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This paper investigates the dynamic behavior of a spherical bubble situated in viscoelastic

(or elasticoviscous) materials in a creep process.

Both the diffusion of the dissolved gas in

the material and the thermodynamic behavior of the gas inside the bubble are taken into ac-

count,

The generalized model of the Kelvin or Maxwell type which consists of the spring,

dashpot, and Kelvin units is used to describe the creep behavior of the material under com-

bined stresses.

The growth or shrinkage of the gas bubble may be induced by a change in

the dissolved gas concentration in the material, a change in the external load applied to the
material, or a combination of both. Numerical results are obtained for simpler models and
the effects of their parameters on the radius-time history of a bubble shrinking in an under-
saturated solution or growing in an oversaturated solution are disclosed.

INTRODUCTION

The stability and dynamic behavior of gas bubbles in a
liquid or liquid-gas solution have been the subjects of
comprehensive investigations in the last two decades.
The applications of these studies include cavitation,
boiling, electrolysis, aeration processes, etc. Under
certain circumstances, gases may be found in the form
of bubbles or pockets in metals at high temperature,
polymer melts, and biological tissues. For example,
the swelling of fissionable materials during irradiation
is known to be caused by the generation and subsequent
growth of inert gases dissolved in the material.! Inert
gases are injected into polymer melts in plastic foaming
processes.2 The formation of decompression bubbles in
tissues and other organs is known to be the cause of de-
compression sickness.® The nomenclature used in this
paper is given in the Appendix.

Yang* has analyzed the stability of gas bubbles in defor-
mable solids with dissolved gas. The gas bubble in the
solid solution grows or shrinks as the solution is over-
saturated or undersaturated. As a result, the creep of
the material takes place under the influence of the gas
pressure in the bubble. The stress-strain rate relation
in the secondary or steady-state creep stage is em-
ployed:

.€rr= - (709 - Trr)a/A ’ (1)

where €, is the creep rate, 74— 7, is the principal
shear stress applied to the spherically symmetrical
system, and @ and A are the experimental constants for
a given material. The bubble-dynamics equation valid
for the second creep stage is found to be

R-= -—2% (E%)a (-r_, +P- %)a , 2)

where 7_ (not taken into consideration in Ref. 4) is an
external stress applied on the material at ¥ =«<. The ef-
fects of time-dependent generation of heat and/or mass
on the dynamic behavior of the bubble are examined by
Yang.® These effects are included in the P(¢) term.

The secondary creep stage represents the strain behav-
ior under constant load over a wide time period of the
entire strain-time history. The strain or creep rate
remains almost constant during this stage. Equation (1)
has been recommended to describe the stress-strain re-
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lation in the stage for many metals at elevated temper-
ature. Although Eq. (1) may also describe the creep
behavior of a viscoelastic material over a fraction of
the entire creep-time history, a more elaborate form of
the stress-strain relation should be employed so that
most of the characteristics of creep curves are de-
scribed.

Many linear models have been proposed to describe the
stress-strain relation of a viscoelastic material.®?®
They are the special cases of the generalized Kelvin and
Maxwell models which consist of the spring, dashpot,
and Kelvin units (a spring and a dashpot being arranged
in parallel) in parallel and series, respectively. The
rheological equation of state of any model of the gener-
alized Kelvin or Maxwell type has the form (written for
a spherical symmetrical system under the principal
stresses of 7,,~ 7g)

n
Zl‘/)xk Dk(Trr - Too)= ‘é Ky Dl(rr (3)
k=l =0

in which X’s and p’s are the rheological constants and D
is the derivative operator. The value of A, is always
unity, while that of u, is nonzero for the Kelvin or solid
type and zero for the Maxwell or fluid type.

The most commonly employed simpler models are the
four-element (fluid) model

(1+xD +7\2Dz)(7’"" Tog)= (Bg+ NzD)'irf (4)
and the standard linear model
(1 +XD)(7,, — Tog) = (Ko + L, D)E,, . (5)

Equation (4) with u,=2X,=0 expressesthetwo-parameter
fluid model, while that with A= 0 expresses the three-
parameter one.

