ONE-DIMENSIONAL PLASMA MODEL

physics, the results strongly support their validity.
The only result that deviated from the theoretical
prediction was that for the drag on a slow sheet.
Here the deviation amounts to about 50%,. It appears
that the theoretical result may depend on the de-
tailed behavior of the Debye clouds for two col-
liding particles.
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Finally, the model should be able to serve as a
useful guide for obtaining theories of nonequilibrium
properties, and nonlinear phenomenon.
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The linear oscillations in a hot plasma which is representable by the relativistic Vlasov equation
with the self-consistent fields are investigated. The generalization of Bernstein’s method for the
relativistic case is used to obtain the formal solution of the linearized problem. Particular attention
is given to the case when the system initially is in the relativistic equilibrium state. The dispersion
equation is derived and studied for the case when the propagation is along the direction of the un-
perturbed magnetic field, considering the spatial dispersions explicitly. The asymptotic expansions
are developed corresponding to the dispersion relations of the cases studied. It is found that trans-
verse waves propagating along the unperturbed field are Landau damped if »? > 1 — @2/u?, » and Q
being the index of refraction and the gyrofrequency, respectively. In the absence of the external
field the cutoff frequency, which is found to be the same for.both longitudinal and the transverse
modes, is shown to be a monotonically decreasing function of the temperature.

I. INTRODUCTION

N the recent literature the problems involving

the hot ionized gases have increasingly attracted
the plasma investigators. The relativistic Vlasov
equation together with Maxwell’'s equations for the
self-consistent fields have been used in most of these
approaches. Since the correlations are ignored as a
whole in this model, the validity and applicability
of this representation are somewhat restricted. The
extent to which this imposes limitations has not
yet been made evident in the literature. However,
leaving these questions unanswered, in this paper
it will be assumed that this model can properly
represent the system under consideration to some
extent.

Furthermore, to study the oscillatory phenomena,
a linearized theory will be employed with the
presence of a constant external magnetic field. As
a special case, the unperturbed distribution function
will be assumed to be the relativistic equilibrium
distribution function. It will be shown that, taking

* Present address: Conductron Corporation, Ann Arbor,
Michigan.

appropriate limits of the results of the present
paper, one can obtain the results of the former
analyses in which, in the absence of the external
field, the weakly relativistic and ualtrarelativistic
cases were studied using the approximate forms of
the equilibrium distribution corresponding to the
respective cases.

The formulation of the mathematical problem
will be given in Sec. II. The derivation of the
formal solution of the linearized system and the
dispersion relation will be sketched subsequently.
Particular attention will be given to the case in
which the propagation is along the external field.

Sections ITI, IV, and V will be devoted to the
study of the longitudinal, transverse, and the mag-
netohydrodynamic waves, respectively. A short dis-
cussion of the results deduced will be given in
See. VI.

II. FORMAL SOLUTION OF THE LINEARIZED
PROBLEM

The system of equations by which the plasma
is assumed to be represented is given as
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The summation convention both for Greek (1 to 4)
and Latin (1 to 3) indices are used here. The reduced
velocity u, and the field tensor F,, are defined as

Uy = 0y, Uy = Z'C'Y,
Y= (1 - 02/02)"% = (1 + u2/c2)4, (02 = v,-v,-), (2)
Fi; = einHy, F,, = —F; = iE,.

The symbol Y represents a summation over all
plasma, species, and will be used in this sense unless
otherwise specified.

The fourth component of the space-time is chosen
as 2, = tct. The symbols ;. and ¢,,,» denote the
completely antisymmetric (Levi-Civit4) tensor den-
sities in 3- and 4-space, respectively. The rest mass
and the electric charge of the species of type A are
denoted by m, and ey, respectively. The suffix A
will be suppressed in what follows whenever there
is no ambiguity.

Consider small perturbations about a space-time
independent (zero-order) state with the presence of
a constant external magnetic field H”, The general
solution to the unperturbed state equation is

1% (uw) = gluh, u), 3

h being the unit vector along H”, and ¢ being an
arbitrary function of its arguments. The relativistic
Maxwell-Boltzmann (Jiittner') distribution (MBJ),
which will be given more attention later, satisfies
the above condition.

