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Correlations in Liquids and Applications
to Slow Neutron Scattering¥*

R. K. Osborn and A. Z. Akcasu

Department of Nuclear Engineering, The University of Michigan
Ann Arbor, Michigan

ABSTRACT

Correlation functions for liquids in general, and the scattering function
in particular, are studied. The Langevin noise-source theory is used in con-
Junction with the conventional, linearized hydrodynamic egquations. Calcula-
tions are initially carried out without resorting to long wavelength approxima-
tions in the Markoffian limit. Agreement with earlier results for the descrip-
tion of light scattering is obtained. Investigation of neutron scattering
leads to the striking prediction that central peak half-widths are independent
of momentum transfer and inversely proportional to viscosity—but independent
of thermal diffusivity, at least for some liquids. Some experimental evidence
in favor of this result is presented. The theory is then substantially gen-
eralized by relaxing the assumption of Markoffian behavior. Generalizations
of Einstein's relation between the mobility and diffusion matrices and Onsager's
relations are obtained. Generalized formulas for correlation functions and for
the scattering function are presented. It is suggested that the generalized
theory provides a supplementary (to kinetic theory) path for the exploration

of limitations and extensions of the equations employed in the present study.

*Supported in part by the National Science Foundation.



I. INTRODUCTION

In this paper we examine the applicability of a particular, but conven-
tionalg(l) mathematical description of fluctuations in liquids to the interpre-
tation of slow neutron scattering by normal liquids. The description alluded
to consists of the familiar linearized, hydrodynamic equations for the dens-
ity, momentum, and temperature. However, we prefer not to refer to the present
study as a hydrodynamical theory of fluctuations, but rather to refer to it
as a configuration space theory (to distinguish it from kinetic theory which
is couched in phase space). The reason for this is that any reference to hy-
drodynamics seems to imply automatically severe restrictions, e.g., results
valid only for long times and long waveléngths.. But, of course, any given
configuration space description of a particular system is merely an approxima-
tion to a more elaborate description; and, at least in principle, thevmore
elaborate description can be made as exact as desired in any given case. In
fact, it will be at least a part of the burden of this work to suggest an
avenue along which the search for such elaboration may be conveniently, and
perhaps fruitfully, explored.

We choose to initiate the study in the context of the conventional descrip-
tion for several.reasons° First of all, to our knowledge, it has not been done
before. Kadanoff and Martin(g) have discussed fluctuations in liquids in the
context of precisely the same description, but limited their exploration of

its implications to long waveléngths,, which rendered their explicit results



inapplicable to a study of neutron scattering. Subsequently, Mountain(E)
studied exactly the same problem that interests us here, i.e., the calcula-
tion of the scattering function, using exactly the same equations that we
will use. But his primary motivation was the interpretation of light-scatter-
ing measurements, so he too made use of long wavelength approximations. His
results were essentially the same as Kadanoff and Martin's and hence were
similarily not applicable to the study of neutron scattering. Recently,
light-scattering experiments have been reported(u’5) which are in good agree-
ment with the predictions of Refs. (2) and (3). Also, Felderhof(6) has em-
ployed a similar description of liquids in a study of critical opalescence.
Some of his analysis is in close parallel to our discussion in Section IT.
However, here again, explicit results are obtained and discussed in the long
wavelength (light scattering) limit.

Secondly, an exact calculation of the scattering function is quite feas-
ible using the conventional equations, and leads to a formula that is an-~
alytically tractible. These results can be compared (in a sense to be dis-
cusséd in detail later) with some of the data for neutron scattering by liquid

(7)

’lead reported by Randolph and Singwi, and appear to be in significant
agreement therewith. Included in this agreement is a confirmation of an un-
expected prediction of the theory that the width of the central peak of the
sqattered spectrum is independent of momentum transfer and of thermal conduc-
tivity, but instead depends inversely on the viscosity of the liquid. As

will be discussed in greater detail later, the sense in which the experiment

reveals widths independent of momentum transfer requires some explanation.



