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SOME CHARACTERISTICS OF THE
THERMAL, NEUTRON SCATTERING PROBABILITY

R. K. Osborn

An explicit form for the function representing the probability
that a neutron with velocity, v' shall be scattered into an element of
volume in velocity space, div about v, by elastic collisions with atoms
of arbitrary mass number, A, in a Maxwell-Boltzmann distribution char-
acterized by a temperature, T, is derived. Analytical representations
of this probability are presented for scattering cross sections which
are either independent of relative speed or exhibit a Gaussion depend-
dence. The scattering probability resulting from the former assumption
is examined in some detail, and then employed in a calculation of the

mean energy change per collision.



SOME CHARACTERISTICS OF THE
THERMAL NEUTRON SCATTERING PROBABILITY

R. K. Osborn

The problem of formulating an internally consistent treatment
of the neutron distribution in space and energy in finite systems re-
duces ultimately to the problem of solving in some approximation the

transport equation:

veva(zr,v) + 2, vn(r,vy) = S(r,v)

+ \/P Lg (v') v'n(x,v') P(v' »v; T, A)d5v' . (1)

Clearly an attack upon this problem can proceed no further than the
mere statement of it until at least some of the properties of the

scattering probability,

P(v' »v; T, A)adv (2)

have been delineated. The parametric dependence of this scattering
probability upon moderator temperature, T, and mass number, A, is ex-
plicitly indicated.
It is the purpose of the work reported herein to:
(a) Obtain an explicit representation of this
scattering probability based upon the assump-
tions that the moderator speed distribution

is of the maxwell-Boltzmann type and that the
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scattering cross sections belong to a restricted
class.

(b) Indicate some potentially interesting calculations
which might be carried through more or less straight-
forwardly given an analytic form for the scattering
probability.

The derivation of the scattering probability follows a pro-
cedure initially outlined by'Jaffe(l). An appropriate starting point
may be taken to be a conventional(g) formulation of the rate/cm5 of
scattering of neutrons from all possible initial velocities into a par-

ticular element of volume in velocity space,

f n(r,v') d5v‘|x'-V‘lcs(lv’—V'l, o) aen M(V') SE AN (3)

Y_Y}glk

where primes indicate pre-collision variables. We have defined

3

n(r,v') dBV'dBT = number of neutrons in d”r about r with velocities in
adv' about vHM(VY) a2V = number of scattering atoms/cm5 with velocities

in d9V' sbout V; (presumed constent in space); o (Lv'-vr1, Q'k) aQ'y =

differential scattering cross section for neutrons scattered into an ele-

ment of solid angle dQ'k measured in the center of mass coordinate system.

The integral (3) requires some interpretation, and this is facilitated -by

examination of the schematic collision diagram illustrated in Figure 1.



Only elastic collisions are here envisaged. A coordinate trans-

formation is now performed in the integrand of (3); i.e.,

{.v_s v; g'k} 5 {z'; v, Q'R} (1)

The integral now becomes

|V' Q'
n(r,v') R' o (R', Q%) M(V') J (X_’_—__’_-__li_)dSV'dQ. a3v
=)— - v'. v. Q' R
v',Q! -’ =""R
VMR
= d3v\/p n(r,v') vy Zé (v') P(x' »v; T,A), (5)
vf
where we have defined
L, (v') P(y' »v; T,A)
R’ v, &
= f 1 % R', 2'g) M (V') J C-V;—j._ﬂ—'; ae's (6)

The evaluation of the Jacobian is straightforward but laborious(l).

One obtains

v, Q’lk> 1
J | S——— ... M s
<§; ' [28 cos 713 (")

where the mass parameter B and the angle 7y are defined in Figure 1.
The relative speed, R', is related to the initial and final neutron

velocities and the center of mass scattering angle, 7, by

Ro- —k (8)

2B cos 7y
where again the vector k = v = v' 1s illustrated in Figure 1. Also,

from Figure 1, it is easily shown that



2
2 2 k 2 kv'
Ve = v'< + - Ccos cos
(2B cos 7)< 2B cos ¥ [ 7 ¢
+ sin 7 Sin¢ cos (QR, - @v,)} s (9)

where the angles @R, and P are appropriate azimuths for the vectors
R' and v' measured relative to an arbitrary fixed coordinate system.
If now we make the not very restrictive assumption that the differential

cross section depends only upon the polar angle of scattering, y; and

observe that

t

cos £ = X——;—Xﬁ (10)

where p is the cosine of the neutron scattering angle meas-
ured in the laboratory cocordinate system; we see that the azimuthal in-

tegration for (6) may be readily perfOrmed(S)o The result is

2s (v') P (x' »y; T, A)

2nNsC  k -hD J(ihB)Sinydy
= = gs (v,v' Je © 11
(EB)I ! s ( sV, 7 00847 ) ( )

where we have defined

Ns = total number of scattering at@ms/cm3,
¢ = (n/x)3/3,
h = M/2kT,
D = v'@ 4 k2 _ kv' cos €
(28 cos 7)? B
B - kv' tan ySin € , and

