMTV-PyMT tumor model, MaCSCs isolated based on

markers of CD24, CD29, and CD61 have been shown to have

higher migratory activity compared with corresponding non-

stem-like cells (96). By using ALDH activity as a marker for

MaCSCs, we also showed a significantly higher migration for

ALDH1 cells compared with unsorted and ALDH2 cells. More-

over, we found that the migration of FAK-null ALDH1 cells is

decreased by about 70% relative to ALDH1 cells from control

mice, suggesting an important role of FAK in the regulation of

migration of MaCSCs (60). These observations of the reduced

migration of FAK-null MaCSCs is very interesting as this may

suggest a more direct role of FAK in metastasis through its reg-

ulation of MaCSCs migration besides influencing the survival

and expansion of metastasized MaCSCs in new location through

controlling their self-renewal.

Given the widely recognized role of mammary and other

CSCs in cancer initiation and progression (4–7), these studies

using mouse models provide a novel cellular mechanism of

integrin signaling through FAK in promoting breast cancer.

Inactivation of FAK may inhibit mammary tumorigenesis by

reducing the self-renewal and available pool of MaSCs and

block the growth and progression of breast cancer by impairing

self-renewal, migration, and tumorigenicity of MaCSCs. A

working model for the potential MaSCs and MaCSCs in breast

cancer by FAK is summarized in Fig. 2.

CONCLUDING REMARKS AND PERSPECTIVES

Since its initial identification as a key mediator of integrin

signaling (34–37, 97), a large body of studies in the last 18

years have clearly established an important role for FAK in

breast cancer development and progression (28–32, 23, 24).

Moreover, these studies also illustrated multiple signaling path-

ways mediated by FAK through its interactions with and phos-

phorylation of other intracellular molecules in the regulation of

various cellular functions (28–32). Emerging evidence suggests

that integrin signaling through FAK may promote breast cancer

through the regulation of MaCSCs and MaSCs. It will be inter-

esting to determine which of the FAK signaling pathways play

important roles in the regulation of self-renewal and other activ-

ities of MaCSCs and whether any of these pathways play

differential functions in the regulation of MaSCs. The potential

Figure 2. Inactivation of FAK suppresses breast cancer devel-

opment and progression caused by deficient self-renewal and

decreased pool of MaSCs and MaCSCs in mouse models. In the

normal mammary glands, integrin signaling through FAK con-

tributes to the self-renewal of MaSC (light grey), which can be

transformed by oncogenes such as PyMT to form MaCSCs

(black) with significantly increased self-renewal and tumorige-

necity (more circular lines). MaEC-specific deletion of FAK

(FAK CKO) results in deficient self-renewal (broken circular

lines) and reduced pool of MaSCs. The reduced pool of MaSCs

may contribute to the decreased mammary tumorigenesis (i.e.,

reduced frequency of MaCSCs formation). The FAK-null

MaCSCs (dark grey) also exhibit deficient self-renewal and

tumorigenecity (broken circular lines). The deficient self-

renewal and the reduced pool of MaCSCs could account for the

suppressed growth and progression of mammary tumors devel-

oped in these mice.
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differences in the regulation of MaCSCs and MaSCs by specific

FAK signaling pathways may be exploited to develop treat-

ments to eliminate MaCSCs but not harming MaSCs for effec-

tive new therapies of breast cancer. In addition, it would be

interesting to determine the potential cross-talks between integ-

rin-FAK signaling and other signaling pathways involved in the

regulation of MaCSCs and MaSCs. These include a number of

well-characterized developmental signaling pathways, including

Notch, Wnt, and hedgehog (4–7). These studies may suggest

that the use of a combination of inhibitors for multiple signaling

pathways might be more effective than blockade of a single

pathway to eradicate MaCSCs.

In complementary to further analysis of intracellular path-

ways, it would also be interesting to explore the role of integrin

signaling through FAK in the regulation of MaCSCs in the con-

text of influence of tumor microenvironments on these cells.

Although it is well known that niches play crucial roles in

many tissue stem cells as well as CSCs (98–100), very little is

known about how extrinsic factors (i.e., niche) control mainte-

nance and self-renewal of MaCSCs. Given their likely roles as

‘‘functional’’ markers, integrins and their signaling through

FAK (i.e., activation of FAK) may play an essential function in

mediating regulation of MaSCs and MaCSCs by the mammary

stroma and the tumor microenvironments, respectively, which

may provide the niches crucial for the self renewal of the stem

cells. In a recent report, interestingly, formation of fibronectin-

rich patches (pre-Metastasis niche) initiated by the VEGFR11

bone marrow-derived hematopoietic progenitor cells were

observed in the target organs of cancer metastasis (101), sug-

gesting the possibility that integrin signaling through FAK in

MaCSCs upon adhesion to fibronectin patch may facilitate the

survival and self-renewal of metastasized MaCSCs in the target

organs.

Given the highly conserved sequence and functions of FAK

and its signaling pathways between mouse and human, it is

very likely that FAK signaling pathways involved in the regula-

tion of MaCSCs in mouse models also play crucial roles in

human MaCSCs. Nevertheless, it would be important to confirm

that FAK signaling plays a role in human MaCSCs, which may

account for the observations of an correlation between FAK

activation and malignant progression of human breast cancer in

previous studies (23, 24), and to elucidate the molecular mecha-

nisms and downstream effectors of FAK signaling in human

MaCSCs. Conversely, although MaCSCs were first described in

human breast tumors (10), the origins of these highly tumori-

genic cells (e.g., whether derived from normal MaSCs) remain

obscure and are difficult to determine in human tumors. Mouse

models of breast cancer provide an excellent system to address

the cellular origins of MaCSCs, one of the important issues in

the CSC model with great implications in breast cancer treat-

ments. The major advantages of using mouse models include

the relative ease of genetic manipulation (KO and knock-in

approaches), well established methods to isolate primary MaECs

and tumor cells followed by transplantation into syngeneic re-

cipient mice after manipulation in vitro (e.g., gene transduction

by recombinant lentiviruses), and the well-characterized specific

cell surface markers for distinct subpopulations of the mammary

epithelial hierarchy, including MaSCs and progenitor cells (69,

70, 102). The use of syngeneic mouse models allows one to

study mammary tumor development and progression in animals

with intact immune system, which contains both suppressive

and promoting activities for breast cancer (103–105), as well as

the right microenvironments which could also influence mam-

mary tumor cells in both positive and negative manners (106,

107). In short, future studies using a combination of approaches

including mouse models as well as human breast cancer sam-

ples will generate significant insights into the mechanisms by

which key signaling proteins and pathways regulate self-renewal

and maintenance of MaCSCs and will significantly advance our

understanding of the molecular and cellular mechanisms of

breast cancer. These studies will also contribute to the develop-

ment of novel therapies targeting the MaCSC pool to eradicate

this deadly disease.
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