For k = {E—B'I/h ad 2x108 cm'l, the widths exhibit a marked decrease, presum-
ably related to diffraction effects.(8)' But, for k 2 3x108 cm‘l, the

widths appear to remain fairly constant. It is this latter, constant width
that we correlate with the theoretical prediction. This is in striking con-
trast to the sifuation for light scattering, as seen from our results as well
as from those of Refs. (2) and (3). In the latter instance, the width of the
central peak is proportional to the thermal conductivity and: to :the square of the
momentum transfer. Furthermore, it appears from comparison with the data on
lead scattering, that the conventional description does not begin to break
down seriously until nearly the limits of energy transfer accessible to meas-
urement. As will be shown, the first step in the direction of generalization
of the theory provides a qualitative correction to this defect at the high en-
ergy transfer (short time) limit, and points a way toward still greater refine-
ment.

A third reason for pressing this issue is that these equations may be
more justified in the application to fluctuation theory than their derivation
from the hydrodynamic equations by linearization would imply. This possi-
bility is suggested by two considerations. For small displacements from ther-
mal equilibrium, the fluctuation-dissipation theorem provides a fairly strong,
independent (of macroscopic hydrodynamical considerations) argument(z) in
favor of using linearized equations for mean values to describe fluctuating
quantities. And secondly there does not appear to be available now, or in

the near future, an analytical demonstration of the precise limits of validity

of any given mathematical description of fluctuations. Consequently, we feel



that the conventional mathematical model should be explored to the full and
tested, where possible, against m_easurf—:'memt‘° Then, if found wanting, it
should not be discarded, but rather built upon in ways indicated by the micro-
scopic, configuration-space theories(g’lo) and by stochastic arguments de-

(11) and applied here.

veloped elsewhere
In Section II, we present the eguations to be used in the present applica-
tion and obtain their solutions appropriate to the calculation of various cor-
relation functions. In Section III, we apply the solution for the density-
density correlation function to an interpretation of measurements of the

scattering of slow neutrons by normal liquids. In Section IV, we discuss

ways of elaborating the present theory employing stochastic arguments.



IT. CAILCULATION OF CORRELATION FUNCTIONS

Since the mathematical model to be used here is entirely familiar,(l) we

merely present it without further comment, i.e.,

dp
_6—t+p0U = O, (18.)
2 2
ou , Cg CoBpo 2 2
o Wy 0@y 4 &0 ¥ - qveU = 0 (1b)
O3t vy e 4 1 ’
oc 9L+ Cy(y-1)eg U-AVT = 0. (1c)
OV 3t B

Here we have introduced p, U = V-W, and T to represent the space and time de-
pendent mass density, divergence of mean velocity, and temperature respec-
tively. Using the subscript, o, to designate equilibrium values, these quan-
tities are small in the sense that p/po and T/To are small compared to unity,
and (as will be seen later) that U/Cok is also small compared to one, where

Co is the speed of sound and k is the reciprocal of the wavelength character-
istic of the disturbances to be examined. The remaining parameters are:

y = Cp/cv where Cp and Cy, are the specific heats at constant pressure and vol-
ume respectively; 8 = cubical coefficient of thermal expansion; 7 = (% ns+nb),
ng and 7y, being the shear and bulk viscosities; and A = thermal conductivity.

It is convenient to space-Fourier transform these equations and intro-

duce dimensionless dependent variables according to

¥y (k,t) o/og (2a)

Uy (k,t) = U/Cok (2v)



vo(k,t) = T/Tg . (2c)

éﬁ +MY = 0 (3a)
ot
where ’
L4}
¥y = ¥y (3b)
Vs
and
0 1 0
M=ok -3 oz -Ee (3c)
BTo

The new parameters introduced into the matrix M are Mountain's "small quanti-
ties," i.e., Z = nk/pCy and y = Nk/poCoCy- These parameters are indeed small
in the case of light scattering (k ~ lO5 cm'l), being of the order of 1072 or

8

less. Howevef, for the neutron scattering case (k ~ 10 cm‘l) they are large,
i.e., ~10 and ~lO3 respectively for lead. Thus we will obtain correlation
functions in general and the scattering function in particular without further
approximation.

