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Microscopic Theory of Conductivity of a Weakly Ionized Plasma

W. R. CHAPPELL
Joint Institute for Laboratory Astrophysics and Department of Physics and Astrophysics, University of Colorado,
Boulder, Colorado 80302
AND
R. H. WiLL1AMS
Department of Physics, University of Michigan, Ann Arbor, Michigan 48104
(Received. 14 October 1971; final manuscript received 2 February 1972)

Through the use of the microscopic density functions in u space the conductivity for a weakly ionized
plasma can be expressed in terms of a function describing single particle diffusion in the plasma. This diffusion
function or transition probability has been shown to obey a linear Boltzmann equation. As a result the
approximate solution of the conductivity problem can be accomplished either by modeling the collision
term in the kiretic equation or by a stochastic modeling of the diffusion function itself. The two approaches

are seen to be completely equivalent.

I. INTRODUCTION

In a recent paper! [hereafter, referred to as (I)] we
developed kinetic equations for the self and distinct
parts of the electron density cross-correlation function
of a weakly ionized gas. These kinetic equations were
then solved by assuming the BGK model and expres-
sions were obtained for the self and total electron cross-
correlation functions,

We would like to demonstrate that this approach can
be used to calculate the conductivity of a weakly
ionized gas and thereby provide a link between the
methods of Dougherty? and others® and the method
recently proposed by Hagfors.*

The method used by Hagfors* involves a transition
probability describing the diffusion of particles in g
space. He emphasizes that such a treatment involving
the motion of individual particles in the gas is impor-
tant for many problems where the results depend
intimately on the detailed kinetic behavior of the
plasma. On the other hand, Hagfors asserts that the
BGK model® used by Dougherty? and others® is out-
side the scope of his approach.

We will show that, in fact, the approach taken by
Hagfors can be interpreted in such a way that the
BGK and other relaxation models easily fit into the
theory. Thus, it is equally valid to take Hagfors’ point
of view and construct stochastic models of the transi-
tion probability or to construct kinetic equations in
which the collisions with neutrals are modeled in some
manner.

The reason for this connection between the different
approaches is simply that the transition probability
defined by Hagfors is directly related to the Wi, func-
tion introduced by Rostoker.® For a dilute gas of neutral
particles this quantity has been shown to obey a linear
kinetic equation.” ™ In (I) we showed that for a weakly
ionized gas this quantity obeyed (in lowest order) an
equation of the Boltzmann form with a collision oper-
ator which is of the Boltzmann form but which is linear.

As a result the conductivity problem can be reduced

to solving this linear kinetic equation and the assump-
tion of various collision models provides one method of
solution. That this is the case is to be expected because
of the standard method of using kinetic equations to
calculate the linear response of the system to an applied
field and also because of the work of Weinstock™ which
shows that any autocorrelation function (in this case
the current autocorrelation) can be related to a one-
particle kinetic equation. On the other hand, because
of the direct relation to the transition probability used
by Hagfors one is free to attack this problem from the
point of view of constructing stochastic models for this
quantity directly.

II. MICROSCOPIC RESPONSE OF A PLASMA TO
AN EXTERNAL ELECTRIC FIELD

We begin by calculating the linear response of the
plasma to an electric field from a point of view that is
truly microscopic and deals explicitly with individual
particle motion. The exact dynamics of a plasma can
be expressed in terms of the familiar microscopic phase
density

NU
fa(X’ t)‘: .ZIBEX_X"a(t):]) (1)
-
where the delta function is actually a six-dimensional
delta function in u space and X.=(f) =[Ri*(f), vio(£)]
is the phase-space position occupied by the ith particle
of the ath species at time f. We will consider a three-
species system consisting of electrons (a=e¢), ions
(e=1), and neutrals (a=0).
From this density function f, we can construct several
quantities of interest. In particular, the autocorrelation
functions

fﬂﬂ(X’ ¢ X” t,) = <fa(X: t)fﬁ(X') t’)> (2)

for a, 8=0, 1, ¢ are of particular interest in calculating
particle density, current density, and electric field auto-
correlation functions. Rostoker’ has introduced the
quantities Wy,(X, t; X', ¥) and W,8(X, t; X', V')
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through the equation
de(X’ A X,; t') =5a|ﬂ”aW1,1a(X1 t XI, t,)

+nangW1,2°'ﬁ(X, L XI, t’>: (3)
where 7, is the particle density of species a,
Wit (X, 4 X, 1)
(P Z OLX =X () BLX'—X:2(1)]), (4)
t=]
and
Na Ng
Wi2(X, U X', V) = (namg) ™t 20 3. (1—8a,68:.5)
f=1 ju=]
X@LX-X=(0) (X=X (1)]). (5)

In (I) we derived kinetic equations for f.., W1 .,%, and
W12, where a=e¢, i. These equations are readily ex-
tended to fus, W1,1%, and Wy,,* where (a, 8) =e, 4. In
particular, for W1,* and fas we obtain the results

i}
(& +L1(0)(1)) Wl,la(l, t; 1’, 0)

