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F16. 12. Etch pits on a partly contaminated surface; etchant A.

area that was partly contaminated with carbon. Note
the difference in pits! Carbon from the oil diffusion
pump was sufficient to contaminate the sample during
the high-temperature annealing.

Carbon analysis made on a few samples that were not
deliberately contaminated showed the carbon con-
centration to range from 10-20 ppm. The concentration
of carbon in contaminated samples was, of course, much
higher. Microhardness tests showed that some of the
heavily striated grains were actually a new phase which
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was identified as W,C. Tt was further observed that the
shape and density of etch pits were affected by the
presence of carbon even when the concentration was too
low for the formation of a second phase.

SUMMARY

Some details of dislocation etch pits in tungsten have
been presented. The etchants A and C produce pits
defined by crystallographic faces, namely {110} planes.
This fact can conveniently be used to determine the
crystal orientation. The Millner-Sass etchant does not
produce well-defined pits. Etch pits can be produced
only on certain crystallographic planes. All three
etchants can reveal dislocations, however, there is no
guarantee that all pits are formed at dislocation sites.
The presence of carbon can markedly affect the size,
shape, and density of etch pits. The etchants A and C
can produce pyramids on octahedral or nearly octa-
hedral planes. The mechanism for this phenomenon is
not understood, and it is not certain that it is related to
dislocations.
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It is shown by means of a semiquantitative nonlinear analysis that elementary interaction hetween an
inverted electron spin system and a resonant cavity does not give rise to the pulsed mode of operation of
the ruby maser oscillator. It is suggested that the additional nonlinearity necessary for the existence of such
a mode resides in the “distant ENDOR,” the interaction between the chromium electrons and the A7 nuclei.

HE existence of the pulsed mode of operation of
the ruby maser oscillator' has been attributed by
Statz and DeMars® to time-dependent interaction
between the inverted population of the electron-spin
systems of the paramagnetic substance and the
resonant cavity. It has come to this writer’s attention
that conclusions contained in reference 2 are based
solely on analog computer solutions of nonlinear
differential equations describing the interaction between
the spin system and the cavity. A semiquantitative
analysis of these cquations shows the computer solutions
*This work was conducted by Project MICHTGAN under a
Department of the Army contract administered by the U. S. Army
Yignal Corps.
' C. Kikuchi, J. Lambe, GG. Makhov, and R. Terhune, J. Appl.
Phys. 30, 1061 (1959).
*H. Statz and G. DeMars, Quantum Flectronics (Columbia
University Press, New York, 1960), p. 530.

to be in error, and consequently the conclusions of
reference 2 concerning the nature of pulsed oscillations
to be incorrect.

The equations in question, as derived by Statz and
DeMars, and also independently by this writer® are of
the form:

dx/dt= —cixy+c2 (xy—x)
, (1)
dy/dt=csxy—cyy,

where x is the population difference, and v is the mag-
netic energy in the cavity. The coefficients ¢y, ¢s, ¢3, and
¢4, and the constant x, are functions of material and
circuit parameters, of temperature, and of excitation.
Definitions of these quantities may be found in reference
2. For the purposes of the present analysis it is sufficient

3 G. Makhov, Conference on Electron Tube Research, Mexico
City, 1959,
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to establish that ¢, is the inverse of spin-lattice relaxa-
tion time T, and ¢, is inversely proportional to the
cavity Q.

In order to account for pulsed oscillations these
equations must admit periodic solutions. Furthermore,
in order to be in agreement with experimental data,
there must occur a transition from the periodic to the
aperiodic mode, as the magnitude (but not the sign) of
one or more coefficients is changed. It is shown below
that neither condition is satisfied by Egs. (1).