B

JO(X) = the zero order Bessel function of the first kind of
argument X.
It is to be noted that the cross section depends upon v, v',
and p only through its dependence upon relative speed. TFor isotropic

scattering in the center of mass it assumes the form
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k
0, = O <§E—Eag—;> L cos 7. (12)

More generally, the cross section is

o, (R', ©)Sin ® d0

where @ is the conventional C of M scattering angle. Thus if this be ex-
panded in the usual series;

os (R', ®)Sin & 4o

£
0’

(v,v',u,7)8in 7 4 7. (13)
A form for the scattering cross section that has been found use-
ful in the thermal range(u) is
npRve
o (R",7) = [og + oype ] 4 cos v, (14)
where dg, oy and p are constants to be fitted to the data. We will assume

this form in what follows. Thus in the new coordinate system
2

-p(2B cos 7)
o5 (v,v',p,7) = [og + ope ] 4 cos y (15)
and 2 (v') P (v' -»v; T,A) = Zéo PO(X' -»v; T,A) + Zbl Pi(v' =»v; T,A)
(16)

where

Z%o - Nsco’

Ly = Ngop;

and hence



Py (v' »v; T.A)

2

) (26 ( > % i e so(in)stny ay

1
o053y (17a)

P, (v' —»v; T,A)

-hD-p.R'2
_ < ‘> \/% e Jo(ihB)Siny dy (170)
(EB cosdy

At this point we introduce a further variable transformation;

E = tan 7.
Then if we define
X, = g2 _kv' cos €& k22 ,
B (2g)
K_']_ = hkg/ (25)2 )
X, = X, +pk°/n (28)%

K, = Ky +pk°/ (2)2, and

0 _ hk v'!Sin g
B J
we have

Py (v' —»w; TA)

) _EEYE <, ,) %' 2Ky (18a)

and
Py (¥' »v; T,A)

" (28)F \ x v 2Kp '

Formulae 18a,b provide us with explicit representations of the scattering
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kernel for the thermal region for a fair range of interesting cases., It
should be noted in passing that the mass parameter, M, may be adjusted(h)
in a given case to account at least partially for moderator thermal dis-
tributions for systems characterized by more degrees of freedom than those
of pure translation.

The detailed discussion of the scattering probability, (18)
that follows will be predicated upon the assumption that 0 = 0; i.e.,
that the scattering is isotropic in the center of mass and that the cross
section is independent of the relative speed.

Returning to (18) and recalling (16) we see that

r -hX
. . 4 ‘h e
PO on Y = 2 UL T <Z‘s0/zs(v')>, (19)
where 5
X (v,v') = &2y iﬁj!%_ (v2 + V’E) + 2 —E:gé vovy'
P (28) (2p)
Loy (e ) (20a)
(v2 + v'2 - 2vev!) ’
2 ) 2
X (v,k) = L@'QLKEUEMVok+<X°5> , (20b)
T (2p)2 2 7 7 k
2 'e le 2
X (v',k) = (22)2 + XBK' +<Y-k5> . (20c)

This function is presented in a variety of forms; since, depending upon
the nature of a given calculation, one rather than the others may be
particularly appropriate.

The effective scattering cross section, 2g(v'), for the case

considered herein is defined to be
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L(v) - f 1y-V1 < >3/2 e-hV2 By

v
2
-hv'!
=lmzso[e +/l+ 1 >erf(\/_hv]
JEE v! 2hv'!

1]

Yoo Qv?) . (21)

Thus in this instance

P (v' »v; T,A) = lj — (22)

It is a stralghtforward matter to verify that the normalization of P is

such that

f P (v' -»v; T,A) Pv o= 1 (23)

v

Another noteworthy property of the scattering probability
follows from the observation that for neutrons in thermal equilibrium
with their environment - hence distributed in velocities according to
the Maxwell-Boltzmann law - the number scattering into d5v per cm3 per

3

sec must equal the number scattering out of d”v per cm5 per sec; i.e.,

nv Zéo,QdBV = \/F Zéo Q'vn' P (vt »v; T,A) v v s

which becomes

- % h v - g hv'e
e Jf (e v Q') P (V' -v; T,A)dv', (2k)

e hv2

That e B v Q@ 1is indeed an eigenfunction of P is most readily
demonstrated by employing the form (20c) for X and then transforming

the variables of integration according to
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vi oy -k
and vt - adk,
In order to exhibit the comnection between the scattering pro-
bability as presented herein and the varicus forms of it that have been
employed elsewhere for special purposes, it is convenient to expand it

in the following manner:

o0
N 24+ 1
P (y_? -V T)A) = Z/ __ﬂ__g____ Pz(ue) Pz(V')VJT;A); (253)
£=0
where
Mo = cos (X')X) ) (25b)
and 1
P,(v',v,T,A) = f P, (uo) P (v' »v; T,A) duo. (25¢)

-1
We ncte firstly that Pg(v',v,T,A) is the appropriate scattering probability

for the infinite, homogenecus medium. The form of this function was first
exhibited explicitly by Wigner and Wilkins(5), and may be readily repro-
duced rere by direct integraticn of (25¢).

