RSD-TR-1-82

Speech Recognition Using LPC Analysis

John L. Ostrander
Timothy D. Hopmann
Edward J. Delp

January 1982

Center for Robotics and Integrated Manufacturing

Robot System Division

COLLEGE OF ENGINEERING
THE UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN 48109

1.

R.

3.

4,

5.

5.1. Derivationcovvvvvvivvvivininnn,

5.2. Implementation

5.3. Results

8.

8.1. Implementation '
6.2.

7.

8.

9.

10

TABLE OF CONTENTS

Introductionccoovviiiiiiiiiinnn,
The Vocabularyc..ccoeevviivinniinnin
Segmentationccooeeiiiininninn,

Analysis Techniquesc..ccoveennne.
4.1, LPCAnalysiscooovvvvnviininnnnns
4.2. Homomorphic Analysis

...

...

...

...

...

42.1. Application to Speech Processingccoooeviiiinnnnnn,

4.2.2. Information Obtained
42.3. Implementation
4.2.4. Results ..ooooeviviviinniiinennns

Distance Measurement

5.2.1. Template Generation

...

...

...

...

...

...

...

5.2.2. Initial Distance Measurementscoocoevvriiiiiiiiiiviiciiieninns

Recognitionc.ccovvvvviviiininnnninnnnnn,

Results and Conclusions
Referencescoooveevvvvirviriniiiinnninnn

Appendix A: Vocabulary List

.Appendix B: Median Filtering

11.

Appendix C: Description of Software

.....................................

...

...

...

Improvements to Basic Programccccooevriivininininnnninnnnn,

--

...

...

...

..

ii

15
15
22
22
23
24
24
29

33
33
35
35
36
37

45
45
46

46

50

51

52

53

ABSTRACT

Speech recognition using LPC analysis is briefly discussed and and some
experiments using these techniques are outlined. The results of these
experiments are discussed and suggestions are made for the improve-
ment of the algorithms. The authors would like to thank Professor Willi-
ams for the use of the A/D converter in the Bioengineering Laboratory
and CIPRNET for the use of the computer facilities.

1. Introduction

The object of the project was to write a system of software capable of
recognizing a word out of a vocabulary of 100 words, assuming all utterances
were from the same speaker. A number of approaches to this problem have
been proposed. Most have been based on some sort of spectral analysis of the
unknown followed by comparison with a number of stored templates represent-
ing the words in the vocabulary. In the case of short-time Fourier analysis, the
results are a time varying Fourier spectrum which represents the entire
speech signal. The disadvantage of this method is that varying pitch period, not
uncommon even with one speaker, can significantly alter the spectrum and
hence affect the recognition process. Homomorphic analysis overcomes this
problem by removing the effects of the glottal pulse through low-pass cepstral
filtering which effectively removes the quasi-periodic portion of the speech
wave. The resulting spectrum should be an approximation to the vocal tract
transfer function, which is fairly consistent from utterance to utterance. Here
the major disadvantage is the inaccuracy of the approximation. Linear Predic-
tive Coding (LPC), on the other hand, generally characterizes the vocal tract
quite well. LPC analysis results in a set of coeflicients for the denominator
polynomial of an all-pole model of the vocal tract transfer function. Since this
set of coefficients is quite small (generally on the order of 10 to 15 coefficients),
LPC analysis has the added advantage of reducing the amount of data which
must be retained as a template and thus simplifies the comparison procedure.
Because of these superior characteristics, we chose to use LPC analysis in our
recognition scheme (also, we simply wanted some experience with LPC
analysis). The comparison between unknown and template was done using a
statistical distance measure based on the probability distribution function of
the estimates of the true LPC coefficients [1]. The distance measure itself was

developed by Rabiner and Schafer [2]. This choice was due to its relative

Introduction 3

simplicity and its high probability for success as demonstrated by the use of

similar distance measures in past experiments [3].

The project consisted of the following basic steps:
1. digitization and segmentation of the vocabulary,
2. analysis.
a) LPC analysis including spectrum calculations,
b) homomorphic analysis (for comparison to a),
3. distance calculations,
a) template generation,
b) actual distance calculation,

4. recognition.

Each of these steps is discussed in detail in this report.

In the working of this project, we found the numerical analysis package to
be quite useful for distance calculations where matrix inversion was necessary.
Also, we found the VAX plotting package to be absolutely indispensable for

examination of the results of word segmentation and spectral analyses.

2. The Yocabulary

The vocabulary was chosen with the intent to obtain a representative sam-
ple or group of samples from each one of several categories. A list of the voca-
bulary used may be found in Appendix A. The categories were designed to be

representative of each of the major problem causing types. The categories

were:

1) Words starting and/or ending in fricatives such as /f/ or /s/. These

words present a problem in segmentation-because of the relatively low

Yocabulary 4

energy of the fricatives themselves, thus they may easily be lost in

background noise.

2) Words ending in nasals such as /m/ or /n/. These words present a
problem in segmentation due to the slow tailing off of energy at the
end of the word. LPC analysis tends to have problems with nasals
because they require zeros in the Z-transform domain for accurate
characterization due to the coupling of the nasal cavity and concomi-

tant loss.

8) Words ending in plosives such as /p/ or /t/. These words present a
problem in segmentation due to the long period of silence prior to the

plosive burst and the short duration of the burst itself.

4) Words with low energy sections in their centers such as the middle
fricative in "fifteen". Such words are a problem in segmentation due to
the possibility of the low energy section being mistaken for end of

word.

The uttering of the vocabulary was done by Mr. Hopmann in the relative
quiet of his living room. In an effort to minimize the total amount of data
required to digitize the speech prior to segmentation, the words were uttered
with their beginnings spaced approximately one second apart. This was prob-
ably a mistake both because of the difficulty in speaking a large number of
words at such a fast pace and because of the subsequent difficulties introduced
into the segmentation process as will be discussed later. Four utterances were
obtained of each word (although a few were lost as the reader will soon see).
Because prior utterances can affect the speaking of a word, the words were
read in four different directions from the list in Appendix A. First the list was

read by columns going from top to bottom. The second utterance was by

Vocabulary 5

columns from bottom to top. The third utterance was by rows from left to

right. The fourth utterance was by rows from right to left.

These utterances were recorded on an ordinary, garden variety, home
cassette tape deck. We used a magnetic coil (dynamic) microphone with nomi-
nal frequency response from 100 to 10,000 Hz. The recording was then digitized
using the equipment in the bicengineering laboratories located on the fifth floor
of Fast Engineering. The vocabulary was played back into the A/D converter
through a bandpass filter cutting off at 100 Hz to eliminate de and 60 Hz hum
and at 4500 Hz to avoid aliasing as we sampled at 10,000 Hz. The data was then
placed on magnetic tape and hand carried down to the VAX computer. Several
words from the end of the vocabulary were lost during this process due to the
break down of the Digi-Data tape drive in the bioengineering laboratories. This
also prevented us from obtaining a set of utterances in noise as we had origi-

nally planned.

The A/D converter in the bioengineering laboratories has ten bits of accu-
racy. Quantization is linear and the peak to peak maximum voltage is V. The
data numbers are two's complement and thus may have values from -512 to

+511. The data is in the following format.:
first 4 bits -- unused, always one,
next 10 bits — data,
next 2 bits -- channel information, ignored.

Hence it was necessary to reformat the data into a usable form. This was
accomplished by the program "convert” which lopped off the first 4 bits and the
trailing two bits then sign extended to make each data point into a two- byte

short integer.