The system of equations (1) is of second order and
hence Liapunoff’s stability criterion is applicable.* There
are two singular points: a focus or a node at

¥y= 64/63 (2)
¥1= (c363/¢164) (20— 1)
and a saddle point at
X2=2Xg

Only the former singularity is of interest insofar that
the latter merely determines the condition of dynamic
equilibrium in the absence of signal field. Of course, the
condition

X2 > X1

must be satisfied in order for oscillations to occur.
The first-order terms of the Taylor expansion about
x1,¥: are computed to be

= - 362/ C4
b=—¢ 164/ 3
2 @
= (63 62/6164) (x()”"'xl)
d=0.
These quantities are coefficients of the linearized
equations of (1).
The characteristic equation is of the form

N—X(a+b)+ (ad—cb)=0. (5)
Substitution of (4) into (5) yields
N (cse0/ co)xor+csca{mo—x1) =0, (6)

The coefficient of the linear term in X is positive for all
positive values of c3, ¢s, and cs. Hence, the singularity is
stable. Further examination of Eq. (6) shows that for
all practical operating conditions, the singular point is a
focus. This implies that the solution tends towards
(%1, 1) in an oscillatory manner. This behavior corre-
sponds to the ¢c-w mode of the oscillator.

It is now inquired whether there exist closed trajec-
tories in the -y plane about (zy, y1). It will be recalled
that, experimentally, transitions from the ¢-w mode to
the pulsed mode are most easily effected by changing
the cavity Q. In terms of the coefficients of Egs. (1) this

*N. Minorski, Nonlinear Mechanics (Edwards Brothers, Inc.,
Ann Arbor, Michigan, 1947).
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corresponds to changing c¢s. The singularity, however,
remains stable for all positive values of ¢;; negative
values of ¢4 would imply negative cavity (. Hence, the
phenomenon of bifurcation, i.e., transformation of a
stable focus into an unstable focus surrounded by a
stable limit cycle, which might account for the observed
behavior of the maser oscillator, is not to be expected.

The above reasoning does not preclude the existence
of an arbitrary number of limit cycles about (#1, y1). A
general proof of nonexistence of such limit cycles is very
difficult. Bendixon’s theorem fails to yield any useful
information in the present case. The following reasoning,
however, based on experimental evidence, shows that
Eqgs. (1) do not have limit cycles in the region of the z-y
plane important to the operation of the maser oscillator.

From the physical point of view, the only limit cycles
that may be reached from the point (x;, 0) must be
situated between this point and (x1, y1). However, the
existence of such limit cycles will not permit the trajec-
tory to approach the singular point, i.e., aperiodic
behavior would be impossible unless the initial condi-
tions were adjusted so as to place the starting point
(%1, ¥>0) inside the first limit cycle. This is clearly in
contradiction with experimental evidence, since transi-
tion between the two modes is obtained without a
change in initial conditions. Furthermore, the introduc-
tion of a microwave bias, or for that matter, of a noise
bias corresponding to a nonzero value of the initial
condition on ¥, fails to produce a transition from pulsed
to ¢-w mode. It appears, therefore, safe to conclude that
Egs. (1) do not admit periodic solutions which may
account for the pulsed mode of operation of the maser
oscillator. They do, however, account adequately for
the ¢-w mode.

This analysis is readily extended to transients en-
countered in optical masers.’ Decaying oscillation
pulses observed by Sorokin and Stevenson® in the case
of uranium doped calcium fluoride bear a striking
resemblance to transients of the c-w mode of the ruby
maser.”

It may be stated in support of the above considera-
tions that analog and digital computer solutions of
Egs. (1) carried out at this laboratory failed to reveal
periodic solutions demonstrated in reference 2. Further-
more, there exists ample experimental evidence that the
pulsed mode of operation of the ruby maser oscillator
does not arise from an elementary interaction between
the spin system and the cavity as suggested in reference
2. The most pertinent experimental results to this end
appear to be the absence of the pulsed mode in the case
of maser oscillator using more heavily doped (0.29%, Cr)
ruby, and the transition between the ¢-w and the pulsed

SH. Statz, C. Luck, C. Shafer, and M. Clifton, Quantum
Electronics Conference, Berkeley, California, 1961.

SP. D. Sorokin and M. J. Stevenson, Quantum Electronics
Conference, Berkeley, California, 1961.

"In reference 5 it has been indicated that earlier computer
solutions were inaccurate, and that small additional nonlinearities
are required to have undamped oscillation pulses.
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modes effected by magnetic resonance of A" nuclei.??
These results provide an indication that the mechanism
responsible for the pulsed mode is contained in the
paramagnetic materials and bears a connection with
ENDOR interactions existing in ruby.*!® Accordingly,
it is thought that the pulsed mode can be accounted for
if the first of the Eqgs. (1), the spin system equation, is
supplemented by a function of the populationdifference;
the second of Egs. (1), the cavity equation, remains
unchanged. In other words, the modified equations are
of the form:

dx/dt= — cyxy—+ca(ao—x)+csf (x)

)
dy/di= caxy—cyy.
The singular point of interest is now located at
x'=cs/e3
®)

¥’ = (ca/ crea)[ca(do—21)+csf(x1) ].