In this paper, the dynamic equation of a gas bubble sit-
uated in a viscoelastic material is derived using the
stress-strain relation of the generalized model. The
growth or shrinkage of the bubble may be induced by a
change in the dissolved gas concentration in the materi-
al, the application of an external load on the material,
or by both. The bubble-dynamics equation is reduced to
more tractable forms for the three- and four-parameter
models. Numerical results are obtained for simpler
models to examine the effects of the parameters pq, o4,
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U, and X, on the dynamic characteristics of the gas bub-
ble.

ANALYSIS

Let us suppose that at the initial time #=0, a spherical
gas bubble of radius R, is situated in an elastic material
in which the dissolved gas concentration is uniform and
equal to C_,. The system is at constant temperature and
the dissolved gas concentration under saturated state

at this temperature is C,. Then, according to C,<C, or
C,> C,, the gas bubble in the solution will grow or
shrink by diffusion.

For convenience in the analysis, the center of the gas
bubble is taken as the origin of a spherical polar coor-
dinate system. At any time ¢> 0 when the bubble radius
is R, the dissolved gas concentration C at a point in the
solution at a distance 7 from the origin can be found
from the mass diffusion equation

8C_a_8_ ZE_C_
i rier (r Br) ’ ©®

where o is the coefficient of diffusion of the gas in the

material. The appropriate initial and boundary condi-
tions are
Clr,0=C,, ’ (7
CR,t)=C,, C(»t)=C, . (8)

With the transformation of
u=v(C~C_.)and £=r-R

Eq. (6) becomes
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The initial and boundary conditions are
u(r,0)=0,
u(0,)=R(C,~-C,) .
The solution can be found from Ref. 14 to be
u(r, t)=R(C,~C,)erfc[(r - R)/2(at)!?]. (9)

Therefore, the mass flow rate across the bubble surface
is

m =47R a(ar . =47R c;z(C\,—C_\,)(R + W) . (10a)

The mass flow m and its time derivatives of higher
order are

(10b)
(10c)

m=41a(C,-C.) fo‘ [R+R¥ (rat)*/2]dt+mg ,
# = 4ra(C,— C,) [R + (2RR - R¥/2t)/(rat)V?],

where m, is the initial mass of the gas in the bubble.
The equation of state for the gas inside the bubble is
$£7R°P=mRT or P=3mRT/41R?, (11)

where R is the gas constant.
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Creeping of the material may be caused by the gas
pressure developed in the bubble as a result of mass
diffusion across the bubble surface, or by an external
stress 7.(t) applied on the material, or a combination
of both. The distribution of the stresses thus developed
around the bubble in the homogeneous and isotropic ma-
terial is spherically symmetrical. In this case the non-
diagonal components of the stress tensor are equal to
zero and Tgg=Tyy = — 37,y The distribution of the
stresses is governed by the laws of conservation of
mass and momentum and the stress-strain rate relation
such as Egs. (3), (4), or (5), subject to the appropriate
boundary conditions. The definition of strain rate is

. dv
€, = E;r , (12)
where v, is the radial component of the deformation rate
¥. The continuity equation is

divi=2e  p% g . (13)
The stress-equilibrium equation is

d_;;z . 2(r ;Too) 0. (14)
The boundary conditions are

vr=R: 7,,=-P+2/R, (15a)

r=0; T, =T, (15b)

where ¢ is the coefficient of surface tension. 7, is
equal to zero if the stress is induced solely under the
influence of the gas pressure in the bubble.