We shall base our correlation analysis on the Langevin noise-source ap-
proach which has been presented elsewhere in detail. The advantages and flexi-
bility of this approach for fluctuation analysis in general have been dis-
cussed and demonstrated by M. Lax in a series of papers.(lg’lB),

In this approach one adds a noise source to the matrix equation (3), de-

scribing the mean evolution of the physical system, to account for the fluctua-



tions of the dynamical variables about their equilibrium values:

¥ ,my - g ()

ot

where Q is a column vector with components Q(k,t), Q5(k,t) and QE(K’t)' We
shall assign the proper statistical properties to the noise source-—more pre-
clsely, to its correlation matrix—at various stages in the analysis to fa-
cllitate successive levels of approximation.

We now define a time-dependent correlation matrix as
A(k)t) = <w('k:0)\-{/(k:t) > b (5)

where E is the transpose of ¥, < >T means thermal average, and we have explic-
itly noted that A depends only on the magnitude of k. The (1,1)-element of
this matrix is the density-density correlation function required for the cal-
culation of the scattering function. Solving Eq. (3) and its transpose, we

find that

A,t) = [T ax [Ty o™ qlok, xR0, by) >y e (6)

At this point we make our first assumption about the unknown quantity, Q, i.e.,
< Q(-k,t)Q(k,t") > = B(t-t")D(k) , (7)

where D(k) is called the diffusion matrix. It can be shown that the assump-

tion embodied in Eq. (7) is equivalent to the assumption that the time evolu-

11,13)

tion of VY is Markoffian.( In Section IV we will examine some of the

significance and consequences of relaxing this assumption. Entering (7) into



(6), we find that

Al,t) = Alk,0)e™M £ >0

M ), t<o, (8)

where A(k,0) is the static correlation matrix. In deriving Eq. (8) we have

used

Alk,0) = [%ay e ple)e | (9)
(6]

which can be solved to obtain

D(k) = Ma(k,o0) + A(k,0)M . (10)

This is known as the generalized Einstein relation.(ll)

Introducing (7) into (6) and taking the time Fourier transform, we obtain

(using (10)),

oo .
f at e—l(l)'t

-00

2Re (M-100I ) TA(k,0). (11)

Alk,w) Ak, t)

I

1

Evidently the desired density-density correlation function, All(k,w), depends

upon A171(k,0), Apj(k,0), and A,,(k,0) which are the static density-density,

31
velocity-density, and temperature-density correlation functions respectively.

(1)

However, in the present instance, time reversibility requires Agl(k,o)
and A25 to be zero (note that the static correlation matrix is symmetric).

This is readlly shown from the fact that time reversibility requires that

Aij(k,t) = Eiej—/\ij(k)‘t)) (12)



where €y = *1 depending on whether Wi is even or odd under time reversal (Wl
and WB are even, and Vp is 0dd since it is essentially a velocity). Evaluating

(12) at t = O implies that

) = 0, (13)

Ai-(k,o)(l-eieJ

which leads immediately to the conclusion noted above.
Because of the particular character of the matrix, M (and hence because
of the level of development of configuration space theory that we are using

here) we can show that A,. (k,0) is also equal to zero. Using (12) together

31
with Eq. (8), we find that

-Mt -Mt
A(kyo)lm(e )jm - eiej(e )imA(k)o)mj b (14)
which is satisfied for all t if, in addition to (15),
A(k’o)imMjm = GiejMimA(k,O)mj . (15)

The latter are the Onsager relations.(lu) Evaluating (15) for i = 1 and j = 3

we obtain

Miphos = Mzolyp + Mazlys - (16)

Since Ap = A25 = 0, we conclude that AlB’ the static density-temperature cor-
relation function is also zero—in accordance with an assertion by Mountain.(B)
We note in passing that this last result depends explicitly on Eq. (8) which

holds only for Markoffian systems. We return to this point later.

10



It appears from the foregoing discussions that the static correlation
matrix A(k,o) is diagonal with the diagonal elements Ay3 =< Wj(k,o)wj(k,o)>T.
We may note for completeness that the Onsager's relations (15) enable one
to express the static velocity-velocity and temperature-temperature correla-
tion function in terms of the static density-density correlation function by

considering the special cases 1 =1, j =2, and 1 =2, j=3. The results

are

<Yy (K000, (k,0) > = % < ¥y (k,0)¥ (k,0) > (17a)
y=-1 .
< \|I3(k,0)\|!5(k,0) >T = ;—2—' < \lfl(k,O)Ilfl(k,O) >T . (l7b)