YVocabulary 6

Following this process, we made a few plots of the initial portions of our
data files and found that there was a significant dc offset probably introduced
by the A/D. This was removed, at least for the most part, by the program
"node" (read "no de¢"). This program assumed that the noise surrounding the
words was zero mean and that the dc offset remained fairly constant. Dc was
then removed by calculating the mean of the first 100 ms of noise then sub-

tracting this mean from each data point.

3. Segmentation

Segmentation of words out of background noise presents a variety of prob-
lems due to the statistical nonstationarity of the speech signal. Unfortunately,
no rigorous method has been devised to distinguish speech from noise so we
must rely on basically heuristic, ad hoc approaches. It is assumed, in this pro-
cess, that the voiced sections of speech are significantly higher energy than the
background and that unvoiced sections of speech, while they may not be distin-
guishable from noise by their energy, do cross zero more often than noise due

to their high concentration of energy at high frequencies.

The algorithm we used was approximately the same as that of Rabiner and
Sambur [4] with minor changes due to our slightly different situation. The algo-

rithm was as follows:

1) The first 100 ms (1,000 points) of data was read and used to calcu-
late three thresholds, a high energy threshold, a low energy threshold,
and a zero crossing threshold. These first 100 ms are assumed to be
pure noise. "Energy'" is calculated by the short time average magni-

tude (STAM). These thresholds came from the equations:

lothresh = MIN|0.03 % [13000 — tmag] + fmag, 4 X Mmag

Segmentation 7

hithresh = N X lothresh

zcthresh = MIN Lz,,,, + R X 04, minimum

where Fnag is the STAM, u, is the mean of the zero crossing rate, 0, 18

the standard deviation. "Minimum" (in the zcthresh equation) is a
relatively arbitrary constant meant to insure that zcthresh is a rea-

sonably high value.

2) The next 2 seconds (20,000 points) of data were read in. The STAM
was calculated over a 200 sample window. If the STAM exceeded the
high threshold, then the starting point of the word was tentatively set
to this point. The window was then advanced by 100 samples and the
sum taken again. End of word was tentatively set at a point past
which the STAM fell below the threshold for some preset number of
windows. If start of word was not found in the first 1,250 ms of data,
then it was assumed that the first second was all noise and the second
second was moved down to the bottom half of the data array and the
second half was refilled. In this way, the approximate boundaries of
the voiced sections of the word were found. Using the high threshold
hopefully aveided classifying background taps, clicks, etc. as speech.
The allowance for<a number of segments below the high threshold
avoids premature marking of end of word due to center fricatives, etc.
The requirement that the beginning of the word be found in the first
1.250 ms avoided a word being only partially within the data array
when found (assuming, of course, that no utterance is longer than 750

ms).

3) The tentative beginning and ending points of the words were

Segmentation 8

extended by comparing the STAM to the low threshold. This should
have definitely established the ends of the voiced section of the word

and given new tentative beginning and ending points.

4) The tentative beginning and ending points were again extended by
comparing the zero crossing rate over 100 sample intervals to the
zero crossing threshold. The endpoints established here were con-
sidered to be the actual endpoints of the word. In this way, the end-
points should be established to within 50 samples of the actual loca-

tion.

8) The program then informed the user of start, end, and length of the
word segmented and requested that a filename be given to which the
program then wrote the data (note that this means that words are not

constant length).

7) If another word is expected (number of words expected is input on
the command line), the program moved the data in the remainder of
the data array (after the word) down to the bottom and the array was
refilled back to 20,000 points. The process then continues at step 2.

This algorithm was implemented in the program "segment."

As might be expected due to the ad hoc nature of this approach, some
problems were encountered in the implementation of this algorithm. First of
all, it was noted that the zero crossing checks rarely if ever actually extended
the word. This, we deduced, was not due to a fault in the algorithm, but was
simply due to the extremely low noise levels in our recording. This meant that
the STAM of fricatives was still significantly higher than the noise and thus even
fricatives were included by the low energy threshold extension. Second, it was

noted that since a small dc offset was present in the segment where the zero

Segmentation 9

crossing threshold was set, and since the noise levels were quite small, an
artificially low zero crossing threshold was found. This would not be a problem
in data containing higher noise levels. Third, it was noted that the ends of the
word seemed to be occasionally chopped and other times slightly too liberal.
Careful examination of the data before and after segmentation showed, how-
ever, that this was basically the result of the resolution of the segmenter. The
fourth and most insidious problem was that of occasional premature end of
word marking because of the surprisingly long segment of dead space prior to
middle and ending plosives. This meant that the high threshold had to be
lowered or the amount of dead space allowed had to be lengthened. This is
where the unfortunately small spacing between some words became a problem.
This small spacing was sometimes on the same order as the dead space before
a middle or ending plosive! After playing around with the parameters we were
able to solve this problem in most cases, but several utterations were lost. The
final problem was that of extraneous loud taps, etc., being segmented off. For
the most part, these were simply recognized as junk and thrown away. In
several cases, however, these noises were included at the beginning and ending
of words and had to be removed. This was done by "clean" which simply deletes

a portion of the data file as specified by the user.

The final format of the words. then, was variable length files of short
integers in R's complement format, magnitude -511 to +512. The appendix

shows which of the utterations were lost in the segmentation process.

Some results of this segmentation can be seen on the following few pages.

b

™ (X}]
- +
N [7
v _“.4-
?)
- . (i
L1 i)
B
. i)
q.lf_._ L.
.M.HU. nJ
— . T
(1 -
) a.x..u..
._l_ ™ -t
T
P
. 0D
e
NN
ot
. T
-
| Y
H_! -
e |
L -
i -2
il o
&I.....
L [
) - 1.
In e— o
r ik
In -+
1]
- —”a-i-
_.
A
) -)
3 =
! T T T []
..m_ o0 A T W P 1 (i) Ll] T -
G - I1d] + ant vij :J A} 11 tu. .M .
o -] 1 ' R R -
i 1 1

Me Muamber

2

+ﬁ.

2 end
inal

h

%
n the ¢

at

anca

ad appear
f

Note the chopp

%t of "sixteen
This is due to the sl

ima domain ale
af the word,

-~
H

i

L 13]
T

gy i

fof 2ner

ow tailing o

iy

fu
)

Y]
jor}

fis
;

—s

=i
Wt
Vi

S 20

b

£
i

"
-

it
Y i

fus
(XY

:
() =
T~
|
(=
-3
~——
po—y
Fu 7l
=
£
ey
(Y]]
a
[y
"4
-
Iy
0~
e
i
fii
fu
i
Lo
(X
£ -
r

{

Time domain plot of "fluff" Note the low aneray of the fricatives o
aoth ends of the word, Chonped appesarance at the and of the word is due
*a the segmentar resolution.

s
1
{
8
;_J
-t
{1
T
£
f -
-+
L4

L
o
i

s
-
ey

-2
-1 3%
=230
;-'-',:'3 -
H
1
=3 p—— S e N SN R S A S AR RN S SRS SRR SR S S S A
001 02 T o4 S5 7O o3 it 12l 1S s 17 LRSS0 2l E2EFE Ay 2T
Frams mumber
Time domain plot of “pitch" This is the utterance wnich caused the
jreatest prablems in segmentation, NMote the longperiocd of deagspace
srior fo the "t plosive,

T
T T
b of AL Y
+ i ¥
-t vy Vi
1 ! 1

Note the short segment of

3
s

2 domain plot of "asp” after claan-up

Tim

The andpoint

3t the beginning due to the segmenter resclution.

3 gatten from trial anderror.

