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Hydrodynamics and microphase ordering in block copolymers:
Are hydrodynamics required for ordered phases with periodicity
in more than one dimension?
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We use Brownian dynamid®8D), molecular dynamics, and dissipative particle dynamics to study
the phase behavior of diblock copolymer melts and to determine if hydrodynamics is required in the
formation of phases with greater than one-dimensional periodicity. We present a phase diagram for
diblock copolymers predicted by BD and provide a relationship between the inverse dimensionless
temperaturee/kgT and the Flory—Hugging parameter, allowing for a quantitative comparison
between methods and to mean field predictions. Our results concerning phase behavior are in good
gualitative agreement with the theoretical predictions of Matsen and Bdté4. Matsen and F. S.

Bates, Macromolecule®9, 1091(1996]; however, fluctuation effects arising from finite polymer
lengths substantially alter the phase boundaries. Our results pertaining to the hydrodynamics are in
contrast to earlier work by Grodtt al. [R. D. Groot, T. J. Madden, and D. J. Tildesley, J. Chem.
Phys. 110, 9739(1999; D. Frenkel and B. SmitUnderstanding Molecular Simulatior2nd ed.
(Academic, New York, 200d. In particular, we obtain the hexagonal ordered cylinder phase with
BD, a method that does not include hydrodynamics. 2@4 American Institute of Physics.

[DOI: 10.1063/1.1814976

I. INTRODUCTION In BCPs, phases with one-, two-, and three-dimensional

Increasingly, soft matter is being used to assemble nandreriodicity are observed. Examples are the lamellar phase for
building blocks into ordered structures. The ability to ma-one-dimensional periodicity, the hexagonal cylinder phase
nipulate matter on nanometer length scales may be importaffr two-dimensional periodicity, and the perforated lamellar,
in future technologies including but not limited to microelec- gyroid, body centered cubic, and face centered cubic phase
tronic applications, magnetic storage and optical devicedor three-dimensional periodicity. In this paper, we test the
drug delivery, and other biomedical applications. Diblock co-ability of Brownian dynamics(BD) to predict the correct
polymer melts(BCP9 may prove to be particularly useful in equilibrium morphologies of linear diblock copolymers and
the self-assembly of nanobuilding blocks because they thenexamine the argument proposed by Grebal? that hydro-
selves self-assemble into complex morphologies such adynamics is required for the formation of the hexagonal cyl-
sheets and cylinders as they attempt to minimize their freénder phase. In that, simulations of BCPs using time-
energy by aggregating with species of their own kind subjectlependent Ginzburg—LandadTDGL) methods without
to the topological constraint of being permanently bonded tdydrodynamics easily obtain the hexagonal cylinder phase.
the incompatible species. This constraint of being bound toHere we use BD to map theN vs f, phase diagram, where
gether limits the distance over which the constituents cari, is the relative block fraction of th& component, and then
separate and therefore provides a method to control the spacempare the results with the mean field predictions of Mat-
ing between two or more chemically distinct species. Lopesen and Bates. To date, the phase behavior of BCPs has been
and co-workers were able to use a polystyrene-block- studied experimentalfy/,theoretically using self-consistent
poly(methyl-methacrylatetemplate to self-assemble Au, Ag, field theory or mean-field theory:® and computationally us-

In, Pb, Sn, and Bi into nanowires due to the metal atomsng molecular dynamics(MD),%° discontinuous MO}
preferentially favoring one block over the other dependingMonte Carlo (MC),}>® dissipative particle dynamics
on the metal. Templin and co-workénssed the copolymers (DPD),** and TDGL? It has also been argued that hydrody-
(3-glycidyloxypropytrimethoxysilane to self-assemble namics play a dominant role in the ordering of BCPs, when
nanoparticles into cylindrical and sheetlike arrays. Computethey form phases with multidimensional periodicity as dis-
simulation will play an important role in elucidating trends in cussed below. To determine if hydrodynamics are required to
the use of soft matter as assemblers of nanobuilding block$orm ordered phases with greater than one-dimensional peri-
odicity we compare MD and DPD, which both include hy-
dAuthor to whom correspondence should be addressed. Electronic maigrOdynamiCS' to BD, which does not include hydrodynamics.
sglotzer@umich.edu One key advantage of BD as compared to mean-field theo-
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retical methods, lattice MC methods, and DPD is that ittween constituents on the same polymer chain. In all of the
readily lends itself to include geometric and topological ef-studies presented here, the block copolymers are modeled as
fects which may be significant in the phase behavior of rigidinear bead-spring chains dfbeads withN, beads of typ&
molecules or nanoparticles attached to flexible moleculeandNg beads of typeB. One way to include thermodynamic
such as BCPs, or where the geometry and topology play aimmiscibility is to use the attractive Lennard-Jor(&s) in-