The diffusion matrix D defined by (7) can now be evaluated explicitly using
the generalized Einstein's relation (10). Substituting M from (4c) into (10)

we find that D is also a diagonal matrix with the diagonal elements

Dll = 0

Dop = 2 Cosz < ¥y (k,0)¥ (k,0) > (18a)
_ -1

D3z = 2Coky 35—- < (k5004 (k,0) > (18p)

Since Dy; = O we may conclude, with the help of (7), that <@ (-k,t)q;(k,t)> =0,
and hence Q) (k,t) = 0. This implies that the continuity relation (8p/8t)+pr =0
does not contain any random driving force, i.e., the continuity relation is

true for the instantaneous values as well as the mean values of Q(g,t) and
U(g,t), at the present level of approximation.

We may also conclude that the random forces @Qp(k,t) and QB(E’t) in the

11



momentum and temperature equations are uncorrelated, i.e., < QQ(—k,t)

QB(k}tx) > = O, because DEB = D52 = 0.

12



ITI. APPLICATION TO THE CALCUILATION OF THE NEUTRON SCATTERING FUNCTION

Here we apply the results of the preceding sections to an attempt at a
guantitative interpretation of the scattering of slow neutrons by normal lig-
uids--specifically the measurements of Randolph and Singwi for liquid lead.(7)
To this end, we recall the relation between the scattering cross-section and

the scattering function—the latter being closely related to the density-

density correlation function studied above, i.e.,

0'(1{,(1)) = \/EI GOS(kJ(D) ) (19)

where E and E' are the energies of the incident and scattered neutrons, o, is

the neutron-nuclear cross-section, and where now

(20)

e
1
=
1
=
e
=

are the momentum and energy transfer variables. The scattering function is

defined to Dbe

s(k,0) = 2 [7 ate™ < n(-x,0)n(k,t) > . (21)

2nN - - - T

Here, N is the number of atoms in the scattering sample, and again we have ex-
plicitly noted that the scattering function depends upon the magnitude of k

only. The operator n(k,t) represents the number density in the liquid and is

related to p(z,t) by

15



Observing that

g@MOS(

S(k, -w) k,w) , (22)

we define a symmetrized scattering function by

G(k,w) = nN[s(k,w) + S(k,-w)]

wt

/ dte 30t < [n(-k,o),n(g,t)]+>T s (23)

Il
N =

where [ ], means anti-commutator. Using Eq. (22), we then find that

Aw/ 20
Sl Sech 22 a(x,0) . | (24 )

S(k,w) = = 55

It is the quantity, G, that we will calculate by the classical arguments dis-
cussed above.

Classically we have

< [n(-k,0), n(k,t)]; >

T
= 2 <n(-k,0)n(k,t) >,
=2/ d5x'd5xeiE.(§—§‘)< n(x',0)n(x,t) >T . (25)
But
< n(f_')o)n(éyt) >T
= I]I_lT < p(X',O)p(E,t) >T
= o < ¥ (x',00 (x,8) > (26)



50 that our symmetrized scattering function becomes
2
G(ka) = nT All(k:a)) . (27>

It is now merely a straightforward, though lengthy, manipulation to ob-

tain
gath l+a2x2
G(k,w) = 5 5 5 - (28)
(1-a3x" ) +x (au—a5x2)
In this formula we have introduced the notations
g = <n(-k,0)n(k,0) > ,
a; = [y(1+zy)-1l/y ,
2
ap = €Z/ylzy+(y-1)/7] ,
- 2 '
az = 7€ (1+2/y) ,
(29)
al, = vyez(1+1/yZ) ,

a5 = 7’65/3’:
e = 6/fc.k ,

x = fw/e .

It is important to compare this formula with the one obtained by Mountain.(B)
His solutions were tailored for light scattering. In such cases, k ~ 105 em~L
and hence y and Z are usuvally of the order of 1072, Furthermore, in the ex-
periment reported by Lastovka and Benedek,(u) the range of x was g 1079,
Under these circumstances, agxg, a5X2, and a5x2 are all negligible. Hence the

scattering function reduces to

15



gal’ﬁ 1

G(k,w) » 5

s (30)
l+a,ﬁx2

which predicts a half-width, in frequency space, for the central peak given
by

2
19 ~ X . (31)
aj h pOCp

This formula was verified in the experiment referred to above. The main point
here 1s that the half-width is proportional to the thermal conductivity and to
the square of the momentum transfer.