Equation (13) is integrated to give
v,=(R/7)?R . (16)

Equation (16) is then substituted into Eq. (12). Upon in-
tegration, it yields

€=~ %7’-3(R3 - Ra) + €0y (1 7a)

where €,,, is the initial local strain. The time deriva-

tives of €,, are

€,,=-2R%R/7*, (1)
¢, = (2R/r")(2R*+RR) , (17c)
&, = - (4R/7*)(R + 2RR) - (2R/»*)(2RR +RR), (17d)

Now, Egs. (14) and (17a) are combined with the general
stress-strain rate relation (3) to eliminate the 7,,— Ty
and €,, terms. It yields

S T 4 2
V3 re\ - ipd __pdy_ 2
E?}MD (81’ ) ) é K DHR® = Ro) = = Ho€pro 5
g is zero for any model of the Maxwell or fluid type,
while Mg€,,q iS equal to 7,9~ Tego 2ccording to Eq. (3),
where 7,,o and 7y are the initial local stresses. The
last equation is then integrated with respect to » from
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FIG. 1. Dynamicbehaviorof gas bubbles in viscoelastic (one-,
two-, and three-parameter models) materials for u} = 3. 38, c* =0,
C*=0.5 for growth and ~ 0.5 for shrinkage.

=R to = with the aid of the boundary condition (15)
and Eq. (14). One obtains

rr0 s

(18)
where - A7, ,=17,,(, 0)-7,(R,;0). This is the general
form of the bubble-dynamics equation in viscoelastic or
elasticoviscous materials. Equation (18) is subject to
the initial conditions R(0)=R,, R(0)=0, and others
which have to be determined by the application of Eq.
(3).

The mode of growth or collapse may be classified into
the following three cases:

(4/9R®) ‘% uy D*(R® - RY)= Z")A,D*(n, +P -2 /R)+AT
= k=0

(i) The case where C, is not equal to C,. When C_ is
less than C,, mass transfer takes place from a gas
bubble to the solution eventually resulting in the shrink-
age of the bubble. On the other hand, if C_ is greater
than C,, the dissolved gas will migrate to a gas bubble
and result in the expansion of the bubble. With the sub-
stitution of Eq. (11), Eq. (18) reduces to

4 i; ; 2 3mRT 2
—_ D -1)= R, - =
9x oo Ky (x 1) k?oan <T-e + 41er0! R >+ ATrrO s (19)

where x=(R/Ry)’. With the substitution of Eq. (10) for
m and its time derivatives, Eq. (19) takes the form of
an integro-differential equation.

(ii) Without mass transfer, C,=C,. In the absence of
mass transfer, the gas inside the bubble can be assumed
to undergo a reversible polytropic process, i.e., P(t)
=Py(R/R,)°, where ¥ is the polytropic exponent. For an
isothermal process, ¥ is unity, while for an adiabatic
process, Y is equal to the ratio of specific heats. In the
actual situation, the thermal condition lies between the
isothermal and adiabatic limits. Equation (18) can be
written as

4

o (20)

n
i) By D x —1)= 272, DHr. + Pyx” - &)+ ATpg s
i=0 ka0 R .
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Both Eqs. (19) and (20) are nonlinear with variable coef-
ficients.

(iii) Zero normal stress in the solution at the bubble
surface. When the gas pressure is balanced with sur-
face tension, i.e., P=2¢/R, the normal stress in the
material at the bubble surface becomes negligibly small.
Equation (18) can then be expressed as

u
A D x—1)= DA, DF 1+ AT, . (21)

9% 20 £=0
The equation which is linear with variable coefficients
shows that the mechanism of bubble growth or collapse
is stress controlled.

RESULTS AND DISCUSSION

Equation (21), valid for the case in which bubble behav-
ior is stress controlled, can be solved for an exact
solution when it is a lower-order equation:

(a) Order 1. For the standard linear model of Eq. (5),
one obtains the solution

x =e-G(t)+(uo/#1) e-c(t)fot GG(t)dt , (22)
where

GB)=(ko/ 1) [; [(1 - 9/4Re)(rs + 27, + AT, o) ]dE .
(b) Order 2. Equation (21) reads
X4+ By /M) % = (9/41y) (T, +20yT o +2 7, +AT,0) =0 (23a)
for the four-parameter fluid model and

i+ (”1/#2)92"*‘ (ko/ ua)[(1 - 9/4“0)

X Ty + MT o + AT + AT, 0} X = o/ 1y (23p)

for the five-parameter solid model. The solutions of
Eq. (23) are readily available when 7, takes typical
functions of time, such as a step function.