important role in the local orderint. teraction potential between like species,
The role of hydrodynamics is not well understood in the 12 5
ordering of BCPs and it has been predicted through compari- UiLjJ(f)=46ij (i) - (i) T Uhj(rc)' r<r.
son of DPD to BD(Ref. 3 that hydrodynamics are important Fij Fij
for the formation of phases with multidimensional periodic- UiLjJ(r):o, r>re,
ity. Specifically, Grootet al. reported that BD was unable to (2.2
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form the hexagonally ordered cylinder phase. Since the onl . . . . .
difference between the BD and DPD methods used in thei%’herea is the diameter of a bead;; is the interaction pa-
study was the hydrodynamic interactions or lack thereof, i .
they concluded that hydrodynamics is required for the for-_z'sg’ and the purely repulsive Weeks-Chandler-Andersen
mation of the cylinder phase. They further argued that finite
size effects were the probable cause as to why MC, which ( 0)12
r'..

agonal cylinder phase in previous works, as there were only WCA b
several cylinders contained within the simulation cells Ui (r)=0, r>r,
nanoparticles, a hexagonal cylinder phase was found usinge minimum and shifted up to zero at thethe potential is
BD and a different interaction potential than that used bya\ays positive and thus purely repulsive.
number of cylinders to the systems they studied. In thgjme unit r=o+mle, wherem is the mass of a beady
Horschet al. system, the tethered particles act somewhat like— Oan=Tpp=0ag IS the diameter of a bead, and= e,
and particles _and their sgbsequelnt tendency to order subject Another way to consider thermodynamic immiscibility is
to the topological constraint of being permanently connectedy, consider only repulsive interactions between species
dynamics required for the formation of the cylinder phase inhan the repulsior, . between like specied:** An advan-
BCPs? tage of using purely repulsive interactions is that the cutoff
ordering and eliminate effects arising from the interaction;jme scales to be realized since fewer forces must be calcu-
potentials, we compare MD with a momentum conservingied.
stat, with both methods using an identical interaction potenmgdeled as either a finitely extensible nonlinear elastic
tial with a 1f*2 repulsive term. Additionally, we compare (FENE) spring or a simple Hookean spring
nonmomentum conserving thermostat, with both methods us-
ing an identical interaction potential with arf repulsive

h Gy (2.3
direct comparison between methods while avoiding compli- U™ = — *(r)?,

i i ; X ij Is the separation between consecutive beRgs,
the rest of this manuscript we will term the BD used in the _1 5, and is the maximum allowable separation between
MD/BD comparison to be “hard” BD because particles can-

X i o To identify whether hydrodynamic interactions are re-
and the BD used in the DPD/BD comparison to be “soft” o ireq for the formation of ordered phases with multidimen-
r2 potgntial. We also present results peﬁaining to .the phase‘], nonbonded interactiorf&gs. (2.1) and (2.2)], and com-
behavior of the copolymers as a function of relative blockpare DPD to soft BD, both with purely repulsive quadratic,

. 12 .
by BD with a 1< repulsive term. with each method is given in Table I. In the MD method,
Newton’s equation of motion is solved for each bead,

rameter between beadsand j, and the cutoff radiug .
(WCA) interaction potential for unlike specié&!®
. . WCA _
does not include hydrodynamics, was able to form the hex- Ui (r) =4ej;
studied:*** In work by Horschet al. on polymer-tethered \yherer =246 Here because the potential is truncated at
Groot and co-workers, on system sizes with a comparable  The natural units for the LJ systems ar@nd e with the
BCPs due to a thermodynamic immiscibility between tethers— €= €ap are the interaction parameters.