A strikingly different result obtains for the half-width in the event of

8

neutron scattering. In this instance, k > 10 , and the parameters y and Z are
of the order of 10° and 10 respectively for some liquids such as lead and

sodium. Here also the half-width is approximatable by (i.e., liquid lead and

sodium),
01 _ o 1,1
4 a)y AyeZ yZ
2
v & o 0% (32)
T AyeZ 71

Interesting points of comparison between (31) and (32) are that the relatively
high momentum transfer neutron-scattering measurements appear to be char-
acterized by central peak half-widths which are independent of (or at least
insensitive to; for (32) is, after all, approximate; and recall the earlier
remarks about diffraction narrowing) momentum transfer and thermal conductivity;

but conversely may be sensitive to viscosity.

16



Of course the formula (28) for the scattering function is hardly explicit
with respect to momentum transfer because of the factor, g = <n(-5,o)n(§,o)>T.
A separate calculation of this static density-density correlation function
will obviously, ultimately be required for the interpretation of angular
distribution experiments. However Randolph's measurements yield a substantial
amount of data for energy transfer at constant momentum transfer—sufficient
indeed to provide a rather interesting test of the theory at the present
level. Hence quantitative comparison with experiment will be with Eq. (28)
in which k = |E-B'|/h enters merely as another parameter. Actually, over
most of the range of the lead scattering data (excepting the range of momen-
tum transfers characterized by diffraction narrowing), Eq. (30) is just as
good with a) given in Egq. (32).

In Fig. 1 we have plotted the widths of the symmetrized scattering func-
tion (G(k,w) vs. w for constant k) as a function of k. The effect of dif-
fraction narrowing is clearly discernible —the minimum occurring at about
k = 2.1X108 em~l. Above k = 5x108 em™l it is seen that the widths are nearly
constant. Using for this constant value, x = .035, we calculate for a) = yeZ
a value of 28.6. Thus N = 28.6ﬁpocg/79 = 7.4x1072 poise; employing Co =
l.77xlO5 cm/sec, y = 1.1, pg = 10.6 gm/cm?, and @ = 8.63x10‘1u ergs. The
shear viscosity has been independently determined to be 2.58}(10'2 poise,
which implies a bulk viscosity, Ny, = n - E N> of 4.0x1072 poise.

3

In Fig. 2, we present a few graphs of the formula

G(k,0) = Gof (1+afx?) , (33)

17



for comparison with experiment. The curves have been roughly fitted to all
the data rather than depending on normalization at a given point. It seems
that the agreement is quite godd. However, it is seen that near the end of
the range of large engery transfers, the theory invariably predicts too much
scattering. We argue that this apparent systematic discrepancy at large en-
ergy transfers is iIndicative of a breakdown of the Markoffian assumption im-
plied by Egq. (7). In the next section, we show how relaxation of this assump-

tion can lead tb qualitative correction of this discrepancy.

18



IV. GENERALIZATION OF THE THEORY

The explicit form of Eq. (28) used for the above discussion of the half-
width of the central peak depends considerably upon the Markoffian assumption
implied in Eq. (7). Because of the narrowness of these peaks the half-widths
are determined in the region of small energy transfer—hence by the long time
behavior of the liquid. Also, we have seen some indication that the short
time behavior (region of large energy transfers) is not adequately dealt with
in the analysis so far.

In recognition of this difficulty, we now introduce a non-Markoffian de-

scription of liquid correlations by replacing Eq. (7) by

< Q(-k,t)8(k,t") > T £(t-t')D(k), (34)

where now f is an even function of the time which vanishes rapidly as |t-t'|
becomes large compared to memory times, and D is: a new reéalization of the dif-
fusion matrix. Though an explicit form for f is not needed for most of the

subsequent analysis, it is convenlent to think of it as

£(t) = = (35)

where T 1s to be appropriately chosen. Evidently, with this choice, we re-
capture the previous results in the limit as v (the memory time) goes to zero.

The expression for the correlation matrix, Eq. (6), now becomes

At) = [axf” aye™pe™ f£(trx-y) . (36)
(0] (o]

19



For compactness we no longer explicitly note the k-dependence of A,D, and M.