The pertinent characteristic equation, obtained as pre-
viously, is

h
r=11"

Feslea(x—xo) e f(2)]=0. (9)

Here, the coefficient of the linear term in X may be
positive, zero, or negative, depending on the relative
magnitudes of the two terms of opposite sign com-
prising it. Thus, one may expect, respectively, stable,
neutrally stable, and unstable behavior. The first corre-
sponds to the c-w mode of the oscillator; the second is
essentially impossible to obtain in practice; and the
third corresponds to the pulsed mode.

Further examination of the coefficient of the linear
term in A provides an indication as to the nature of the
function f(x). In order to induce instability, f(x) must
have positive slope. Experiment shows that the transi-
tion from the ¢-w to the pulsed mode is effected by de-
creasing the cavity Q, which corresponds to a propor-
tional increase in the coefficient ¢4 This suggests that
df(x)/dx must increase with x. An elementary example
of such a function is the power function f(x)=x". It is
shown below that satisfactory agreement with experi-
ment is obtained if one chooses n=1-+¢, where € is a
small positive number. With the reasonable assumption
of wg=2x1, the ordinate of the singularity is given by

‘ s d
A2+{C—[szo+05f (®)1=c¢s 1)
C4

X

C.
L. ..__d (1€
V= (szl )>-
Ci1C4

8 G. Makhov, R. Terhune, J. Lambe, and L. Cross, J. Appl.
Phys. 31, 936 (1960).

® G. Makhov, Conference on Electron Tube Research, Seattle,
Washington, 1960.

10 7. Lambe, N. Laurance, E. McIrvine, and R. Terhune, Phys.
Rev. 142, 1161 (1961).

(10)
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It is now recalled that in the case of Egs. (1), the corre-
sponding quantity y; was given by

(11

This quantity is both measured and computed to be of
the order of 107¢ ergs. Comparing Egs. (10) and (11),
one can conclude that in order for y" to be in agreement
with experiment, the second term on the right-hand side
of Eq. (10) must be of this order of magnitude or
smaller. This implies that cs>c¢s, or that the rate of the
process responsible for the second term is slower than
spin-lattice relaxation. This process is thought to be the
interaction between the chromium electrons and the
distant aluminum nuclet, or “distant ENDOR.” Relaxa-
tion time associated with this interaction is of the order
of ten seconds.®® Letting ¢5=0.1 sec™, ¢;=10 sec™!,
xy=10', and choosing ¢=1/9, one has for y,":

Y= (6263/6‘164)301-

yl’z 2. 10‘6%))1

as required. The coefficient of the linear term in A, given
in the present case by

Co—Crexy'*

is computed to be approximately —90. Thus, the system
is unstable, and the oscillator will operate in the pulsed
mode. In order to obtain aperiodic operation, cavity Q
must be increased ; or pumping must be increased ; or ¢
must be decreased. The first two conditions are known
to be in agreement with experiment ; no applicable data
is available at the present time which may permit an
evaluation of the third condition.

The choice of f(x) made above was, of course, quite
arbitrary. It is known, however, that the interaction
between the chromium electrons and aluminum nuclei
increases rapidly as the polarizations of the two systems
become comparable. This suggests that in the case of
the maser oscillator this interaction affects the pumping,
rather than the signal transition. As emission occurs,
the population difference in the latter decreases, and the
polarization of the former increases. This leads to a
decrease in the intensity of electron nuclear interaction
with decrease in signal transition population difference
x. This reasoning appears to indicate that the repre-
sentation of f(x) over a limited range as a monotonically
increasing function of x has reasonable validity. In
reality, this function is undoubtedly much more
complicated. Currently, it is being attempted to deter-
mine f(x) experimentally. A detailed study of the
dynamic behavior of the ruby maser oscillator will be
published in the near future.

The author wishes to thank Margaret M. Spencer
and Dennis Sinnett for obtaining computer solutions to
Egs. (1), and Amold Birke for competent technical
assistance.