3

(AR
thy
i}

1

el

Wt

Note the iong segment of

ng click,

before clean-up:

llasp"
noise at the end followed by a short but stro

Time domain plot of

Analysis Techniques 15

4. Analysis Techniques

We wanted to use LPC analysis for the actual recognition of words, in this
section.hat is one of the methods discussed here. We desired, however, a
means of verifying the correctness of our LPC parameter calculations. In order
to do this, we undertook to find the log magnitude frequency domain response
of the vocal tract through homomorphic processing. The vocal tract responses

from these methods were then compared.

4.1. LPC Analysis

LPC analysis is based on the assumption that the speech signal can be
characterized by a predictor model which looks at past values of the output
alone, hence it is an all pole model in the Z-transform domain. This assump-
tion is good for most speech signals, which contain strong resonances and
weak anti-resonances. The assumption breaks down somewhat for nasal
sounds such as /m/ or /n/ due to the strong anti-resonances introduced
through nasal coupling. Another assumption in this kind of analysis is the
short time stationarity of the speech signal. This also breaks down, most obvi-
ously at phoneme boundaries, but also within certain phonemes such as the
glides (/r/ and /w/). Thus one should expect generally good results using
such an all pole model except in these cases where the signal will not, in gen-

eral, be well characterized.

A further simplification of the analysis is introduced by the assumption
that the vocal tract is excited either by random noise {(unvoiced speech) or an
impulse train (voiced speech). This assumption places the burden for charac-

terizing the glottal pulse shape on the analysis technique.

Studies of the speech signal have shown [2] that one can expect one
resonant (or formant) frequency per 1,000 Hz bandwidth. Since our signal was

bandlimited to 4,500 Hz, we expected approximately 5 formants to be in

Analysis Techniques 16

evidence. Since LPC analysis produces N complex poles (where N is the order
of the predictor) and characterization of the formants requires a complex con-
jugate pole pair per formant, twice as many LPC coefficients as formants are
required. This would imply that a tenth order predictor would be appropriate
for our application. The situation is complicated, however, by the fact that the
glottal pulse is not an ideal impulse train and there are radiation losses at the
lips. These effects add further information to the system which must be taken
into account in the analysis. Again, it has be found [2] that this additional
information may be characterized using three to four poles. Thus we chose

our predictor to be 14th order.

The actual implementation of the LPC analysis is somewhat dependent
upon the time-warping method chosen. The purpose of time-warping is to
attemnpt to get the various portions of two utterances to match up thus elim-
inating, in as far as possible, the effects of varying speed in the utterance of a
word. Since speed can vary even within a word, a non-linear time warping
algorithm would seem desirable. In recent years, attempts have been made to
use various non-linear time-warping techniques and the effects have been
promising. In order to simplify our implementation, however, we chose to use
a simpler, linear time warping scheme. This scheme used a constant analysis
window size and simply varied the starting points of the windows so that a con-
stant number of evenly spaced windows were used. It is desirable that analysis
windows overlap to some extent, so we chose to use 25 300-point windows so
that at a wordlength of 5100 samples (the approximate average) the windows

would have 1/3 overlap.

The LPC analysis algorithm itself was based on Burg's algorithm [2]. The
windows were multiplied by a 300 point Hamming window in order to reduce
sidelobe eflects in the frequency domain. The LPC coeflicients were then cal-

culated for the window and written out sequentially to a file, thus the file

Analysis Techniques 17

contained 25 sets of 14 LPC coefficients.

In order to examine the results of the LPC analysis, we wrote a program
which calculated and plotted the vocal tract response from the LPC coeflicient

information. These results can be seen in the plots of the next few pages.

e,
=T

}x
{
{
] |
R : 1 (\
(/
| 2«"
-5 %0 3 ‘."'A"\, JJ}
| ! N, K
\ o
) !
{ !
H
é Vo
ll". "_
-1%. 7 e
I, T Ty s
= totsl polmts ploctad —-- 1::.._..x
Yocal tract response for the lett

"s"in"sitteen'

L.*; ‘:z .
E-RD IS B
i
g
e ow {
[~ { 1
!
!"!
-“Jl{

204

131

i
in
T

—
N~

-1 . t.;<é| o

Yocal tract response for the letter "i"in "sixtean”

SR R

| ER A
H
{
[
Fo
P
: ;‘ T 9} {
P
{ H
¢ ii
§
- | 4
= ! !
h"‘ ;
13
|
sl
= !
- {
i
i-
I
H
3|,
W - Y
: !
“u
ll
]
!'a
4
4
P
$
4
'l
- ".‘
Il‘. f’_.““-.‘
3
'v,i
!
. !
Y ",
) P
i 5)
\ ¢ !
AN < 4
o 'l‘
i
,I
H
Y e—,
1)
|" Jl-‘ _"
kK - '
" s h
e K Y
" R \
" g h, T
v, -~ .,
1.l ‘;‘ ..\‘.
3 ; -
4, N,

vocal tract response for the letter "n”"in "sixteen”

[

i

g

—Tlatesn- _wocal _tract _responses

!.
L g — ——— —— v— -
o

]

i
>

b

o Yy m o~ s

i

wd Ty T

[AETY]

‘ .
et

~% 30
-425
-4 30
475
- 5 0 D T .. s)
e e i N B

. ""-__‘_ -, - a \"'-n

- “~— B e SN S T T —— e
e 3‘] 1 —‘-"-‘_‘— ..."—.. s
- P - ""‘1"&—. ———— e - - u-'-.-. Tm——

575 S ST e T ——
-él l] D -1 -""-t.—__._r-‘ﬂ./ \-‘-‘-‘—’———._ _‘_,_-'".-” T ————
-5 25 — -
"’3’ 30 1 ¥ i ¥ 1

000 1.00Q 2.00 .00 .00 S.00

: 3
Freguermocy Cx10°0

(2E8dR aff st oer segment

Pzeudo three dimensional plot of vocal tract responses throughout
the word "sixteen”

Analysis Techniques 22

4.2. Homomorphic Analysis

A second technique which is sometimes used in the analysis of speech sig-
nals is that of homomorphic signal processing. It is suitable for use with sys-
tems satisfying a generalized principle of superposition, which are known as
homomorphic systems. For speech signals, we encounter what is called a
"multiplicative” homomorphic system, [2] in which the generalized "+" opera-

tion is multiplication, and the generalized ""*" operation is exponentiation.

4.2.1. Application to Speech Processing

Homomorphic processing was applied to the speech signal in order to
obtain an estimate of the vocal tract response as follows. We again consider
the speech production model to be a slowly time-varying linear system
excited by either a semi-pericdic impulse train in the case of voiced speech,
or by random noise in the case of unvoiced speech. Through homomorphic
processing, we are able to "de-convolve" these two signal components (excita-

tion source and system response). This is accomplished as follows.

First, using a DFT on a segment of speech, we transform the time domain
input into the frequency domain. In so doing, the operation of convolution is
transformed into multiplication. Next, a logarithm of the frequency domain
signal is calculated. Since, in general, the frequency domain values will be
complex, this must be a complex logarithm. However, we will see later that
for our purposes the log of the magnitude is sufficient. The logarithm
transforms the operation of multiplication into addition. Finally, an inverse
DFT is performed to return the data to a quasi-time domain known as the
"quefrency’ domain. Since the Fourier transform as well as the logarithm of
an impulse train is still an impulse train, what was initially the convolution of
an impulse train with a linear system is now the addition of an impulse train

to the complex log of the transform of the linear system response. The

Analysis Techniques 23

inverse Fourier transform of the latter is known as the complex "cepstrum".