In order to find A(t) in terms of A(o), we must solve the following matrix

equation for D, i.e.,

We rewrite Eq. (37) as

Mt

e “Alo)e

Mt

and differentiate to obtain

t T ~
Lwdx L” dyeXMDeyM f(x-y),

MA(o) + A(o) = DX + XD,

where we have defined the matrix

X

fw axf(x)e XM

o)

Equation (39) is now modified to read

X (mao) +

and is then integrated from -

with the identification,

to t to obtain

Mr(o) + r(o)

O

=

* gxe XX Ao)

20

X
=X
e .

(42)



Equation (42) for D is of the same form as Eq. (10), and represents a general-
ization of Einstein's relation between the diffusion matrix and the mobility
matrix, M, to non-Markoffian processes. The matrix, I', which replaces A in
in Eq. (10) will be called the modified‘static correlation matrix. Many of
the results of the preceding sections will retain their form in the non-Mark-
offian description with a simple replacement of A(o) by I'(o).

Substituting (42) into (36) leads to

~

M r6) + rlo)e™M £(t-x)] . (L)

Alt) = é‘” ax[f(t+x)e"

This equation describes the time dependence of the dynamic correlation matri x
in the non-Markoffian case, and reduces to (8) when f(t) is a delta function.
The symmetrized scattering function is now calculated from the Fourier trans-

form of Ay; (recall Egs. (11) and (27)), i.e.,

a(k,0) = En%F(w)Re[(M-iwI)ij ryp (o)1, (45)

]

where F(w) is the Fourier transform of £(t).

We turn now to the task of determining the modified static correlation
matrix, I'. Again we make use of the requirement of time reversibility expressed
in Bq. (12). Entering (4&4) into (12) we obtain

J

f”dx[f(t+x) - eie-f(t-x)][(e'XMP(o))ij - eiej(r(o)e_XM)..] =0,
0 (46)

which will be satisfied for all t if



holds for all x. But, as noted earlier (Egs. (12) and (15)), Eq. (47) is

satisfied if
F(o)ij = eiejr(o)ij , (48a,)

(Mr(o))sy = eze;(r(o)i)y, (48p)

are satisfied. Hence Onsager's relations in the non-Markoffian case are the
same for the modified static correlation matrix as for the ummodified static

correlation matrix in the Markoffian case. Thus, as before

rlo)gy = 0, iA3, (49a)

Po)yy = % r(o); (4ov)
-1

r(o)ss = %g— o)y (49¢c)

Formula (44), together with the definition (40), can now be used to relate the

modified and unmodified static correlation matrices, i.e.,

Alo) = Xr(o) + (o)X . (50)
Inverting, we find that
Plo)y; = (2X33)7MAlo)1y (51a)
r(o)op = (2%pp)™ta(o)pp (51b)
P(o)gs = (2%35) " A(0)s3 (51c)

22



Also from (50), we find that

A(O)15 = XlBF(O)BB + P(O)l]_XBl = 2P(o)55X13 (52)

which is no longer zero as it was in the Markoffian case. In fact, from Egs.
(51) we .see that the relations among the diagonal elements of.A(o) have been
chenged by the non-Markoffian description. Clearly A(o)yp = Alo)sy = O ac-
cording to time reversibility és discussed earlier, and as can be seen from
Eq. (50) after a little manipulation.

It is interesting to note at this point that the diffusion matrix is also
diagonal in the non-Markoffian description of the liquid, as can be seen by
substituting (43) into (42). The diagonal elements are Dy} = O,

Dop = MpoI'(0)pp and D33 = M55F(O)55' Since D17 = 0, we again conclude that
the noise source in the continuity equation, i.e., Ql(g,t), is identically
zero. This observation leads to an interesting relation between the second
moment of the symmetfized scattering law G(k,w) and the static density-density
correlation function. Using the relation between the auto—correlation func-

tion of random process and its derivative, we find from (1a)

> ¥
pg <U(0)U(t) > = - 52 < plo)p(t) > .

If we evaluate this relation at t = 0, and express < p(o)p(t) > in terms of

G(k,w) we get
fﬁm G(k,aﬁa@dﬂ> = (Cok)g_/\.(o)22 .