Integrating along the unperturbed world-lines, the
first-order equation can be written as®

19, w) — f‘”[” B GM( )“ R<u>“]

e af(O)
—u, ju_l_
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[! F. Jittner, Ann. Physik 34, 856 (1911a).

.2 For details see K. Imre {The University of Michigan
Radiation Laboratory Rept. 2756-1-F, (ARL-TR-60-274,
Part IT) (1961)].

The utilization of the Fourier transform enables
one to solve this integral equation formally. In-
troduce the transform ¢ (k,) of an arbitrary function
v () as

\1/+(k)\) — j:+) e—’ikp]‘p¢(1)(x)\) d“x. (6)

The symbol 4 indicates that the z, integration is
to be restricted to the positive z, range.

Eliminating the field variables, one obtains (sup-
pressing the initial conditions)

Ce 4 X[ty A, @
where®

4mer af
mp2k2
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: fo e " R,(R.(s) ds,  (8)

y(s) = tku,G.0(s) = i(k-u — ipy)s
+ «(1/2(1 — cos Qs)u-(k xh)
— 1(1/92)(Qs — sin Qs)(u xh)-(k xh), (9

with k5 = k,k, and p = —k.c. The latter can be
interpreted as the Laplace transform parameter
corresponding to the time variable. Multiplying
Eq. (7) by e(u;/v) d’u and integrating over the u
space, and then summing over all species one obtains

(Su - V_zea':‘)J; = (10)

where »* = —k?®/p® 8., is the projection tensor
[S:; = 8:; — (kik;/k%), e, is the dielectric tensor
le.; = b8;; + (4mo,;/p)], and o;; is the conductivity
tensor which is defined as

2 The Kronecker delta 8y1hz--4» may be defined as

e ha
51’1 “ae avﬁ
Ma1pa*
avlm

= det (&) =

6“7- R 6‘!71
Also, §;* = Ofora = 4and = 3 fora = k(=1, 2, 3).
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so that J3 = oy, EY = 1oh,,F /5. Here {; is an explicit
function of the initial perturbations and the un-
perturbed parameters only, and contains all the
terms of that nature which have been suppressed
in the previous equations [cf. Eq. (7)].
The dispersion equation is, therefore,

det (S, 12)

— %) =0,

whenever {; is an analytic function (as will be
assumed in this paper). The latter can be written as

e —a)P —al) =0, (13)
where
a. = [Ftre— 3() /€]
F (G tre— 3/ — det (9/¢'}}
¢ = kike,/k, (14)
(fz)l = kikene; /K,
tre = ¢;.

The two possible modes indicated by F correspond
to the ordinary and extraordinary waves.

The general study of Eq. (12) is quite complicated
and will not be attempted here. However, when the
propagation is along the unperturbed magnetic field,
which will be assumed in what follows, the logi-
tudinal and the transverse modes can be completely
decoupled; hence the algebra involved is considerably
reduced.

Moreover, if the unperturbed state is isotropic
in the u space, one has further simplifications. In
this case Egs. (8) and (11) read*'®

o e uu dff” c ,

= me uw  du Fi, , e 'R; ds, (8
62 f 3 UUg df(O) ® -y B

ag;; = — Z m du ” du j; € R,‘k dS, (11)

where, with k xh = 0, one has

y(s) = ks = i(k-u — ipy)s.

+W. E. Drummond and M. N. Rosenbluth, Phys. Fluids

3, 45 (1960)
5 B. A. Trubnikov, in Plasma Physics and the Problem of

M. A. Leon-
Turkevich (Pergamon Press,

Controlled Thermonuclear Reactions, edited by
tovich, translation editor, J.
New York, 1960), Vol. 3.
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Selecting k (thus h) along the z axis, for the sake
of simplicity, it is seen that o, — 09 = 0, +
O = O3 = O3 = 033 = o3, = 0, and therefore,

=14 (4re./p), (15)

where 0! = o, F 10,,.
In particular if { is the MBJ distribution, [i.e.,

fues = (n/4nc’)[B/Ko(B)] exp (—Bv),  (16)

where 8 = mc®/0, © being the temperature in ergs,
K,(2) is the modified Bessel function of the second
kind, and n = [ fys; d°u,] one obtains