4.2.2. Information Obtained

The cepstral peaks resulting from the impulse train are easily found by a
"peak picker”, and can then be removed from the cepstral signal. The spac-
ing of these peaks corresponds to that of the impulses in the time domain.
Obviously, if the excitation source is random noise, these peaks will not be
present. Thus the cepstral domain information can be used to indicate first
of all whether a segment of speech is voiced or unvoiced, and if it was voiced,

to give an estimate of the speaker's pitch period.

We can take the processing one step further, and remove the excitation
components by zeroing them out, then perform the inverse operations of DFT
and exponentiation to return to the frequency domain. The result is an
approximate vocal tract response for that segment of speech. Since we are
generally interested only in determining the formant frequencies of the
speech, phase information is not required. Similarly, phase information is
not required to estimate the pitch period in the cepstral domain. Thus, we
may avoid the use of a complex logarithm and the computational problems
involved in phase calculation, and simply take the logarithm of the magnitude

of the frequency domain signal during the calculation of the cepstrum.

Note that it is also possible to retain only the excitation components of
the cepstrally processed speech signal rather than the vocal tract com-
ponents. Then through a sequence of inverse operations on this information,
we can obtain an approximation to the frequency domain and/or time domain
signal corresponding to the excitation alone. Further, we can also IDFT the
previously mentioned vocal tract response frequency domain information and
obtain the impulse response of the vocal tract. These pieces of information

would be of some value in a consideration of speech synthesis using a

Analysis Techniques 24

homomorphic system, but in the case of speech recognition systems, are of

little practical use.

4.2.3. Implementation

The homomorphic speech analysis was performed in the following
manner. A window length of 300 samples or 30 msec was chosen to insure
that more than one period of the signal was included in the segment, yet still
be short enough so that the vocal tract response was relatively constant. A
Hamming window was applied to the data to reduce side lobes in the fre-

quency domain. A 256 point DFT was performed, and magnitudes calculated.

Following this, a logarithm and IDFT were performed. Taking advantage
of the symmetry properties of the DFT of a real sequence, the latter was per-
formed only to obtain values of positive “time" or quefrency. Low time filter-
ing was performed by searching for the cepstral impulse occurring at the
first pitch period and zeroing out all values included in this impulse and at
higher quefrencies. At a later time, this cepstral filtering was changed so
that only the low-time data half-way to the pitch period impulse was retained,

rather than low-time data all the way up to the impulse.

A magnitude-DFT on the remaining points was performed, and the result-
ing data plotted out as an épproximation to the vocal tract response. Since
phase information was not preserved, no attempt at reconstructing the time

domain response was made.

4.2.4. Results

Shown are the results of cepstral analysis on the words nine and sizfeen.
The former was chosen because it is entirely voiced, and thus a good candi-
date for cepstral analysis since a well-defined pitch period should be present

throughout the word. The latter was chosen because it contains a mixture of

Analysis Techniques 25

voiced and unvoiced sections. Note that, as expected, the low time portion of
the cepstrum contains vocal tract response information for both voiced and
unvoiced sections, and there are no cepstral domain impulses for the latter.
When fewer points were retained in the cepstral domain, the resulting vocal
tract response was smoother and retained its peaks in approximately the
same locations. However, the overall shape became distorted from the loss of

information. Plots of the results appear on the following pages.

7.',- i"- 3 l: r

Toal -

-
4

“s ':l §

—
— T

e mtna ™

Y
0

1

S i
vA\ilI{.i.il‘\ .rmy
T, Ll
e 0
Fenimuii i
e 1
——TTTT
EETE— I
——T '
e e e, o)
e 4 -
e (
- -
T T e r
T 0
e~
-)
i.n.l.“n
¥ r~4
o
el - 1)
— +}
Illll!\l!('!ll‘lll'l.llllll\\"n
——— m._
.....wi!..ll.l!l..uf
illl-.!}'lll
nnil\l Ll
PR §
-l
.I.lul(l'l’t.!.lllllll].
e e e, e
-
B
e
....nﬂl.\.-ll.l.l..l|
s
e
"
)
e e
PRI el
~<
{ T T T T T T T T T i
- <0 7t} o (Al DL + o0 o - i
n il) - - o ol U I o A
. " . ¥ (- I i)
- - - -— - -t - - - -

Jocal tract response for the letter "s"in "sixteen

-

i

Vocal tract response for the letter "i" in "sixtsen”

st o

e e e R s

e

i

—

—

—————

o P e

et
g S

v e

— P

[—1

1]

{0

ot (_ £

LA

!

o T o |

-
((((————— "
-
e -
-.ll‘l-l.l)a‘l‘()
g "
o
T
P '.ll"'n‘,.
ity
'y
"!l'l
J—_ tlll‘l“ll
. S
* .
6!'-....‘7\4\"‘!\1'1' g
T
ety VTR
e ..
ot ity v g S
[——
e e,

r
——t
e
g P
G
Y

D WU
_—T
e s P it Tt
. e B
o
L4
A s e
-
 adl
O
hHIIIIil.II
-
s
—
e
Ca——
P
-z,
vt
T s,
e e
e
A s,
o~
st et
e e g e 20
-
e
xil"i'-’
. © e s s st
e e e bt e,
T e e, e
oo e
sy
R
T

—
-
3 -~
=
-
-

i
B

=~
=

VEDL

]

o]
-

=

total poimt:

“Yocal tract response for the letter “n"in "sixtaen”

Analysis Techniques 29

4.3. Comparison of Analysis Techniques

It can be seen from looking at the plots obtained from the two analysis
methods presented in this report that estimates of the vocal tract response
from them are similar. Indeed, one of the reasons for implementing both
methods was that they would allow us to check results against each other to
insure that they are reasonable and correct. Overlayed plots presenting these

results simultaneously are shown on the following pages.

The LPC analysis is better able to characterize a sample of speech with a
smaller amount of storage space than is required with homomorphic analysis.
Pitch period and voiced/unvoiced information must be stored for either. How-
ever, LPC analysis requires the storage of 14 predictor coefficients for each of
the 25 frames of the word, whereas storage of the time domain vocal tract
response obtained through the cepstrum takes much more storage space.
Computationally, it is believed that homomorphic analysis implemented with
FFT's is more efficient than LPC analysis. The final decision regarding which
analysis technique would be used for the recognition implementation was
based on the availability of a relatively simple and robust decision technique
based on distance measures for the LPC parameters. This topic will be the

subject of the next section.

i3

nann .:-':: — (_“.‘It """

fencd

e e ~

- e
G- o

R e SO
rraa e > o] T
" ll“l —
[P 5y

- ———
B et e non. oo e S —ﬁ...—v._
P =

e
S _
s ﬂ.x"vl.il‘ll\!..l..l..’lll."ll
~ et Y !
e e e e i -
Rt SO
"

!
|
R~

{
/
iZ

|
..{
ol

.lbnl-l”v'-l‘l!lll.‘
e,
lll.\.l.(..! v
"-l N,

J
rotal polimts

ombined homomorphic and lpc vocal tract responses. Smooth line is

3

-4

v s | ¥
)] - — I - L

o]

—§
e i ¥

-1 +&

ety = %
.|.|...Zl.)|...l.§¢1 \....
ad” . ~ e
u_ . Y
ﬂ. ol - ey
b e R w __
P~ il)
— 2ed .
=TT =
Rl e PRI s
W)..a.. £ |
S —
,._ i —
» l!.I;....laJk.? S
ol -
e T
e y
(.l‘., " S :
.(«-\l‘c“v(l Mt A
T B o N T— e o
Ty T 0
! . L
T Ty
=
-
T
A o
e -
ST st C
B o
T e ;
G 5
- '..r. i |1..1
Voo .
(!l!.‘.il.\l!l‘ll...” v.rﬂlv!l-l. .fw
P os— PR
S e e e ﬂu
‘jl‘;i S G .Pa
i...l\l.....l.ulf..lxlt,f..l.._
T b
[e
“Z —— N
1 ||.|)l]:v'llil.
o
N _
" e,
ol P
. S e
e : J———
e o p—— T e e rmrmram s
e e T OO
o pmmiives— s
SR r s !'I\i.*'hﬂ‘\)!@ e
T H T .| 3 : . : . | a
& [T T o ot

ombined homomaorphic and lpc vocal tract responses. Smooth line is

z
ipc.