This discrepancy leads to the following question: Is hydroyhere the repulsiorm,g between unlike species is greater
To determine the role of hydrodynamics on microphasejisiance is typically small, e.g., 10 allowing for longer
thermostat to BD with a nonmomentum conserving thermo- | either choice, the connectivity between beads may be

DPD with a momentum conserving thermostat to BD with a )
rij K)
|
. . . . . Rma
term. Comparing methods with identical potentials allows a
cated mapping of the models being simulated. Throughoufnerer-
_ ; connected beads, akds the spring constant.
not pass through other particles due to the'4tepulsion,
BD because particles can pass through other particles via afjynq periodicity, we compare MD to hard BD, both with
fractionf, and the Flory—HuggingN parameter as studied 5nhonded interactions. A summary of the interactions used
mr| = Fi s (24)

Il. MODEL AND METHOD

There are two important features that must be captured
in any model of block copolymers. First, the model mustwhere m is the mass of the bead;=d?r;/dt?, r; is the
incorporate thermodynamic immiscibility between unlike position vector of bead, and F; is the conservative force
species and second, the model must include connectivity bexerted on beatby the surrounding beads. A Nose—Hoover
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TABLE I. Models used for nonbonded and bonded interactions in the foun\e use similar parameters as Gra-m)tal_,”' for like species,
methods investigated here. ajj=aap=ags=25%gT and for unlike speciesa;;=anp

Method Immiscibility Connectivity =app+3.27, for p=3. The natural units of the DPD and
soft BD systems are,=1.00 andkgT with the time unitr

MD LIWCA FENE =r.ym/kgT, wherem is the mass of a bead.

Hard BD LI/WCA FENE ) . — : . .

DPD Aps>ann Harmonic All simulations are initially carried out in a cubic cell

Soft BD apng>ana Harmonic with periodic boundary conditions. The time st&p used to
integrate the discretized equations of motion is chosen to be
At=0.01r for the MD/hard BD comparison and 0.94or
the DPD/soft BD comparison. The number density of the
thermostat is implemented to control the temperature of thtlD/hard BD simulations isp=0.850"2 and for the DPD/
system. In the Nose-Hoover scheme, the velocity and timeoft BD simulations the number densitygs- 3r§3. Systems
are rescaled at each time step to keep the temperature core equilibrated at effectively infinite temperature0 and
stant and it has been shown in a study of a binary fluid thasubsequently cooled to the target temperature in the
hydrodynamic interactions are includ&dThe implementa- microphase-separated region.
tion of the Nose-Hoover thermostat is outlined in Ref. 3.

In the BD method, each bead is subjected to conserva-

tive, frictional, and random forces”, F, andF}\ respec- ;| MAPPING TO FLORY—HUGGINS PARAMETER
tively, and obeys the following equation of motibh:
mi = Fic+ Fi|:+ FiR- 2.5 In order to compare the same state points among differ-

ent methods and also to compare the results to mean-field
The frictional force acts as a heat sink and is calculated usingredictions we determined the relationship between the in-
Stokes’ law relatiorF = — fv,= —6mazv;, where{ is the  verse dimensionless, system temperature, and the Flory—
friction coefficient,a is the bead radiusy is the viscosity, Huggins y parameter. Groogt al. provide this relationship
andv; is the bead velocity. The random fort?ée acts as a for the DPD and soft BD methods ugééh our simulations.
heat source and is calculated using the fluctuation dissipatioBelow we briefly outline the development of this relationship
theoremt? betweene/kgT and y for the MD and hard BD methods,
R Riwrsy , which closely follows the work by Groot and co-workers.