=J[go(v) W1,2(1, £, 1,0)] (6)

and

NaQa

( +L1<°><1>)faﬂ(1 61,0+ = ByR, 1

éév: 6u (V1) =JTo(V2)fus(1, £ 1, 0)], ()

where

9

oR;’
where 1=X,, 1'=X//, (a, 8) =e¢, or %, ¢, is the charge
of a particle of species @, ¢o(Vs) and ¢a(v1) are the
Maxwell-Boltzmann distributions for the neutrals and
species a(=e, 1), respectively, and J[ ] is the usual

Boltzmann collision operator. The quantity Es(R,, )
is given by

V'Eﬂ(Rly t) =4r E qﬂ.rdvlfdﬂ(li t) 1,) O)

a=t,i

LO®(1)=wn- (8)

(9)

We could proceed from here to obtain expressions
for the conductivity since it is known!? that the con-
ductivity can be expressed in terms of the current
density autocorrelation function and is, therefore,
directly related to the quantity f.s. The choice of vari-
ous models for the charged particle-neutral collision
term would then give approximate expressions for the
conductivity.

Instead, however, we will use an approach similar
to Hagfors’ which in an explicit way involves the
dependence of the conductivity on the individual par-
ticle motions. In order to do this we will use “approxi-
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mate” equations for the microscopic densities f. (X, £).
By approximate, we refer to the difficulty posed by
the singular nature of the exact phase space densities.
Thus, the validity of such approximations can only be
discussed in terms of smoothing operations (e.g., aver-
aging) which are assumed to occur later. Such equa-
tions have been used to treat both fully ionized
plasmas®* and gases of neutral particles.®® In the
case of a fully ionized gas the use of the linearized
Vlasov equation for f, has been shown to be equlvalent
to the random phase approximation.® Since the vari-
ables X, and ' act only as parameters in Eq. (7), we
choose the kinetic equation for f, as

(G +nom) o+

Pala 2,

E(Rl, £)- ‘_¢a(V1)

=J[¢0(v2)fa(1: t):lr (10)
where N .
V-E(Ry, t)=4r Y qfdvi fu(1, 8). (11)

The term on the right-hand side then represents the
correction to the usual random phase approximation
equation! due to the presence of neutral partlcles

Since Eq. (10) is linear in f,, we can write it in the
form

U t1ji-

(12)
If we were to apply a small external electric field
Ey(r, ?) to the plasma, the equation for fx would become

a a a a a

LRSS O (13)
My OV

We can now solve for the linear microscopic response

in the usual manner by writing

fe=faH, (14)
so that
fa
v +Lf,, (15)
and
0fa 0
f i e, 2 f —0.  (16)
Equation (15) expresses the fact that
Na
fat= X o[ X—X(1)], an

te=]

where X:?°(?) is the field-free trajectory in u space.
We then solve Eq. (16) formally as

260 = 2 [ drexp[—L(t=7)]

XEy(r, 7)+ 2 f5(X, ). (18)
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From the delta function form of f,° we see that

fo T N
o e, ) LKD) oS g i, 1)
Mo av B j=1Mg
8 fox,7) (19)
'aviﬂo(.r) fa 7

(using the fact that the 87« terms are zero). We are
interested in calculating the ensemble averaged micro-
scopic density fa= (fs). From Egs. (18) and (19) we
obtain

fu= [ 4T (DX,

_ ’yﬁ_f /_ ; it f dT" fu(T) ,“’;‘; Eor/(), 7]

exp[—L(t-"T) Jfao(X’ ), (20)

‘ v (T)

where T' is the I'-space variable having ) ., 6N,=N
components and fy(T') is the equilibrium ensemble.
Since dT' and fy(T") are invariant under the field-free
motion of the particles, on integration by parts we ob-
tain

Ng ¢

o= (RD)AE Y [ ar [ arpe(r) gBlrA(r), 7]
8 =17/

-9 exp[—L(t—) Ifo(X, 1), (21)

where T is the temperature and X is Boltzmann’s con-

stant. Finally, using the delta function form of f;* and
Eq. (15) we obtain

fX, 0= (KT T /_ : dr f ir / dX'f(T)
XQﬂEo(r', T) 'V’fgo(X,, T)fao(X) t)
-&T) T /0 " dr f X' gv - Bo(r', i—1)
(22)
X (f2(X, DFN(X!, t—1))

— (KT)' T / " dr / X' gv' - Eo(t’, 1—7)
8 Yo

deﬁo(Xy ¢ Xl, t_T);

where f,s’ is the quantity first introduced in Eq. (3).
It is proportional to the joint probability of finding a
particle of type 8 at X’ at time {—r and a particle of
type a at X, at time 7 later.