{

_—
e o ,.r......“.ﬂ!a Ty
e ——— } mw.h..._
e ()
.
e k.
i
o
o
i T g
T -

e T o
—— e s t ’ 3
S . -
e Xl()aﬂv!q:i\lv}ll‘ S — 1
B B
e e [.l..v
B SSEASY LL
UL
e
.l!.“hur _- ‘
PR R bl -.
,Pl!'(l.llvl.)sll.r & !
%iiv‘(‘lﬂg - ’ m
i e ~
e i
— -

SEe

I o o N
[p) o)
- - (M -t
nJ in - iy
i

~
=

smbined homomerphic and lpc vocal tract responses. Smooth lin2 i

C
ipc,

Distance Measurement 33

5. Distance Measurement

In order to perform recognition of an unknown word, some measure of
similarity is needed to compare it to each of the words known to be in the voca-
bulary. If this measure of similarity takes the form of a probability that the
unknown word is the same as a given word of the vocabulary, the obvious rule is
to decide that the unknown word is actually that which for which the probabil-
ity measure is greatest. In the case of LPC analysis, the probability measure
reduces to calculating a distance measure between the unknown word’'s LPC
parameters and those stored as "templates" for each of the 100 words in the

entire vocabulary.

5.1. Derivation

The origin of the distance measure is as follows [2]. We maintain the
assumption of an all pole speech production model excited by white noise or
by a quasi-periodic impulse signal. In this case, the probability distribution of
the LPC estimates a’is a multi-dimensional Gaussian distribution whose mean
is @ and covariance matrix is A so that the probability of obtaining @’ when the
actual coefficients are a is:

exp (a -—a)A‘zl(a.' —a)t

, 1
p(a'/a)= -—-—-——-(2 Al

where[A] is the determinant of the matrix A. The log probability (neglecting

the constant factor due to the leading term) is:

(a'—a)A YHa—-a)t = D(a',a)

That this is a reasonable distance measure is easily seen, because the

closer the a’ values are to the a values, the smaller the above calculated dis-

Distance Measurement 34

tance, and the greater the probability that they came from an utterance with

true LPC parameters @. The covariance matrix A is defined as:
A= B % (a Rat)
N
so that:

R
a'Ra't

D(a',a) = (a’v—a)[N (a'—a)

where R is the (p+1) by (p+1) correlation matrix of a speech segment of

length N.

Since the true underlying LPC coefficients a are not known, they are
estimated by performing LPC analysis over several repetitions of the word. It
is then assumed that the distribution of the a parameters is Gaussian with
mean m and covariance matrix S, which are estimated from the J multiple

repetitions as:

1 J

m(n) = 720',(17.) n=12,..p
1
and
L oy
s(n.p) = - Ya;(n)a;(p) - m(n)m (p)
1
This information is used to form a total covariance matrix C replacing A where:
R—l

C=S+A=S+ —N—(a.'Ra")

Distance Measurement 35

then the distance measure becomes:

D(a',a)=(a ~m)Ca' —m)t.

A simpler distance measurement has been proposed by Itakura. This

measurement takes the form:

aRat
a’Ra' t

D(a,a)=log

This can be seen to be closely related to the first distance measurement
presented above. This measure was considered for use in the recognizer
because of its increased simplicity and greater speed. However, further inves-
tigation yielded éeveral sources [2,5,6] commenting on incorrect assumptions

made in the derivation of the formula, and a loss in recognition accuracy when

it is used.
5.2. Implementation

5.2.1. Template Generation

Close investigation of the distance measure which was used reveals that,
if the only information stored for the vocabulary templates are the sets of
LPC coeflicients, a great deal of computing is required for distance measure-
ment during recognition. Thus, the elements of recognition which depend on
the known utterances, namely the mean vector m and covariance matrix S,

were precomputed and stored as the templates to save time during recogni-

tion.

Additionally, a "label” was appended to the end of each template file. In
our case, the label simply contained a character string to enable printing out

the word that was recognized during program execution. In an actual system,

Distance Measurement 36

this label may be a word of data to be entered into the system, or possibly an

instruction or command to be executed.

The template files were generated with the program '"tesplate” and were

a total of 24010 bytes in length. This data represented the following:
14 words x 25 frames x 4 bytes for m'’s
15 x 15 words x 25 frames x 4 bytes for S's

10 bytes for label

Obviously, such storage requirement make this method impractical for
large vocabularies on small systems. For example, template storage for a

simple 100 word recognizer is 2.4 Mbytes (!).

The inputs to the "“tesplate” program are the known utterances of a word.
The program performs the LPC analysis previously described in section 3.1.
After this analysis has been performed on all repetitions of the word, these

results are combined to form the m vector and S matrix of the template.

5.2.2. Initial Distance Measurements

In order to gain a "feel” for how the distance measurement would work
for comparing words to both correct and incorrect templates, the program
"testdis” was written. This program generates a frame by frame account of
the present distance and cumulative distance it has calculated for specified
word /template pair. This information was required for establishing stepsize
and offset parameters to be discussed in the recognition section. Also, it pro-
vided us with a little encouragement that the whole system would work when

we finally got all the pieces put together.

Distance Measurement 37

Distance calculation (both here and in the case of actual recognition)
requires matrix multiplication and inversion. Since these operations are
always performed on the same size matrices, the former calculation was
easily included in the distance program itself. However, the latter operation
was dependent on the use of the NAAS (Numerical Analysis and Statistics)
package on the VAX, in particular the subroutines SLUD (for matrix decompo-
sition) and SILU (for the actual inversion). Had these not been available, dis-

tance calculation programming would have been (to say the least) nontrivial.

5.3. Results

The results of the testdis program were received with mixed feelings. On
the one hand they were encouraging because most often when the word was
compared to the wrong template, relatively large distances were calculated.
On the other hand, there were several instances noted for which a word would
in general yield small distances when compared to the proper template,. yet
for a few frames out of the 25 large distances would be calculated, so that the
overall distance was larger than was expected. This was attributed to two pri-

mary causes:
1) The use of the linear time warp instead of a nonlinear time warp, and

2) Inclusion of artifacts such as breath noise, tongue clicks, or microphone

contact noise either in the unknown speech or in the template utterances.

The former could be corrected at the cost of increased processing time,
whereas the latter would require use of more utterances in the template (to
average out random artifacts) or a different recording technique (speak more
slowly, use a microphone stand, etc.). However, insufficient time was available

to pursue either of these avenues of investigation.