=00

We can express A(0)op in terms of A(o)q; using (49) and (51) and finally obtain

23



2, 2
+00 Cok
I ek, w)efdo Cok X
~o0 7 X1
where X771 and Xpp are to be obtained from (L40).

Entering (5la) into (45), we calculate the symmetrized scattering function

to be
Glk,0) = g @) (54)
/7 ap(0)L()
where
L(w) = Rel(M-ioI)]}], (55)

and g(k) has been defined earlier in Eq. (29). We note that the integral of
G(k,w) over all w is proportional to g as required.

Formula (54) is, we believe, a new result for the symmetrized scattering
function for liquids. Because of its complexity (even given the explicit form
(35) for the memory function), and because we know of no experimental results
to test the explicitly non-Markoffian aspects of it, we have not explored it
quantitatively. However, one or two qualitative features are worth noting in
conclusion. Both formula (54), and the one obtained earlier in the Markoffian
limit, Eq. (28), exhibit the characteristic form of the convolution approxima-
tion—this in spite of the fact that there was no attempt to deal separately
with the "self" and "distinct" scattering functions. Furthermore, even the
elementary Markoffian result was seen to be in substantial agreement with ob-
servation over a large range of momentum transfers. Light scattering at low

momentum transfer verifies the dependence of half-widths on k? and thermal

2l



diffusivity; whereas neutron scattering at high momentum transfer appeared to
be in significant agreement with the prediction that the half-width is (above
the region of diffraction narrowing) in this case, independent of momentum
transfer and depends on viscosity instead of thermal diffusivity. We suggest
therefore that possibly the path outlined above might be a fruitful one along
which to press an investigation of the implications and range of validity of
the convolution approximation.

Another observation is based on the use of the formula (35) for the memory

function. Its Fourier transform is
- 2
Flo) = o TE/2 (56)

Suppose now we estimate values for the transport parameters, n and A, from
calculations in gas phase; and take a limit to the ideal gas by letting col-
lision cross-sections approach zero. We then find that Z and y approach in-
finity, and hence further that L(w) approaches zero like z=l.  In this limit,
the symmetrized scattering function simply becomes

G(k,0) + gf(w)/ [ duF (o)

~00

—<1>272/2
gre . (57)
Ve

-1/2

For the truly ideal gas we would require T = (m/@kg) = (ka)-l. For a

dilute, real gas, we might choose instead, e = (ka)"2+T%, where T, is a col-
lision time, i.e., the effective radius of an atom divided by the thermal speed
of the atoms. It is interesting to note that both of these characteristic

times generalize naturally to the liquid phase. The collision time retains
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its meaning in the liquid, whereas (ka)'l -> (Cok)'l, i.e., the time required
for a sound signal to travel the characteristic distance, k™. Thus we sug-

gest for the memory function appearing in Eq. (54%) the form

Cof 220
Flw) = e 2 (re+1/Cox”) . (58)

Whichever of these memory times is the larger will dominate in any given case.
In any event, for sufficiently large momentum transfers, the collision time will
dominate since it is probably not sensitive to k in this limit. In the lead
scattering case, for k = 3x108 cm™l, (Cok)'l = 1.8x10"M* sec. If we estimate

T. as R/VT, where R is the radius of a lead atom taken to be approximately

c
10'8 cm, and vip is the thermal speed of the atoms, i.e, Vip QXILOLL cm/sec; we
find, 7o ~ 5x10'15 sec. Thus, quite possibly, the dominant memory time in the
high momentum transfer range of the lead scattering data 1s the collision
time. Indeed it is observed in Fig. 2 that the break point corresponding to

Te (ef. the curve for k=4 for example) is about x = 0.15 which yields

7o = 1.2 1071 sec.
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Fig. 1.

Fig. 2.

FIGURE CAPTIONS

Central peak half-widths of half maximum as a function of momentum

transfer. The circled points are taken from Fig. 2.

The symmetrized scattering function vs. energy transfer for constant
k. The solid lines are theoretical, and represent graphical fitting
of the experimental data to the formula (1+aﬁx2)'1. Circles, crosses,
squares, and triangles are measured values taken from enlargements of
figures presented in Ref. (7) supplied us by Randolph. Note the

systematic deviation of theory (Markoffian) from experiment for

large energy transfers.
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