- yen g
7 = L BB

. f [52—(?—) R, — ok, Ko@) Gj,,Gq,] ds,  (17)
0 w
where
w(s) = (B 4+ ps)* + 2k, M. i(s),

M.(s) = j; Gii(s) ds’ = j; j; R (s’ ds'’ ds’

The latter form has already been given by Trub-
nikov.’ Note that when k xh = 0, one has
w(s) = (8 + ps)* + K¢’

III. LONGITUDINAL OSCILLATIONS

(18)

The longitudinal oscillations are represented by
the first factor of Eq. (13), thus the corresponding
dispersion relation reads

=1+ {4ns'/p) = (19)
where
o= ai,»k]c/kz
df(O) . .
= —Z f du uj; exp (—iku,s) ds d’u.

Here, we have used the fact that kxH® = 0
implies b;;k; = b}k; = 0, so that R;;k; = k,, as
expected, for R.; is the rotation transformation
about H.

It is seen that the longitudinal mode is com-
pletely independent of the unperturbed field, which
is of course expected.

The relation (19), thus, is identical to the one
which is derived and studied to some extent in the
literature® in dealing with the case when H' is
zero. Therefore, only the results will be given here
without going into details.

8P, C. Clemmow and A. J. Willson, Proec. Roy. Soc.
(London) A237, 117 (1956).
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The method of Landau’ will be used here to
calculate the spatial dispersions. Consider the real
and imaginary parts of (4w¢'/p) on the imaginary
axis of the complex p plane, to get

1 {0)
() -{5) B8 [
p
[w’y — ku)
(1 T S 2ku "oy + ku! du, (20)
and
o) e _ B
Im < » 6(k 3
62 © . df(O) .
[ v, @y
where p = —iw (to ensure that the waves propagate

along the positive direction of the z axis). Here,
8(z) is Heaviside's step function, i.e.,

6(x) =0
=1

x <0,
x>0,
and
U = (w/k)(1 — o*/k*c) 1. (22)

The step function indicates that there exist purely
oscillatory solutions only when the phase speed
(w/k) is greater than the speed of light; viz.,
the index of refraction v = kc/w is less than unity.*

In the nonrelativistic limit, using v* ~ 1, one
obtains the well-known result of Landau’

47“"> 8w 5~ ¢ <0><‘_°>
Im( p )T K me K/

In particular let us assume that f“ is of the
MBJ type as introduced in the previous section.
One finds after some manipulations

dro’) _ B, _ 1
re (%) - T8 [1 -

(oot ot 2 2
fo (cosh x+ﬁcoshx+ﬁz)

exp (—p cosh )
1= — %) /%] cosht? 2 dz:l , (23)
and
4mo’ . Ea
m@;%ﬁ@—n3

(2 4 26T + £°1%, (24)

P2 DBK ®

7J. Landau, J. Phys. (U.S.S.R.) 10, 25 (1946).
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where
we = 4mne’/m,
=1+ U/ =01 —vHth

Let us note that the z integration in Eq. (23)
can be carried out exactly when » = 1. The result is

dra'\ _ 2 K,(6) Kl(m]
Re ( » ) z, [BK ® T K8

Alternatively, one may use Eq. (17) to compute
o' to get

(25)

2

2 B
I+ Zag e

-ﬁ[&@}ﬁ+m)%—0

Using the above form of the dispersion equation we
have developed an asymptotic expansion for the
integration involved, in powers of

a = (1—»)/8.
The result is (with p =

1 + (4nd'/p) =

(26)

—1w)

~ (3; Ki—l(ﬁ) i _ ai_l
I~ 20 2 K (" 4 =5 B") » @D
where
(=D + 2 (=D
4, = 26+ DY B = 27 — 1!
By = 0).

One observes that for » = 1 the above expansion
becomes identical to Eq. (25). To the first order in
(1/8), Eq. (27) gives the result of Clemmow and
Willson.®

o' = 3wl + B/86° — H] + 0(87).