Distance Measurement 38

Several examples of distance calculation using "testdis" are shown on the

following pages.

o

LoLi

g

1

1=

v Yo

%

f

10

1

[IR T SR
T

i

i
rl_l ru e

[T |
Ll ol fu fuy
i Ty

i i i
£ oW
fon]

20

S0 4= N

\-::3 4r.-."‘f A

W
Jl ©
[

~3 Jl |

[ou
o

¥

W

O~y o) Tu
oW o

-

(Y |

T T
L3010 1.00 2.0 .00 “.00

b
i

Freguency (1077

{25dR affsar per Soguert s

Pzeudo three dimensional plot of vacal tract responses throughout
the word "nine"

=i

D= R I B T P T B W=

£
fis

0]
|

oy
]
i

! § — Ry Ry ' e
o s ——

-

total poimts ploteed -- 25

Frame distance versus frame number for the distance between the
ward 'nine" and the template for "nine

distiminmat
N B
s By
A !
!
1
1
Vil ; 2
AR ated i i
i
[
i
il :Jé - ¥ I
L
]
n |
1 ~“'x|"s ol I \ e i
(Y
P

Vi
|
| |
. fo
ALR A % { "",_
1 Y
] 'n“
‘ lﬂ...__jl “}
| g / %
it D - § e L4
LR - ‘,g . _'i 4
N x (‘ M h 1
s J b l.‘ 4
(,.: \‘\. ¢ ’K i‘ l‘ ‘i III
P ; \‘{ t l‘ "i) i|
i \ ! 1; :
I] H‘ A K‘.
i (l ll, o 5
} ! e 1y
' ! | ;
ll __,.‘" ‘u—"—""—'l
., R ”
rotal poilnts plotted -- =25

<
el

Frame2 distance versus frame number for the distance between fthe

ward "nine" and the templata for "ona"

e

Ll

<

10e]

...
DO W

Ka

d

i

i

il T s

o
L)l)

013

—oMe— a3l _tE S0t S

)
kN
0
3
i
M
L

'y -
~) 1':,“ . . \‘ 3
~ TSI A q-"""\. . - J -
"‘ S = |~ R) . N, - 't,\ "'h.,_ e — N, ™ el -~ T —r— _-"-..

- ', = " s VRIS g
31} - . -«-/ {" b, -~ "-‘-'x.‘ "‘ﬂ._. - -~ "‘ * . R
s e SN, - > A e
- B 7 e, l‘(" - - o’) "\-..‘___ -’ .“ ., -
I 3 ™ - . ~T a0 \\ N - - — o - . e .
-y .'w...____-"" DN “\ S e, - [V D WU g
0 C! e =, SN N e -, R S _._'_-‘-‘ _
- =", ,."‘\ - "\ -'-“-.. - ., -~ .. -h\“"\—-_d-——-"'—'-
- N N " - = Y, et e S
C3 T — — — e ——_ T ——
")I ™, . " ., S rmem—’ ., - —" ., Rt NI
=11 S N ST N e T .
. = —1 /ﬁ'\ et _""\: -\“"‘-._.___—l-"" < ."\ e e,
g -, I e,
S _.__.-“' e ™ - -~ . S — _ e
A \-_ “"““—-_————"’"‘ . -, e e < e,
. = - ————. e P = SRS
S AN e e e
£ —\‘% T \"‘\. O ——,
as - " . ™ .\.‘ .“'—-v._—..".d \‘-_. i S " e, I e

Ui
L)
-1

- , b - o
Fs - 4 "\‘ \\M \\‘—q _,.Jv'._‘__ R N——— "
D '3 —_ f‘h\\\‘q"‘-.___\b “\“\-_‘ R \-—-.___ — . I
-— ?-‘_, - -""—_._.-—"—\‘ W ~ -~ ———— —
I.?. 3 A ‘\"-"— — s T T —— e
il _N —, s SR ~— e “"'-,____ -
3“ /’ -""-,_\ ..—-"'—. — e i
" “"-\ " % e 5 - e e et s, e
- - - et g s e, N s
t 5 \\.ﬁ- . —_ ., e T o ey S e, -
a0 - “\-_.___._.—"‘ "—.‘_______d""—.__-— -H_,.—'-_._h_'___.____,___“- —
29
S0 T T 1

{25dE offsar per Saquamt s

Pseudo three dimensional plot of vocal tract responses throughout
the word "one"

Lime

Py

[I T
R = I

T T T N T Y R |
W W e e oy o~

i
+ + £ £ w

i
]

S Y
it o

s qJ

]

i
-

fou}
Lo

R
S
=
wd
0
25
=4
fiv}
RN
EE
ik
=
ag
]
S0
(]
30
et
3“) L Y
S . -
" “ S 3 “‘““‘-.——4—*"-"‘ . -, -
g 1" ')‘-'."\\ \w’ b \-..:-:""-&_..__,- o -, "_._\'\\
33 - = - L. » \“q.bq___— r——— ~.._~_-___ I " ..,__\ .
L} e » . —
t ™) "~., N, - J—\"‘\:\ﬁ"&s__--""j P -
‘:'ﬂ -‘_‘_,_.-' - ""') h;\ N-\-\\ e - .
'.-‘5 -t e’ < "'\‘.\ ﬁ_'—w—“"”d‘ /F\._____.'-"‘\\ \"-\.;—h--—d—d- ..J‘:’"‘?) b ——,
' ',};‘- K - - . f ", -, B - g 4 '.‘. Y "i:"-‘ '_,-'"‘n\-':f':‘:—-____
’JU -1——-0—"'-#). Y, \ R VO E \K.-_- ‘__,4—'.," -._._'.. e - - ‘} \ “.‘..__._-_ - —
- .___;—“" '\\ ‘_". . ‘,) — . .. "‘-—w.—u—'-" ..’_t' . .,"-_—_q.——" -
‘:’3 7 ,‘I" ‘5 \.\ .\b-"-___ —— ol a'\ ...'.-‘a— e’ ’ .l\ \--“‘____ A et s et
4 * e, — - s " Py .
‘50 -——-.....—"" ~ 4, - ‘-ﬂ____—-d_'__’,-"‘ -—‘Hq*_“-"q-—b J’.., "'-‘__- it PO)
'S _“-—.,___,._.-’.,- LY M——F-M.-,- e ™ o
\\-. _,ﬂ"'ddd—_.\\ e
53 D e ‘-.__. PR q.___. __'_-"--—‘."-_‘__ ‘-”-‘_
25 - ——— — —
S0 ¥ T T T
300 1.20 2.00 200 o R RN S

Freguermoy (X100

Pzeudo three dimensional plot of vocal tract responses throughout
the word "I"

o -

.

O

1 et
o=

AL i

e
0
Y
' (!{ l" o ':'X
gt Y A h
f" ‘{ ,’I‘r 'l ii l}
f "t ! i'i} I
!l 2' -.d_.""’ ‘.‘v ‘! l)*
l‘ {) ’. I] i
o Voo |
LR (’{.)] l ;
’ f ~l"-, !]
l ! '\'x fl {
i i 1 | !
i |) | |
il 1 L:-. - ':l } ‘.
K s sl N
n“
i I -, “,/"'.'
|
A .“
_.-" ‘.., “c'l." “r"
!" 0". ") .'l "vl‘ x!l"
‘.\‘ o l‘. 4 .' E
'-‘_\-x —...Jja-‘" "5 l‘.// \“'!
total points plotred -- 25

.04

Frame distance versus frame number for the distance between the

word "nine" and the template for "I

Recognition 45

8. Recognition

Once all the preceding work had been performed, the actual recognition

was a matter of combining the templates generated for all the words into a

large template "vocabulary,” and writing a recognition program which could

compare input words against the vocabulary and inform the user of the most

likely candidate for recognition.

6.1. Implementation

The final recognition program was called "recognize,” and performed as

follows:

1) The unknown word was read in, linearly time warped into the stan-

dard 25 frame format.