(Fi (DR ))=6kgTmes;; S(t—t"). (2.6 The general Flory—Huggins free energy expression for a
Together the frictional and random forces act as a nonmotwo-component polymer mixture is
mentum conserving thermostatand, therefore, for large
enough?, hydrodynamic interactions are not included in BD. ———=—Inf+ A
In this study, we vary’ between 0.517 * and 5.0n7~ 1. For KeT  Na Nag
these values we ran BD simulations of AfB binary mix-  where f, and fg are the volume fractiongalso the block
ture with the same interaction potentials used for the BCPSractions as in a BCP blendndN, andNg are the number
and observed late stage coarsening with an exponent of 1/gf beads in each\ and B block. For a symmetric system
This value indicates the coarsening is diffustveand thus (No=N3g) the free energy is minimized at a value pR,
hydrodynamics are suppressed with the valueg tfat we  given by®
use.

In the DPD method, unlike the previously discussed NA:m[(l_fA)/fA] (3.2
methods, beads are treated as fluid elements rather than hard 1-2fa

particles. That is, the beads are soft and can pass through T determine the relative solubility between spedles
each other allowing for large time steps and thus longer ti g B, we set up a simulation box of12.37X12.30rX 450

mesca_les to_be realized. As_in the BD method,_ bea(_js_in th&hich corresponds to roughly 6000 monomers where half
DPD simulation are also subjected to conservative, frictionaline monomers are of typd and the system density

and random forces{", F{, andFy", respectively, and subse- — 0 g5;~3. The initial configuration for this determination is

quently their trajectories are governed by ER.5. HOw-  gych that all theA type monomers are contained in one half

ever, unlike in BD both the random and frictional forces actyf the pox and thed type in the other half, thus creating an

in & pairwise manner and thus obey Newton's third law, conjnterface between the different monomer types. A value for

serve momentum, and include hydrodynamics. Details of thig/, T is chosen and the simulation is run until the potential

method can be found in Refs. 22 and 23. In the DPD simugnergy reaches a steady state. At that point, data is saved for

lations the conservative force is purely repulsive and is givenc 1¢f time steps and the concentration profile is averaged.

by The concentration profile is then plotted as a function of the

(1=1)F < x coordinate, the long dimension of the simulation cell, and

c alj(l rlj)rljl rlj 1 . . .
i=1o =1 (2.7 the value of the con.cent'rat'lon corre'spondlng to the region of
oo constant concentration is inserted into E8.2) (see Fig. 1

wherea;; is the maximum repulsion between beadmsdj, for a representative concentration profilé value of y is

rij is the distance between the beads, &pdls a unit vector then calculated. Note the value fd, is unity for single

in the direction of the line of centers between beadsdj. beads, as used for this excercise. This procedure is per-

IN(1—fp)+xfa(l—1p), (3.2
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FIG. 1. Concentration profile ok/B monomer mixture as a function of the FIG. 3. Phase diagram of a block copolymer melt obtained via hard BD

x coordinate in a simulation cell of 12:%12.30 X450 with N=5760, p simulations forp=0.85s"2 (see Table)l Simulated state points from hard

=0.850"3, e/kgT=0.5, andt~10°7. BD are filled circles, the dashed lines are the predicted phase boundaries,
solid lines represent the phase diagram as predicted by Matsen and Bates for
infinite length polymer chains, and the unfilled triangles are state points

formed for several other values afksT and the results Predicted using MD.

plotted, providing a relationship betweea/kgT and y
(Fig. 2. . , . . .
We find there is a linear relationship between the energ;l/nsert'ng Eq.(3.3) into Eq. (3.5) provides a relationship be-

parameter and the Flory—Huggins parameter given explicitl§weenf/kBT and the effective FIory—Hugglns parameter that
takes into account the small chain lengths used in our simu-

b
Y lations,
xN=[9.48=0.11) e/kgT—0.09|N. (3.3
: . . [(9.48+0.1D)e/kT—0.09N
However, because we are simulating rather small polymers it (yN)z~ . (3.6
i ions i 1+3.9N70"
is necessary to account for the effects of fluctuations in the

chain length. We use the Ginsburg parantetedd  Equation(3.6) allows for a quantitative comparison between
=6%(R3pgcp)’ to calculate the effective polymer length, our simulation results and the Matsen and Bates phase
whereRy is the radius of gyration anplgcpis the BCP num-  diagram?* which was calculated using mean-field theory.