In deriving the latter, the asymptotic expansion of
the Bessel functions involved is used

K.(z) n = m
K, (x) ~1+ 2

(28)

n* — m W’ — m* — 2)
T 21 (22)*

This result is not surprising, since the unperturbed
distribution function used here coincides with the one
adopted by Clemmow and Willson to the first order
in 1/B, theirs being of the form f' « exp (—1gu?).

Silin® studied the ultrarelativistic case assuming
O « exp (—Bu/c). His result for the longitudinal

¢ V. P. Silin, J. Exptl. Theoret. Phys. 38, 1577 (1960)
[Soviet Phys —JETP ll 1136 (1960)).

+ 0(z7%).
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case may be deduced from Eq. (26), by approxi-
mating the Bessel function K;(w) ~ 8/%°, (8 <K 1).
Carrying out the integration, one finds in this limit

= 3 (i/")Bl(1/5) tanh™' » — 1], (29)

For |»] « 1, approximating successively one obtains

20 (/o8

which indicates that no longitudinal waves can prop-
agate in an ultrarelativistic plasma with frequencies
less than the cutoff frequency w, = (3 2. w?f)%.
Further discussion will be given later for the cutoff
frequencies.

It is seen from Eq. (29) that as the phase speed
approaches the speed of light, the frequency grows
up infinitely. However, this is not the case, since
from Eq. (25) one can compute the frequency for
this limit without making the approximation for
the Bessel functions

- 2 K8 |, Ki(8) _
o= 2 [6Kz(ﬁ)+Kz(6):|’ &= 1.

This observation indicates the limitation of Silin’s
result in the vieinity of » = 1. One may write for
r=land 8 K1

W' R DL WG — Ing).
IV. TRANSVERSE OSCILLATIONS

2
H'~1 —

The two possible modes of the transverse oscil-
lations are given by

1 + (4mo’/p).

Proceeding as before, consider the real and
imaginary parts of

(4T¢T:=/P) = (4x/p)(o1 F io2)

on the imaginary axis of the complex p plane. After
performing the angular integrations in the u space,
one obtains

2
v = qa, =

4o, l("_’ {w’y FQ
Re ( ) Z f du ku
1}, [y F Q) wy F @+ ku
+2|:1 ( ku In wy F Q—ku}du’ (30)
and
Im (41;;1;) - - Z 0(]9262 -+ )

3D

f(o) [ B (OW x Q)z]
f U, du ku duu.
The upper and lower limits of the integral of the
latter are given as
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U=C|v(l/o.>l-—(u-—14--9/(»)7
1 v — 1 )
U, = [VQ/w[-F(V —1+Q/w)%
? 1 =5
(extraordinary mode, for » < 1), (32)

= o (ordinary mode, and extraordi-
nary mode for » > 1).

The step function in Eq. (31) indicates that the
transverse waves are Landau damped unless

¥ <1l — @/’ (33)

In the absence of the unperturbed field the above
result becomes identical to the one obtained for
the longitudinal waves [cf., Eq. (37)].

In the case when ' is the MBJ distribution,
the u integration in Eq. (31) can be carried out,
giving

4nal _ ‘BZ e
Im( P ) T2 D w” BK,(B)

.{,ﬂ -1+ 5[7(1;2 ~ 1) F %]

+%[2(y2—1)¢27—£—2—v2—§5]}
w (O]

For » > 1 one gets

Im (f*%) =i % (B

nwy — LO%'_ w
.exp[ G 1+ysz_/1> |2/

-{f -t e B ol )
/s

19/ 67 = 1+ @) — g’ o(ﬂﬁ)}.

v —1
(35)

When the unperturbed field is absent the results
are somewhat simpler, and can be obtained by
setting @ = 0 in Eqs. (30) and (31).

Uy

(34)

Us

©
Re (411'0 ) Z f df
wy W'y’ wy — ku
g — 1 wy — Fu
[ku (1 lc2u2)2 In wy + ku ] du, (36)
47"0'l - 22 2 4_‘"'_3
Im( » ) = —0(k’c W) ok

w© 2 2 (0)
. of y _w )\ df
fv u <1 k2u2> » du.