If the gas inside the bubble undergoes a reversible iso-
thermal process, v =1, Eq. (20) for the standard linear
model with the neglect of surface tension takes the form
of the Riccati equation
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FIG. 2. Dynamicbehavior of gas bubbles in viscoelastic (one-,
two-, and three-parameter models) materials for ui* =6.75,0*=0,
C*=0,5 for growth and - 0.5 for shrinkage.
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x- (9Po/4U1)x2+[(“o/‘-‘1—9/4“1)

X(To + AT+ AT x= Bo/ 1y . (24)

Numerical results are obtained for the mass diffusion,
controlled growth, and shrinkage of gas bubbles by inte-
grating Eq. (19) without the terms involving 7.,. Fig-
ures 1 and 2 depict the results of the two- and three-pa-
rameter fluid models, while those of the standard linear
solid model are illustrated in Fig. 3. The dimension-
less parameters are defined as

t*=at/RE, A =M(a/RY*, ui=(u/RTL.) a/RY,

my =3my/4RYC,,, C*=1-C,/C,, ¢*=0/RT,C.R,.
(25)

It is disclosed from Figs. 1-3 that a gas bubble will
grow or shrink faster as the magnitude of AT, p¥, ¥,
or u’; decreases; a bubble grows faster but collapses
slower as the magnitude of m} increases. Growth or
shrinkage occurs according as the material is oversat-
urated with the dissolved gas (i.e., C_>C,) or under-
saturated (corresponding to C,<C,). When the material
is saturated (C,=C,), the bubble will remain the same
size in the absence of surface tension. The effects of
surface tension are found to be very small except during
a short time interval near the complete collapse of the
bubble.

CONCLUSION

The general form of the bubble-dynamics equation in
viscoelastic or elasticoviscous materials in a creep
process is derived utilizing the generalized model of the
Kelvin or Maxwell type to describe the rheological
characteristics of the materials. The growth or
shrinkage of a gas bubble may be induced by a change in
the concentration of the dissolved gas C,, a change in
the external stress 7., or both. The analysis leads to
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FIG. 3. Dynamic behavior of gas bubbles in elasticoviscous
(three-parameter solid model) materials for ¢* = 0, C*=0.5 for
growth and — 0. 5 for shrinkage.
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a classification of the growth or collapse mode into
three categories, (i) where the mode is controlled by
both mass transfer and the external load applied to the
material, (ii) where both the external load and the ther-
mal behavior of the gas inside the bubble are of com-
parable importance, and (iii) where the external load is
the sole controlling factor. The factors affecting bubble
behavior are identified.

An exact solution of the bubble-dynamics equation can
be obtained for the second and third modes when the
model is simple and the equation is of lower order.

The effect of surface tension on bubble behavior is en-
tirely negligible except near its complete collapse. Nu-
merical results obtained for the first mode indicate that
a gas bubble grows or shrinks faster as the magnitude
of the dimensionless rheological constants A* and/or u*
decreases. However, an increase in the initial mass of
the gas inside the bubble m} results in faster growth but
slower collapse.

APPENDIX: NOMENCLATURE

A rheological constant;

a rheological constant;

C  concentration of the gas dissolved in viscoelastic

materials (molar density of the solid-gas solution);

C,, at saturation; C_, at a distance from the bub-

ble; C%, C,/C.;

time-derivative operator;

integer;

integer;

integer;

mass (in moles) of the gas in the bubble; m, initial

value; m3, m, in dimensionless form as defined by

Eq. (25),

integer;

gas pressure in the bubble;

bubble radius; R,, initial radius;

gas constant;

radial coordinate system with the origin at the

bubble center;

gas temperature in the bubble;

time; ¢*, dimensionless time defined as at/R§;

r(C-C.);

radial component of the deformation vector ¥;

mass diffusivity of the dissolved gas in viscoelastic

materials;

polytropic exponent;

strain; €,,, creep rate; €,,o, initial strain;

spherical coordinate;

rheological constants; AY, A, in dimensionless form

as defined by Eq. (25);

rheological constants; /f:, K; in dimensionless

form as defined by Eq. (25);

o  surface tension;

T  stress; 7,, and T4, normal components in the di-
rection of 7 and 0, respectively; 7., =T,,(, #) ra-
dial stress at a distance from the bubble; 7,,,, in-
itial radial stress; AT,.0=T,,(Rg, 0) - T,,(=, 0).