ber density. Fredrickson and Helfand predicted that the For the DPD and soft BD simulations we used the map-

order-disorder transitio{ODT) for finite length polymer ping determined by Groot and co-workers,
chains is given by
(aag—aan)(0.306+ 0.003N

1+3.9N7 0%

(xN)opr=10.5+ N3 (3.4) (XN) e~ (3.7

Since the above equation assumes Byascales as the num-

ber of statistical segments to the one-half power, we musfy RESULTS AND DISCUSSION

apply the correct scaling. By performing several runs with ) ) )

polymer lengths ranging fromi=5 to N=10 we see that For BCP melts we examine two issues. First, we address
Ry~N?, wherev is 0.69. This scaling, along with the weak the phase behavior as a function N and block fraction
coupling calculations of Fredrickson and Helfand and thefa. Here BD is used to map the phase diagram of diblock
Ginsburg parameter, results in the following effective Flory—copolymers. Second, we address the role of hydrodynamics

Huggins parameter(N) o :** to determine whether hydrodynamics is required for the for-
mation of the hexagonally ordered cylinder phase.
xN Using hard BD, we studied both symmetric and asym-
(XN)er~ 1439\ 07 (3.9 metric block copolymers for relative block fractions bf

=0.1, 0.2, 0.25, 0.3, 0.4, and 0.5 and observed disordered

micelle “M,” hexagonally ordered cylinderH,” perforated

lamellar “PL,” and lamellar “L” phases(see Fig. 3. When

we account for fluctuation effects due to the small polymer

size, we find that for symmetric copolymers the order-

. disorder transition occurs at a value ofN)opt of roughly

T (11.37£0.9), slightly higher thanyN=10.5 predicted by

] Leible® using mean-field theory. However, the difference be-

i tween the theoretical and computational values falls within

the error of they mapping toe/kgT. For symmetric block

copolymersAsBs (f,=0.5) only the lamellar phase is ob-
L ! L L served for values ofN).¢ greater than the ODT tempera-

LE O‘LkBTO"S 07 08 09 ture, as predicted by Leibl&rAn example of the lamellar

morphology for (N).=52.7 is shown in Fig. @). As we
FIG. 2. x vs e/kgT mapping forA/B monomer mixture. increase the degree of asymmetry in the BCPs, we see the
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phase when quenched directly from a disordered state to the
target (yN)gi. It is not entirely clear if the PL phase is a
stable phas@ or if this phase is stabilized from the gyroid
phase by the finite simulation size. Neither self-consistent
nor mean-field theories predict the PL phase; however, it has
been experimentally obsen/@dand has been predicted by
other computational works:** As we further increase the
asymmetry, for a fixed value ofyf\).s, we see the forma-
tion of hexagonally packed cylinders &=0.1, 0.2, 0.25,
and 0.3. The morphological evolution of the system as it is
cooled from ((N)=36.8 to (YN)=57.9 for f,=0.2 is
shown in Fig. 5.[The corresponding cooling process is
shown in Fig. %a).] As still more asymmetry is introduced
for a given (yN).¢, we see the formation of disorderddl

We compare the phase diagram obtained by hard BD to those
of Schultzet al,'! where they used discontinuous molecular
FIG. 4. Lamellar and perforated lamellar phases obtained via MD and har@lynamics and a box search algorithm to study block copoly-
BD simulations withN=8000 andp=0.85"°. (a) Lamellar phase ob- mer phase behavior, and find good qualitative agreement

tained using hard BD with ¥N).z=52.7, f ,=0.5, andt=6000r. (b) Per- : : : : !
forated lamellar phase obtained using hard BD wijfNj.=21.1, fa with their studies, hoting that we also find thePL, andH