@7
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And again for the MBJ distribution

L W AR U ) LN
Im( P ) =5 L sk 0 D
where I' = (k/w)U.

In the nonrelativistic limit, i.e., 8 >> 1, and for
v > 1, one gets

4’ im)t w2 —1 —p(T -
o (5) =

and forv > 1

(38)

3 2 p}
~ () T ul oo

w v

(39)

Approximating successively, the latter leads to the
Landau damping decrement corresponding to the
transverse waves.’

The ultrarelativistic limit again can be considered
in a similar manner; one gets Silin’s result® to the
first order in B, for »* > 1,

4ro’ T w,Y 8 3
(=) -5 () 2 om @

The study of the real part may be performed
more conveniently, as is done in the previous case,
by the use of the form given in Eq. (17). One finds
after some manipulations the following dispersion
equation:

2

__r_ 2 B
1 + kzcz + p2 pr Kg(ﬁ)

f —Kl(;w—)e*m’ ds = 0,
o w

(41)

where w(s) is as given in Eq. (18). It can be shown
that the latter goes to the well-known relation

e _KS _ s (/)
V_wz—l Z1:FQ/w

in the nonrelativistic limit, i.e., § — .

The following asymptotic expansions'® of Eq. (41)
have been derived with respect to the parameter
a = (1 — »*)/8, for the cases when w/Q is greater
or less than unity:

¢ Shortly it will be seen that in the absence of the external
field one has » < 1 [ef. Eq. (44)]. Hence, in this case, there
is no Landau damping [cf. Eq. (33)]. However, in some
particular problems due to additional effects the total refrac-
tive index may exceed unity (e.g., this is the case for plasmas
in the proximity of strong dielectrics). Klimontovich and
Silin [ef. Plasma Physics, edited by J. E. Drummond
(McGraw-Hill Book Company. Inc., New York 1961), p. 45]
derived a damping factor for such problems using a different
method. Equation (39) leads to their result.

10 Because of the divergent character of the involved
series, extra care should be exercised in dealing with the
asymptotic expansions given in this paper.
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irvi w e K2+:'+i(B)
"‘C'(ﬂ) K()

£,i=0,1,°*

se1- T ()

W

(42)

[Pt _Q__>] Ki+i—-l(:3)
i,i=§."' * Cl(IFw Kz(ﬁ) ’
where C} = (—1)'(j + 20)!/(2" 4! j!).
If H® = 0, setting @ = 0 in Eq. (41), one gets
2 9 2 2 32 fm Kz(m) _
¢+ +p Zw,K——2(ﬁ) T ds =0, (43)
and the asymptotic expansion becomes
2 i -
2 _ Wy (=1)'@)! . Ki—l(B)_
P~ sz > 25 % K@) (44)

i=0,1,°°"

Keeping the terms up to order 1/8 in Eq. (42)
one obtains

o 1 (5 _ 1
=1"Z;§1i9/w<1 26liﬂ/w> (45)

14+ X @ 1 (———] )3
@ B\l £ Qw
which in the absence of the unperturbed field,
ie., @ = 0, reduces to Buneman’s result.'!
In order to obtain Silin’s result for the transverse
waves in the ultrarelativistic gas, one may again
replace the Bessel function by its small argument

expansion in the integrand of the above dispersion
relation, to get

& B V¥ —1 1
Yyl — Z—g—' 1——‘V—tanh_ 1/>-

2 2
w 2w

(46)

For » < 1, by successive approximation one obtains'?
6/5" = 1 = § 22 Blw,/e)".
V. MAGNETOHYDRODYNAMIC WAVES

For simplicity, consider a binary, initially neutral
plasma in which the electric charge of the ions is
equal to the absolute value of the electronic charge.
As customary in the study of the magnetohydro-
dynamic waves, assume that |w/Q| is much less
than unity, so that the ion dynamic is particularly

11 O, Buneman, Phys. Rev. 112, 1504 (1958).
2 Qur formula differs from the one given by Silin by a
factor of 2/3.
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important. Then, keeping the terms only up to
order «?/Q® in the first of Eqs. (42), one obtains

2 A 4mc’ K(8.) Ki(B.)
”=1+fﬁ[“KMJ+PvmmJ’ 40

where the subscripts -+ and — now denote the ions
and electrons, respectively, and p. = nm..
Alternatively, the latter may be written as

V' = 1+ (@dr/Ho)(ws + po),

w, and P, being the zero-order total energy density
and pressure, respectively:

Z f mC2’Yf MBJ d*u

w0=
-2 Ks8) _
= 2 pkyg P
po = n(@, + 6.).