The conductivity is obtained by calculating the cur-
rent density J(r, #) produced by the external electric
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field. From Eq. (22) this is given by

Jr, =3 g f av vfo (r, v, 1)

= (KT E g fo on [ ax: [[av (23)

Xvv' Ey(r, t—1)fui? (X, t; X', t—7)

— (KT)~ / " f i {(J(x, DI, t—1))
0
. Eo(l", t—T) ’

where (J(r, £) J(x/, t—7) ) is the current autocorrelation
function. If we then perform a Fourier transform in
space and time, we obtain

J(k> w) =U(k: O)) ’ EO(k’ w) ’ (24)

where

ok, w) = (KT)! f " dr explior) / dR exp(—ik-R)

0
X{J(R, 7)J(0,0))
(25)

= (KT)Y [ drexplior) [ dR exp(— k-
(K1) S / explior) [ dR exp(~ikc-R)

X Qags / av / av'wi,@(R, v, 1; 0, v, 0).

The expression given in the first line of Eq. (25) is the
familiar result of linear response theory.!?

We can put our result in the form obtained by Hagfors
by noting that from Eqs. (3), (4), (5), and (13) we
obtain

fal(X, 7; X', 0) =exp(— Lr) [8a g1 W11%(X, 0; X', 0)
FransWi2(X, 0; X/, 0)] (26)
= exp(— L7) [8a 65(X — X") $(V)
+nanpFap(X, X') ],

where F.s(X, X’) is the usual two-particle (one time)
distribution function. Since the variable X’ is un-
affected by the operator L, and since F,g is even in v/,
we obtain

o(k, )= (KT)' ¥ f " dr expior) / dR exp(—ik-R)
a Jo

Xnago20VWW11%(R, v, 7; 0, v/, 0).  (27)

But, we can write
Wit (R, v, 7;0, v, 00 =W, (R, v, 7| 0, v, 0)pa(V),
(28)

where W is the transition probability introduced by
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Hagfors. It is the probability that if a particle is at the
phase space point (0, ¥v'), time 0, it will be found at
(R, v) at time 7. This completes the connection between
the work described in (I), the linear response theory,
and Hagfors’ derivation. All that remains is the calcu-
lation of Wy,* or W.. Since we know that Wy ,* satis-
fies a kinetic equation, we can try to solve this equation
or we can use the interpretation as a transition prob-
ability and take the approach used by Hagfors.

IIl. CALCULATION OF W~

In fact, the construction of various models for Wy ®
or W, implies a choice of mode] of the collision term
J[#W1.12] which appears in the kinetic equation for
Wh11* [cf. Eq. (6)]. The simplest possible models are
the free particle models

oWy, 0
= v Wiao= 2
5 TVR, T (29)
and the simple relaxation term
oW, 1« 0
_— o W= —vasW 1% 30
o +wn 3R, V1 vaslW11®. (30)

A considerably better model is the BGK model

3 )
— 4o — Wia2(1, ¢
at'*"‘aR1 (L, 8

= —Va0 [W],l“(l, t)—¢a(vl) /dleI,la(ly t)J . (31)
This equation is easily solved to obtain

ok, ©)= X fgar’ {i / dwn ___vl_“?_"_(ﬂ}__

w—kVi+ivg

Vidba (V1) ][ , Véa(v) ]}
X [/ v w—k -1+ /dVI w—k'V"l'iVao ’

(32)

—[Falk, w) I

where
Fo(k, ) = 1—irao[dV[da (V) / (w—K-V+irag) J.  (33)

This is the result obtained by Dougherty.? This model
has also been called the strong collision model by
Rautian and Sobel’man?® who discussed it in connection
with the collisional narrowing of spectral lines. In (I)
this model was used to calculate the self- and total-
electron-density autocorrelation functions.

The effect of weak collisions can be modeled by a
Fokker—Planck term giving

(7]

(7] a ,
(at +wv aR:[) W1,1 (1, 1 , t)

a a?
a0 = ViWr " g~ Wi, (34
VoaVI Wi, -1‘-518‘712 1% (34)
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The solution of this equation by standard means'® gives
the Brownian motion model for W, proposed by
Hagfors.* Rautian and Sobel’man in their work on
spectral line shapes have considered the case where
the collision term is modeled by a sum of the BGK
and Fokker-Planck terms.'® The Lorentz model pre-
sents another attractive possibility for describing weakly
ionized plasmas. On the other hand, one could as well
choose to bypass the kinetic equation and model W,
directly as proposed by Hagfors.*

IV. CONCLUSION

The case of a plasma dominated by charged particle-
neutral collisions can be treated in the same manner as
a collisionless plasma. Such quantities as the conduc-
tivity can be related to the microscopic motions and
through these to a function Wi, describing the diffu-
sion of charged particles in the plasma. This function
has been shown to obey a linear, Boltzmann-like equa-
tion. The final solution can be approached via a solu-
tion of the kinetic equation or a direct modeling of
this function. Although it is true that the final descrip-
tion of the particle motion is probabilistic, the same
can be said of the kinetic equation itself since for long
times! it represents a Markovian behavior. The primary
difficulty lies in the choice of model either for the ki-
netic equation or the transition probability described
by the equation, The assumption of a model for W,
or Wy, implies the assumption of a model for the
kinetic equations for these functions and vice versa.
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