=0.4, and t=21000-~. (c) Lamellar phase obtained using MD with pha;es for block copolymers of length=10 for a VOlumel
(XN)e=52.7, fo=0.5, andt=9000r. (d) Perforated lamellar phase ob- fraction of $=0.45. However, we see a narrower PL region

tained using MD with §N)es=21.1,f,=0.4, andt=18 000r. and a broadened hexagonal cylinder phase. Compared with
the mean-field theoretical predictions of Matsen and Bates

we find that the cylinder phase is shifted to more asymmetric

development of the perforated lamellar phase for values ofyqy fractions and is broader. We note that we observe no
fa=0.4 and 0.3 where increasing asymmetry requires debcc and fcc cubic micelle phases. The absence of these

creas;}ngl; the ttt)atmpe[jatutre o S_‘t?l/ thhldnf tTSO T\_aser.] The thases are likely a result of the small polymer lengths used
morphology oblaine aN) e = - ANdEA= LA IS SNOWR - 4 e simulations. Here the fluctuations in polymer length
in Fig. 4(b). To facilitate the formation of equilibrium struc- may be too great to observe phases that have been predicted

tures with multidimensional periodicity such as the PL ) L .
) o o . ) by mean-field theory to exist in only a very narrow window
phases, sequential cooling is applied in the simulation, seé

Fig. 5(a) for an example of one cooling curve. This is differ- of the phase diagram. Schukt al. also did not observe, for

. short polymers oN=10, bcc and fcc phases but for poly-
ent from the symmetric BCPs that form only the lamellar
y I y mers of lengthN= 20 they observed the bcc phase.

To avoid metastable structures due to local minima trap-
ping, we ran several simulations each starting from a differ-
ent initial configuration and for several different box sizes as
well. Specifically, we ran nine independent simulations for
f,=0.5, seven independent simulations far=0.2 andf,
=0.3, and four independent simulations fbx=0.25 and
fo=0.4, all for N=8000. We also simulated systems Iéf
=8000, 13000, and 20000 fégp=0.2, 0.3, and 0.4 as these
are regions with multidimensional periodicity. The periodic
spacing of the equilibrated structures and the potential en-
ergy per bead were then compared for the hexagonal cylinder
phase forf,=0.2, andN=8000, 13000, and 20000, see
Table Il. We further ran three simulations using the box
search algorithm(described beloy for f,=0.2 and N
=8000, for a noncubic simulation cell of 1&®18.2»r
X28.70, and calculated the periodic spacing and the energy.
The periodic spacing and the potential energy per bead is
statistically the same for each of these systems and is sum-
marized in Table Il. To calculate the periodic spacing be-
tween cylinders we find a vector equation of the faxmb
FIG. 5. Morphological evolution for hexagonal cylinder phase obtained+ cr for each cylinder, wherg is the vector passing through
}N“h h;_fthD simulationN =13 000 ancb:0-850c;_3- (3) C0d0””9 schedule  pointb, a point that lies in the cylindeg is a scalar and can
L%@_S"?A;ggf’jsé‘if;803_@8) tﬁgsgffzteﬁi[jbeerestrj;?;‘:;(‘(s;:g take on any value, andis a vector describing the direction
=57.9, f,=0.2, andt=10900-. (d) Hexagonal cylinder structure at Of the cylindrical axis. We then calculated the distance be-
(xN)=57.9,f,=0.2, andt=30 00Cr. tween all beads in a specific cylinder and all beads within its
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TABLE Il. Spacing between cylinders for hexagonal cylinder phase obtained using hard BOF pwth.2.
(xN) is the effective Flory-Huggins parametétis the number of beads,is the spacing between cylinders
in units of o, and the potential energy per bead is in unitkgrf.