§ N‘\““’b

N R

‘C:W»ﬂ

~3

> o m =
=

F

Superscripts

., .. first and second time derivatives, respectively.
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Subscripts

0 att=0;
s  saturation;
o at infinity.
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Stored Energy Function of Rubberlike Materials Derived from Simple Tensile Data*

T.J Peng and R.F Landel
Jet Propulsion Labovatory, California Institute of Technology, Pasadena, California 91103
{Received 17 November 1971)

An explicit formulation to obtain the stored energy function W from simple tension experi-
ments alone, based on the Valanis-Landel separable symmetric stored energy function,
Wk, Ag, A9 =w(ry) +w(h) +w(s), is developed. For a simple extension stress-strain law of
the form Ac=FEe, the analytical formula of W in the limited range 1 =A=2.5 is found to be

W=EZ [\~ 1 -1Im — 4 (Ina)?+ b (Inx)® — e (Ind 4],

i=l
where the limitation originates with the stress-strain law. The expression is used to verify
the validity of the Valanis-Landel postulation through prediction of the stress-strain behav-

ior in multiaxial deformations.

INTRODUCTION

The theory of finite elasticity shows that the stress-
strain behavior of a hyperelastic material under any
type of deformation field can be expressed in terms of
the strain energy function W. The strain energy function
W is expressed in terms of the strain tensor 7}, where
i, =1, 2, and 3. When the material is isotropic, W
can be represented in terms of three principal invari-
ants, I, L, L; locally =X+ X+ X, L=+
+2222, and I;=282), where }’s denote the principal ex-
tension ratios. For a homogeneous deformation, the A’s
of course refer to the specimen boundary displacements,
too. Thus the stress-strain relation can be expressed in
terms of three partial derivatives, sW/ol=W,, 8W/al,
=W,, and 8W/ol;=W,, which are regarded as three ma-
terial parameters.

In the investigations of the mechanical properties of
rubberlike materials at finite deformations, there are
several authors® who have applied the elasticity theory
in attempts to find an analytical formula of the strain
energy function W in terms of W; and W, by assuming
the materials to be isotropic and incompressible (I;=1).
To evaluate W, and W,, stress-strain data are needed as
a function of I, at constant I, and vice versa. The evalu-
ation of W, and W, requires highly accurate data, espe-
cially at relatively small strains, ! since the equations
that furnish the relations between stress and strain to
determine W, and W; are of a form such that small ex-
perimental errors lead to amplified errors in W, and
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W,. Hence, producing the information which is neces-
sary for a complete description of the large deformation
behavior of elastomers thus becomes a formidable task
experimentally. (Recent data®-® have shown that the de-
pendence of the partial derivatives W; and W, on I, and
I, is complex.)

In order to circumvent the difficulty, a theory® has been
recently proposed for incompressible solids in which W
is assumed to be a separable symmetric function of the
Xs:

WAy, A, Ag) = w(M) + w(he) + w(Xs), (1)

where the symmetric function satisfies all symmetry re-
lations imposed by isotropy.” This hypothesis for W
makes it very simple to evaluate W from experiments
carried out under pure shear deformation.

Applying this approach, Valanis and Landel® evaluated
dw/d), graphically and then approximated the results to
obtain the following empirical equation for W:

3
W=2p 25 2 (lny = 1), (2
{al

where u is shear modulus. However, this equation is
not quite satisfactory to describe the mechanical behav-
ior of rubber; moreover, there is some uncertainty in
the data obtained from pure shear deformation. Subse-
quent experiments by Kawabata and co-workers? and
Dickie and Smith® appear to confirm the basic postulate.
At the same time their results show more clearly the