2) On each frame, LPC analysis was performed, and the autocorrela-
tion matrix R was calculated, then inverted (as required for distance

calculation).

3) The algorithm of testdis was performed for all 100 combinations of
the unknown word and the stored templates. This involved calculat-

ing a cumulative distance, then reading the template label.

4) The calculated distance was compared to those already calculated
and, if small enough, the distance and label was stored for possible

later output.

5) The process was repeated from step 3 until all combinations had

been examined.

Recognition 418

6.2. Improvements to Basic Program

In order to increase the run-time efficiency of the program, the following
changes were made. First, if the total distance calculated at any point within
a word exceeded the best distance calculated up to that point, no further pro-
cessing on that word was performed. Secondly a moving threshold or stairstep
threshold was set. If the cumulative distance exceeded this threshold, no

further processing was performed. The threshold was of the form:

thresh = of fset + (frame#) x (stepsize)

where offset and stepsize were heuristically determined from information
obtained during execution of the testdis program. There is, of course, a
trade-off involved in setting these values. If they are too small, processing
may be erroneously terminated right at the beginning of a word. Too large,

and they do not increase the efficiency.

No direct comparison of recognition time was made between the basic
program and the modified program. However, through information obtained
about the expected cumulative distances for incorrect word/template pair-
ings, it is known that the moving threshold eliminated a significant number of

words as candidates.

‘7. Results and Conclusions

Once the recognition routine was up and running, we undertook to recog-
nize some words in order to verify the algorithm. As mentioned earlier, one
utterance of each word was not used in making the template for that word.
These remaining utterances were used for recognition. Recognizing each of

these words is far from an exhaustive test of the recognizer. Indeed an

Results and Conclusions 47

interesting experiment would have been to use just one utterance of each word
for the template and then to recognize the much larger group of words that
would have been left over. Unfortunately, due to limitations of time, this has

not been done.

In order to get a better idea of the performance of the recognition algo-
rithm, a second, slightly altered, form was compiled which informed the user of
the top three candidates for recognition. The results discussed here were

obtained using this program, called "toprec.”

Upon obtaining the recognition results, we found that 11 errors had been
made. In eight of those cases, however, the correct word was the second
choice. Most of these errors were made in confusing highly similar pairs of
words such as "filter” and "theta,” "goes” and "cords,” "sine" and "shine," and
"if" and "with." One of the errors was made with the correct word coming in
third, confusing "seven" with "sir" and "sine.” In the other two errors, the
correct word did not make the top three. In almost all of these cases, errors
were mainly due to three to five relatively large frame distances in comparing
the word to the correct template. This can be attributed to the poor matching

of word parts due to the use of linear time warping.

A significant pattern in examination of the results is that those words con-
taining significant portions of voiced sounds with strong nasal coupling or glides
were, in general, much closer to being confused (i.e. the first and second candi-
dates were much less widely separated according to our distance measure)
than were words in general. This should not be surprising since, as was pointed
out earlier, LPC analysis has a much more difficult time characterizing nasals,
which have significant anti-resonances, and glides, which are relatively non-

stationary.

Results and Conclusions 48

Despite its problems, this initial experiment shows some promise for this
type of word recognizer. The success rate of 897% in this case is less than spec-
tacular {although, as stated before, this success rate is not necessarily a good
characterization of the system) but a number of relatively straightforward
techniques may be used to improve upon it. One of the most obvious improve-
ments would be to use a non-linear time warping scheme wherein, based upon
incremental distance measures, a decision would be made to compress or
expand the next segment of a word as one steps through it in the time warping
process. Another improvement might be to use a two-pass recognizer which
would first classify a word as belonging to some easily confusing set then to dis-
tinguish among the members of the set by emphasizing, in the distance meas-
urements, the portions of the words which differ most obviously (such as the
beginning fricative in "sine" and "shine"). This approach has been used with
some success by Rabiner and Wilpon [7]. Finally, a simple improvement would
be to use a matrix inversion routine which takes advantage of the symmetry of
the autocorrelation matrices used in the distance measures thus providing a

significant improvement in efficiency.

One of the major disadvantages of this recognition scheme is the large
amount of real time required to do the recognition. Each set of LPC
coefficients takes a significant amount of time to calculate (although they are
only calculated 25 times for each input word). Also, the distance calculation
requires the inversion of 25 15 by 15 matrices for the input word and one 15 by
15 matrix each time a distance measure is made between a frame of the input
and a frame of a template. Special purpose hardware can help in this regard,
but is probably not a panacea. This lack of efficiency can only become worse as

the vocabulary size is increased.

The problem of speed is one of the most difficult to overcome in modern

speech recognition algorithms. This problem has been largely resolved in

Results and Conclusions 49

systems based on short-time Fourier analysis where, through use of analog
filter banks and modulators along with high speed special purpose digital
hardware, the digital processing time has been reduced to a minimum. Much
progress must be made in systems of the type discussed here before they will

be able to compete effectively with these systems.

References 50

B. References

(1]

[2]

(3]

(7]

F. Itakura, "Minimum prediction Residual Principle Applied to Speech
Recognition,” /EEE Trans. ASSP, Vol. ASSP-23, pp.189-178, 1975.

L.R. Rabiner and R.W. Schafer, Digital Processing of Speech Signals,
Prentice-Hall, 1978.

G.M. White and R.B. Neely, "Speech Recognition Experiments with Linear
Prediction, Bandpass Filtering, and Dynamic Programming,” IEFE Trans.
ASSP, Vol ASSP-24, pp. 183-188, April 1976.

L.R. Rabiner and M.R. Sambur, "An Algorithm for Determining the End-
points of Isolated Utterances,” BSTJ, Vol. 54, No. 1, pp. 81-102, January
1975.

P.V. deSouza, "Statistical Tests and Distance Measures for LPC
Coeflicients," IEEE Trans. ASSP, Vol. ASSP-25, No. 8, pp. 554-559,
December 1977.

V.N. Gupta, J.N. Gowdy, and J.K. Bryan, "Evaluation of Some Distance Meas-

ures for Computerized Voice Recognition,” IEEE SECON '?7, pp. 423-4286,
1977.

L.R. Rabiner and J.G. Wilpon, "A Two-Pass Pattern-Recognition Approach to
Isolated Word Recognition,” BSTJ, Vol. 60, No. 5, May-June 1981.

References

9. Appendix A: Vocabulary List

one
two
three
four
five
six
seven
eight
nine
ten
eleven
twelve
thirteen
fourteen
fifteen
sixteen
seventeen
eighteen
nineteen
zero

are
see

can
you
read
it
so
sir
point
stop
minus
wrong
begin
times
do
power
if
equals

fiuft
how
after
kite
plum
goes
shine
round
king
food
theta
with
Delp
Tim
John
damped
vocal
still
oral
flow

pitch
which
tape
sine
viscous
duck
hertz
fishy
cords
glottis
tongue
best
common
tract
pressure
window
pharynx
filter
each
valid

51

these
buzz
switch
will
asp
tau
noise
low
pierce
Bell
Labs
Dan
George
Mary
Pat
square
lack
thats
all
folks

Appendix 52

10. Appendix B: Median Filtering

Median filtering is an ad hoc procedure designed to remove sharp discon-
tinuities due to shot noise, incorrect data transmission, e,tc. The median filter
is a non-linear system which replaces each point in the file with the median of
the points in some window oriented around the point in question. In this way,
most slopes should be preserved (although perhaps somewhat distorted) and

large, single point discontinuities would be removed.

