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Critical parameters (Reynolds number and wave number) signaling the onset of Taylor 
vortices are calculated for the tlow between “elliptical” cylinders. The spinning inner cylinder 
is circular; the stationary outer cylinder is composed of two circular arcs and is similar 
to an ellipse. It is shown that increasing ellipticity destabilizes the flow and increasing 
eccentricity stabilizes the flow. The spectral element method is used to calculate the 
base flow and to solve the linear stability problem. 

In this Brief Communication, we describe the linear 
stability of flow between a circular inner cylinder spinning 
with an angular speed w and a stationary outer “elliptical” 
cylinder. Both cylinders are considered infinitely long. As 
seen in Fig. 1, the outer cylinder is not actually an ellipse, 
but an oblong shape constructed from two circular arcs of 
equal size. The use of “elliptical” to describe such a geom- 
etry is common in lubrication literature. For small clear- 
ances between the cylinders, this geometry resembles that 
of an elliptical journal bearing (actual bearings have finite 
length and are often fitted with lubricant inlet and outlet 
flow ports). Pinkus’ and Kumar et aL3 have studied 
torque and load characteristics based on solution of the 
lubrication equation.4 We discuss here the flow instability 
characterized by the appearance of Taylor vortices for the 
constrained location of the cylinder centers. Another type 
of bearing instability known as “shaft whirl” or “oil whip” 
arises from interaction between fluid forces and shaft trans- 
lation and is discussed in Ref. 5. The increased shaft sta- 
bility of an elliptical journal bearing makes it attractive for 
high-speed applications, such as in turbines or rotary 
compressors.6 

The Taylor-Couette stability problem for flow between 
concentric circular cylinders has been extensively studied 
(see the review article by DiPrima and Swinney7). This 
flow lends itself to analysis because the base flow is one 
dimensional and the exchange-of-stabilities principle can 
be used. When the cylinders are eccentrically placed and/ 
or of arbitrary shape, the base flow is Reynolds number 
dependent and exchange-of-stabilities cannot be assumed, 
substantially complicating the analysis. DiPrima and 
Stuart’ performed a perturbation analysis for eccentric cir- 
cular cylinders assuming small clearance and eccentricity. 

They showed that increasing eccentricity stabilizes the 
flow. Subsequent papers by DiPrima and Stuart9 and Ea- 
gles et al. lo investigated the nonlinear characteristics of 
Taylor vortices between eccentric circular cylinders. 
Oikawa et al. l1 numerically investigated the linear stability 
of the flow between eccentric circular cylinders without the 
restrictions of small eccentricity or clearance. Oikawa’s re- 
sults show good agreement with the DiPrima and Stuart 
analysis for small eccentricity and clearance. They also 
agree well with experiments by Vohr12 and Karasudani.i3 

There are no analytical or numerical studies of the 
stability of flows between noncircular cylinders. Lewis14 
solved for the base flow between a rotating circular inner 
cylinder and fixed square outer cylinder using finite differ- 
ences. Snyder,” Mullin,i6 and Terada and Hattori17 exper- 
imentally studied flow stability for a variety of inner/outer 
noncircular cylinder arrangements and characterized the 
bifurcation to Taylor vortices for the various geometries. 

The two nondimensional parameters describing the 
concentric elliptical geometry are the ellipticity ratio, 
e* = e/d, and the minimum gap radius ratio, 
v=R/(R;+d), where e is the distance between the inner 
cylinder center and the center of the circle describing ei- 
ther lobe of the outer cylinder, d is the minimum gap 
width, and Ri is the inner cylinder radius (see Fig. 1). 

We use the spectral element method57’890 to solve the 
base flow and linear stability problems. For the two- 
dimensional base flow, we solve the incompressible 
Navier-Stokes equations in a Cartesian coordinate system: 

au i 
Re at+? (uVU+VUI) 

v*u=o. (2) 
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FIG. 1. Elliptical geometry. All parameters shown are dimensionless. 
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The Reynolds number is Re=tiR&v, where Y is the ki- 
nematic viscosity. The skew-symmetric form for the non- 
linear terms is used to minimize aliasing errors.21 The un- 
knowns within an element are approximated in a series of 
orthogonal polynomials: 

N N 

(3) 

FIG. 2. Critical Reynolds number and wave number versus ellipticity for 
77=0.5 and 0.95. 

where 

ii=iii+$, U= Ui+ Vj. (8) 