This form may be compared with the result obtained
by Harris™ using the relativistic magnetohydro-
dynamics formalism.

Using the asymptotic expansion for the Bessel
function in Eq. (47), one obtains to the first order
in 1/8

v~ 1+ (/a) [l — (5/2)(po/c)],
where a denotes the Alfvén speed

a = Hol4r(p, + )], (48)

VI. DISCUSSION AND CONCLUSIONS

In this paper we have attempted the study of
the linear oscillations in a hot plasma. It was
assumed that the system under consideration can
be represented by the relativistic Vlasov equation
coupled with Maxwell’s field equations for the self-
consistent fields.

The derivation of the formal solution of the
linearized problem and the dispersion equation is
outlined.

Giving particular attention to the spatial dis-
persion phenomena (in the sense of Landau), we
have examined the dispersion equation for the case
in which the direction of propagation is parallel
to the unperturbed magnetic field. We have de-
veloped asymptotic expansions for the cases studied
when the unperturbed distribution function is the
relativistic equilibrium distribution function.

The longitudinal waves were found to be Landau
damped when the index of refraction is greater

12 E. G. Harris, Phys. Rev. 108, 1358 (1957).
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F1a. 1. Longitudinal ‘
oscillations. Squared <, 25
phase velocity vs fre-
quency. N
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than unity only; this is in agreement with the former
investigations.®'** It was shown that unattenuated,'*
circularly polarized, transverse waves propagating
along the unperturbed field can exist provided
w® > Kk’ + Q3, where the suffix A represents the
species which has the largest |e,/m,| ratio.

Here, a further discussion of this result perhaps
is in order. Considering a simple electron gas and
ignoring the terms of order 1/8% (or higher), after
some simplifications, the above condition may be
written as follows [cf., Eq. (45)]:

' — N1 — 1/8)z + 1/28 < 0,

where
2 /02 _
A=w/Q° z=1= |l
40— 1 - - y
g o i
é £
3 5
3‘5J_ 8 g L
= S [
=) 4 f
K T
o
*
o
3 -+
o
% L
1.0 e
0 05 10 5 20 25
w/wp ——=

Fie. 2. Transverse oscillations. Squared phase velocity vs
frequency.

1 Here, it should be pointed out that the correlations,
which are ignored completely in this work, can provide an
additional damping mechanism which is different from the
one discussed above.
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F1a. 3. Cutoff frequency vs inverse temperature.

The ordinary and extraordinary modes are repre-
sented by the signs + and —, respectively. The
detailed study of the above quadratic form is
straightforward, but somewhat lengthy; thus it will
not be attempted here.” We shall note, however,
some of the properties implied.

The frequency band in which the waves under
consideration are not Landau damped is determined
by the region lying between the roots of the above
quadratic form. The resonance frequency, viz.,
o = Q, lies outside this band. Moreover, it can be
seen that whenever the quantity A — 3/28 is less
than (or greater than, respectively) unity, the entire

IMRE

ordinary (or extraordinary) mode is evanescent.

The magnetohydrodynamic waves may be ex-
amined in a similar manner. One finds that there
is no undamped frequency range in this case.

The results obtained for the case when H” = 0
are further illustrated by the following sketches.
Assuming ' is the MBJ distribution, the longi-
tudinal and transverse waves in a simple electron
gas are considered for different values of the param-
eter 8 in Figs. 1 and 2, respectively.

Finally, we considered the cutoff frequencies w,
which are to be determined for both longitudinal
and transverse modes by

w) _ B ["Kix)

<‘*’p> K.B) Js z* dv
~ 1 — 5/28 + 55/88° for B> 1,
R 38

Figure 3 shows w,/w, vs 8.

I

for K 1.
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