The median filter can often be optimized for certain situations by the fol-
lowing technique. A threshold can be set such that the point will be replaced
only if it differs from the median by more than the threshold. In this way, only

large discontinuities are removed.

Our algorithm used a window size which could be set on the command line.
Each point was replaced by the median of the N points prior to that point. No

attempt was made to set thresholds, etc.

The results can be seen in the plots of the next few pages. As can be seen,
the filter performs quite well in voiced regions, preserving the waveform. - In the
fricative portions, performance is somewhat poorer, particularly with larger
window sizes. The plosive, however, was severely attenuated regardless of the
window size. While this is not surprising due to the sharp discontinuity intro-
duced by a plosive, it is nonetheless distressing. The nature of plosives is such
that even the optimizing techniques discussed above cannot be expected to
significantly improve performance. For this reason, we do not recommend the
use of a median filter for speech processing in general, although it may be use-

ful for certain situations.

Appendix 53

11. Appendix C: Description of Software

The following is a list of all the major programs which were used for our
speech recognition project. Programs are listed along with their command
lines. The user may invoke these programs without command line arguments,

in which case a description of the command line will be returned.

append infile] infilel ... infileN outfile
This program is used to append template files into one large vocabu-
lary template file. This large file is used by recognize.c as the diction-
ary.

cct.sub

This subroutine concatenates strings in order to make command line
entries simpler.

cepstrum infile

This program homomorphically processes word input, cepstrally filter-
ing to remove the periodic portion of the speech wave. The processing
is done on the same 25 equally spaced frames that the lpc analysis
uses. The outputs are the files "dftout” which contains the 25 dft's of
the input word, "cepout” which contains the 25 cepstra of the input
word (before filtering), and "respout” which contains the 25 log magni-
tude vocal tract response curves for the input word. The algorithm
does not use an FFT (although some optimization has been done by tak-
ing advantage of the special properties of the information we were pro-
cessing) and is thus rather slow. The filtering is done by finding the
largest peak in the cepstrum then removing it and all nonzero values in
higher "time."

cfilter.sub
This subroutine does the cepstral filtering for cepstrum.c.

clean infile oulfile start end
This program is used to clean up poorly segmented words. The inputs
are the input word (infile) the output file and the segment of the word
the user wishes removed. The segment is specified by giving the first
and last points of the segment. The start of the file may be specified
by "s" and the end by "e.”

convert infile oulfile nbytes
This program takes a file of numbers in the format gotten from the
bioengineering A/D converter and converts it into a file of 2's comple-
ment short integers. The input file, output file, and number of bytes in
the input file must be specified.

dbmag infile startword oulfile
This program takes the lpc coefficients for a segment of a word and
computes the log magnitude spectrum from them. The spectrum is
then placed in outfile in the form of 4 byte floating point numbers.

Appendix 54

These may then be plotted. The inputs are input data file, position of
segment (each segment contributes 14 lpc coefficients, thus position is
given as a multiple of 14) and output file.

dft.sub
This subroutine is called by cepstrum.c and is used to calculate the log
magnitude of the dft of a segment of a word.

distence.sub
This subroutine calculates the distance between a word frame and a
template frame. It is called by the programs testdis.c, recognize.c,
and toprec.c.

idft.sub
This subroutine is called by cepstrum.c and is used to calculate the
inverse dft of a real even sequence.

invert.sub

This subroutine calculates the inverse of a 15x15 matrix and returns a
pointer to the result. It is called by the programs template.c,
testdis.c, recognize.c, and toprec.c.

lpanalyze infile oulfile
This program calculates the 14th order lpc coeflicients for the 25 seg-
ments of a word. The coefficients are calculated from the data in infile
then output to outfile. Outfile, then, contains the 350 coeflicients for
all 25 segments formatted as 4 byte floating point numbers and con-
catenated together.

lpc.sub
This subroutine does the actual lpc coefficient calculation on one seg-
ment of a word. It is called from lpanalyze.c, template.c, recognize.c,
and toprec.c.

makewindow

This program calculates the Hamming window coefficients to be used
by those programs that do lpc analysis. In this way, those programs
are made more efficient. The output is 300 floating point numbers
placed in the file "Hamming."

maedian infile outfile windowlength
This program does median filtering on an input word. The inputs are
an input file, an output file, and the length of the window desired.

mfilter.sub
This subroutine does the actual median filtering on one window of the
input word. It is called by "median.”

node infile outfile nbytes
This program removes dc offset from data files coming from the A/D

Its inputs are input file, output file, and number of bytes in the input
file.

parcor.sub
This subroutine calculates the PARCOR coefficients for lpc analysis by

Appendix 55

the Burg algorithm. It is called by the subroutine "lpc.sub.”

rdshort infile numwords

This program reads numwords from a file of short integers and prints
their values on the standard output.

rdfloal infile numwords

This program reads numwords from a file of 4 byte floating point
numbers and prints their values on the standard output.

recognize word.
This program does the actual recognition of words. Word, is the name

of the word to be recognized with the utterance number appended to
it. Recognize must be run in the HOME directory as it accesses word,

from the "words" directory and accesses the vocabulary file from the
"templates” directory.

segment infile numwords

This program takes files of short integers containing continuous (but
discretely uttered) speech and segments them into single words. The
inputs on the command line are the input file and the number of
discrete utterances expected. Utterances should not exceed 750 ms in
length (although this could be easily altered) and should be separated
by at least 300 ms. The program will segment these words and prompt
the user for a filename for each word, informing him of the starting
point, ending point, and length of the word segmented.

spectime infile label

This program produces a pseudo three dimensional plot of the vocal
tract response throughout the utterance of a word. The input file is
the file of lpc coefficients for that word produced by lpanalyze. The
output consists of 25 lines representing the 25 vocal tract responses
for the frames of the word. The beginning of the word is at the top of
the plot. "Label” is the tag which will be printed at the heading of the
plot. The output of this program should be piped to an appropriate
output device.

zplotz

These programs are used to obtain plots in various formats. The pro-
grams splotx give plots which are shortened in the x direction to allow
them to be copied on B 1/2x11 paper. The programs xplots plot short
numbers while the programs xplotf plot floating point numbers. If the
programs are invoked with no arguments, they will return a descrip-
tion of the command line. The outputs of these programs should be
piped to an appropriate output device.

template inword] inword?2 ... inwaordJ oulfile label
This program takes a number of utterances of the same word and pro-
duces a template from them which may be used for a recognition dic-
tionary. The "label" is the name of the word which will be indicated
when that word is chosen by the recognition routines.

tesplate wordname indez] index?2 ... indexJ oulfile label
This program is a variant of “"template” which allows for a simpler com-
mand line. If the word files are named by wordnameX where X is the

Appendix 58

utterance number, then this program can be more easily used because
of the simplification of the command line.

tesidis templates /infile words /infile

This program calculates the frame distances and cumulative distance
for the template/word pair given on the command line. These dis-
tances are printed on the standard output as the program runs. The
frame distances are also output to the file "testdisout” so that they
may be plotted. The outputs are all floating point numbers. This pro-
gram is useful in setting the offset and stepsize in the recognition pro-
grams. It is also useful for verifying results.

toprec wordname
This program works in exactly the same way as does recognize.c, but
its output is a list of the top three candidates for recognition rather
than just the top candidate.

window.sub
This subroutine multiplies the Hamming window by frame of a word
during lpc analysis. It is called by lpc.sub which in turn is called by all
programs which do lpc analysis. Note that the file "Hamming" must be
present in all directories where this subroutine (and hence lpc
analysis) is called.

T

3 9015 03022 6420