Simulation cell N est N d(o) Energy kgT)/N
Cubic 57.9 8000 8.640.3 13.770.04
Cubic 57.9 13000 8.680.32 13.75:0.06
Cubic 57.9 20 000 8.570.2 13.770.02
Noncubic 57.9 8 000 8.620.19 13.780.01

neighboring cylinders using the following expression for thethe evolution from a disordered state to a transient connected
distance between a point and a line: tube state, and then finally the formation of the hexagonal
cylinder phase. Figuresd and 7b) shows examples of the
, (4.0  interconnected tube state and the hexagonal cylinder phase.
| (xz=x1)] For the DPD systems we performed three independent simu-
whered is the distance between any point and the line delations for system sizes d1=8000, 13824, and 27 000 for
scribing the cylindrical axisx, andx, are points on the line €ach N)e listed in Table Ill. We then ran identical systems
describing the cylindrical axis, anxj is the position of the in the soft BD simulations and again find the formation of
bead. The distances are then averaged over all beads withiie hexagonal cylinder phase. Here we also observe the evo-
the two cylinders being tested and the average value of thkeition from a disordered state to the interconnected tube
spacing between all neighboring cylinders is then the peristate, and finally the evolution to hexagonal cylinders see
odic spacing between cylinders. Figs. 7c) and 7d). We also point out that the number of

The box search algorithm used here was developed bgylinders in the largest DPD and soft BD simulations is ap-
Schultzet al?” and allows the simulation cell to change the proximately the same number of cylinders as in tKe
relative length of the rectilinear coordinate axis based on the= 13000 bead systems simulated using MD and hard BD,
internal pressure. The box search algorithm seeks to miniand that these are very similar to the system sizes reported in
mize free energy subject to the constraint of constant volthe work by Groot. To this extent we demonstrate the forma-
ume. Note that in the noncubic cell the cylinders are paralletion of the hexagonal cylinder phase for methods that possess
to the coordinate axis. The above tests provide strong supg lack hydrodynamic interactions for two different interac-
porting evidence that our systems are large enough to avoiden potentials. Our observations do not, however, explain
finite size effects pertaining to the equilibrium morphology;
however, we cannot conclusively argue that there are no fi-
nite size effects on the dynamical process. We can argue,
however, that our systems are of the same size or larger than
those of Groot and co-workers in the number of cylinders
formed within a simulation cell and that in contrast to their
work we see the formation of the hexagonal cylinder phase
for methods that exclude hydrodynamics.

To further investigate the role of hydrodynamics, we
compare the hard BD results to the MD results. We see that
for the same parameters the morphological evolution from
the disordered state to hexagonally packed cylinders is es-
sentially the same for both the hard BD and MD simulations
as shown in Figs. 5 and 6. In particular, both pass through an
interconnected tube state before finally forming the hexago-
nal cylinder phase. The results for several simulations at dif-
ferent values of {N) .4 andf 5 are listed in Table Il and are
shown for MD as different symbols in Fig. 3. We see from
Table 11l and Figs. 3, 4, 5, and 6 that for the same conditions
MD and hard BD both produce the same final structure irre-
spective of the presence or absence of hydrodynamic inter-
actions.

To ensure that our findings for the MD and hard BD are
not dependent on the interaction potential we now comparélG. 6. Morphological evolution of hexagonal cylinder phase obtained with
the results of DPD and soft BD simulations. Again fior MD simulation, N=13 000 andp=0.85"3. The cooling schedule is the

. . ame as Fig. @). (a) Disordered state, \N).4=36.8, f,=0.2, andt
=0.2, 0.25, and 0.3 we see the formation of the heXagonaﬁ:?OOOr. (b) Interconnected tube structureyN)e=57.9, f4=0.2, andt

cylinder phase at ¥N)=57.9, (¥N)er=31.4, (YN)es =10000r. (c) Hexagonal cylinder structure agK)¢s=57.9,f,=0.2, and
=23.7, respectively, for the DPD method. Again we observe=30000r.

d— [(X2=X1) X (X1 —Xo)]
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TABLE lll. System parameters and phase morphology for comparison between MD and hard BD and between
DPD and soft BD. gN) is the effective Flory-Huggins parameté\;, is the polymer lengthAt is the time

step, t the simulation time wherer is the simulation time unit, and, is the relative block fractior{or,
equivalently, volume fractionof speciesA.