The higher modes of the scattering probability are explicitly
defined by (25c), but not in a form convenient for analytical investigation.
They are cbtainable approximately, however, in a form that somewhat illumi-
nates the manner in which thermal motion begins to induce modifications in
the near epithermal region. The approximating technique is essentially that
of steepest descent and may be sketched as follows. Recalling eqn. (22),

we have
1

' 1 h 1 -hX
Pﬂ(v sV T,A) = Eg ,/F; —rY Q%g Pﬂ () e . (26)
-1

Expand
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X (o) ¥ X (poghtlpmgy)® X (o) /2

where the pg4 are the physically significant roots of

X'(no) = D S

OHo

There are two such roots and they are

A+l V! A-1 v . A+l
o= 22 Y A2 Y oyrcy < v! 27a
oo = Al v _ AL ¥Rl ov ey <yt (27v)
2  v! v A+1 -

Assuming sufficient peaking of the Gaussian in the integrand so that

P, (Mo)/k may be evaluated at the roots, p,; and Mgp» One finds that

@1)? REEF-Y 0 aa
' v + AN -2 v/ . -
Pz(v ,v,T.A) = n —— v v <v<v!

5 AL v'  A-1 v, .- A(vE-v'®)
~  (A+1) Py~ v — 7 e A

il

(28)

A%

0 otherwise.

In the limit as th' becomes large, the portion of this result appropri-

ate for an infinite, homogeneous medium reduces to the usual one for the
fast region; i.e.,

2
P (A+1) A-1
2t Po(v',v,T,A)v" = 5h ;¥2 ;

0; otherwise, (29)
since

Lim Q' —>hﬁ.

Vhv'= o
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Furthermore, since Q' is an increasing function of decreasing JL v,
it is seen that the initial modifications in the scattering probability
are a decrease in the probability of scattering down in speed and an
introduction of the possibility of scattering up.

Finally, a parameter of potential interest in the investigation
of the thermalizing process, which is explicitly accessible here, is the
mean energy of neutrons after a collision; or equivalently the mean energy
loss per collision, in the thermal range<6). If we define < Ef >Rt to be
the mean final energy of neutrons scattered at an energy E' , then

<Ep >, = P (v'->v; T,A) Ov (L w?) . (30)
f E L 7Y P) 5

v

The evaluation of this integral is tedious but straightforward. The result

for the mean energy loss per collision is

E' - <Ep> ,6 = 20B B + BKL (@ - 4g) e
E AV
w - - -—1;;_ a
o [CRR R ER R DR Tl B (512)
where
¥(y) = e-y+L2Jy+ -l-} Wy) (31b)
Jy
and J&- ,
y(y) = f e dax; y = AE'/KT. (31c)
o

It is observed that

' La-1
Lim [E' - <Eppi] »2aBE - kT =0y
y—-)oo f>E B (A+l)

(32a)
-2QaB E’'
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. LAKT

Lim [E' - <Ep >p,] »- +—%5 (32p)
The result embodied in (32a) is the same as that obtained by invoking at
the outset the assumption that the struck particles are at rest before each
collision; whereas (32b) implies that neutrons whose energies are small

compared to thermal gain energy on the average in each collision; as,

indeed, must be the case.



(2)

(3)

(%)

(5)
(6)

(7)

REFERENCES

Jaffe, G., Phys. Rev., 88, 603, (1952).

"Mathematical Theory of Non-Uniform Gases", Chapman, Sydney and
Cowling, T. G., Second Edition, Cambridge, England, University
Press (1952).

See for instance: "A Treatise on the Theory of Bessel Functions',
Watson, G. N., Second Edition, New York MacMillan Co., (19kk),
for the evaluation of this and subsequent angle integrals.

H. D. Brown and D. 5. St. John, Savannah River Operations,
(Unpublished).

E. P. Wigner and J. E. Wilkins, Jun., AECD-2275.

E. R. Cohen, Proc. of the International Conference on the Peaceful
Uses of Atomic Energy, 5, page L408.

This result has also been obtained by A. C. Zemach and R. J. Glauber,
Phys. Rev., 101, 118, (1956).



a3y
[
/N
Lffz-z’\7/ \\\\ /@},Eﬁ/lkl
A -
AN Lo\ \/\/’/dﬂ"
Q| ) [
y A
g (' \\ ®\ //\\z'rr—G)
{ Y2 R'=V'-v
7 | \
\ 3
\ \ I acv
R
| \
o
.
v' \
\ 14
\ / ,
)
L/ Qp=zFr'/|RI
\ / © = SCATTERING
1" ANGLE IN C OF M
I/ a=m/(m+ M)
BEM/(m+M)

Fig. 1.