Method O¢N) efr Ny, N At* t fa Phase
MD 57.9 10 13 000 0.01 ~10*7 0.2 hex cyl
MD 31.4 8 13000 0.01 ~10%r 0.25 hex cyl
MD 23.7 10 13 000 0.01 39107 0.3 hex cyl
Hard BD 57.9 10 13000 0.01 ~10*r 0.2 hex cyl
Hard BD 31.4 8 13000 0.01 ~10*r 0.25 hex cyl
Hard BD 23.7 10 13000 0.01 3010 r 0.3 hex cyl
DPD 57.9 10 27 000 0.04 ~10%r 0.2 hex cyl
DPD 31.4 8 13824 0.04 ~10*7 0.25 hex cyl
DPD 23.7 10 27 000 0.04 3:010*r 0.3 hex cyl
Soft BD 57.9 10 27000 0.04 ~10%7 0.2 hex cyl
Soft BD 31.4 8 13824 0.04 ~10*r 0.25 hex cyl
Soft BD 23.7 10 27 000 0.04 L5107 0.3 hex cyl

why our results differ from those of Groet al,® who were Finally, we note that, upon comparing MD to hard BD,

unable to obtain cylinders with soft BD. One possibility is we observed no appreciable difference in the number of time
that our friction coefficient while large enough to suppresssteps required for the formation of the hexagonal cylinder
hydrodynamics in late-stage coarsening of a mixture, is smajphase. This was also true for the DPD/soft BD comparison
enough that a flow field persists on the length scale of théor f,=0.2 and 0.25. However, for the three independent
periodic spacing between cylinders. However, since the fricruns performed fof ,=0.3 andN=27 000, in the DPD/soft
tion coefficient used in our study is larger than that used irBD comparison, we observed the longest time required for
the Groot study, our flow field should have a smaller characthe formation of the hexagonal cylinder phase using DPD to
teristic length, and consequently even less of a hydrodybe 30006, while for soft BD we saw the formation of the
namic contribution. We can therefore confidently rule thishexagonal cylinder phase at 8000014000@, and

out as the cause of the discrepancy. Thus we conclude th&60 00G~ While a detailed comparison of the relative effi-
the observed hexagonal cylinder phase is robust and thatency of these methods is outside the scope of the present
hydrodynamic interactions are not required for the formationwork, this may provide some useful information.

of phases such as the hexagonal cylinder phase with greater

than one-dimensional periodicity. V. CONCLUSIONS

We performed MD, hard BD, soft BD, and DPD simu-
lations of a BCP melt and have investigated jig vs fa
phase behavior and the role of hydrodynamics in the mi-
crophase ordering process. Our BCP phase diagram is pre-
dicted using hard BD or MD and is in good qualitative agree-
ment with those predicted by Schulit al. using hard
spheres. We find thex(N)opt to be in good quantitative
agreement, within error, to the theoretical predictions of
Leibler when we adjust for finite chain lengths. Also, the
order-order transitions are in good qualitative agreement
with theory but are quantitatively different. We note the ab-
sence of the gyroid phase and the presence of the perforated
lamellar phase in regions where the gyroid phase may be
anticipated. The reason for these differences most likely lies
in the relatively short polymers used in this study as the
theoretical predictions are for infinite length polymers.

We developed a relationship between the Flory—Huggins
parametelyN and the LJ parameterkgT and directly com-

FIG. 7. Morphological evolution of hexagonal cylinder phase obtained uspared MD, which includes hydrodynamics, to hard BD,
ing DPD and soft BD simulations witiN=27 000, f,=0.3, andp  Which does not include hydrodynamics for the say¢
=3.0;°. (a Interconnected tube structure obtained using DPD with value. We saw the formation of an interconnected tube state
=1000r and (xN)es=23.7. (b) Hexagonal cylinder phase obtained using e route to the hexagonal cylinder phase that was realized by
DPD with =30 000 and (¢N)er=23.7. (c) Interconnected tube structure both methods irrespective of the inclusion or lack of hydro-
obtained using soft BD with=1000r and (yN)es=23.7.(d) Hexagonal .

cylinder phase obtained using soft BD with-15000G and (yN),; ~ dynamics. We also note that both methods produced the per-
=23.7. forated lamellar phase further demonstrating that hydrody-
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