The discretization parallels that performed for the base 
flow and leads to the foliowing generalized eigenvalue 
problem:5 

and 
N-2 N-2 

p= c c  p,&L,(r)L,(s), 
m=O n=O 

(4) 

where h,(r) is the Lagrangian interpolant of order N con- 
structed from Legendre polynomials, L,(r) is the Leg- 
endre polynomial of order m, u,, is the velocity at the 
mnth grid point, pmn is the mnth spectral coefficient for 
pressure, and r and s are the computational coordinates 
related to the Cartesian coordinates by 

Gx = aBx, (9) 

where cr=f(Re,k,e*,q). The vector x is comprised of the 
unknown velocity and pressure coefficients, and B is a 
square diagonal matrix whose entries corresponding to the 
continuity equation and the homogeneous boundary con- 
ditions are zero. The zeros in the matrix B result in “infi- 
nite” eigenvalues that preclude the use of a standard power 
routine’to isolate the most dangerous eigenvalue (i.e., the 
eigenvalue with the largest real part).23*24 We therefore 
choose to solve the eigenvalue problem directly with the 
EISPACK routine RGG. Since the base flow is Reynolds 
number dependent, the critical parameters Re, and kc must 
be determined in an iterative fashion. Note that Re, and k, 
correspond to the real part of (T being equal to zero. 

We tested our ‘code by confirming the critical param- 
eters found by Oilcawa et ai. l1 for eccentric circular cylin- 
ders, including an instance of a Hopf bifurcation.5 To avoid 
degradation of spectral accuracy due to the sharp corners 
in the elliptical cylinder problem, we divide the flow do- 

N N 

x= c c. %vlh,(r)h,(s). (5) 
m=O n=o 

The pressure approximation is two orders less than the 
velocity approximation to avoid spurious pressure modes. lg 
The formulation consists of multiplying (1) and (2) by 
appropriate test functions, integrating by parts, inserting 
the approximations (3) and (4), and performing Gauss- 
Lobatto quadrature. 18Y22 We use an implicit time-marching 
scheme that allows large time steps to rapidly find steady- 
state solutions.5 

For the stability analysis, we assume small perturba- 
tions of the form 

Ii] kw,t) = 1:) bw> +e”‘[~~ $, (6) 

where k is the real wave number along the z axis and (T is 
(in general) a complex growth rate. Substituting (6) into 
the nonconservative form of the three-dimensional Navier- 
Stokes equations and linearizing yields 

Re(au^+U&+~+‘U) = -Re V$‘+V2ii-k2G, 

Re( &+ U*Vw^) = Re kp^+ V2w^- k2$, I 
i(7) 

V*$+ kw^=O. FIG. 3. Streamlines for base flow. Re=51.75, 17=0.5, e*=2. 
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FIG. 4. Geometry, typical grid (N=8), and critical parameters for ec- 
centric elliptical cylinders. 7 = 0.5, e* = 2. 

main into two elements such that the element corners co- 
incide with the outer cylinder corners. 

Figure 2 shows how the critical Reynolds number and 
wave number change with ellipticity e*. We show results 
for two minimum gap radius ratios: ~=0.5 and ~=0.95. 
For all the r]=O.5 runs, we used a square truncation with 
N= 10 in each of the two elements. For 77=0.95, we used 
N= 10 for e*=O.l and 0.5, and N= 14 for e*= 1 and 2. We 
ensured convergence of the eigenvalues by confirming the 
eigenvalues with higher truncations. 

Figure 3 shows streamlines for the base flow with 
e*=2 and q=O.5 at a slightly supercritical state where 
Re=51.75. The truncation is N= 10. Analysis showed that 
the slight irregularities in the illustrated corner vortices are 
due not to poor resolution of the base flow velocity solu- 
tion, but to limitations in our contour-plotting routine. 

As the inner cylinder is moved from the concentric 
position, it might be expected that the critical Reynolds 
number and wave number would increase. This would be 
consistent with the results for eccentric circular cylinders 
from Oikawa et al. I1 With eccentric elliptical cylinders, 
two additional parameters are introduced: the eccentricity 
ratio E and the angle “,t as seen in Fig. 4. The eccentricity 
ratio is defined as l =e/d, where gis the distance between 
the inner and outer cylinder centers. Note that, for any 
angles other than CX= &n-/2, E can exceed unity. In Fig. 4, 
we tabulate three cases: e=O; l =O.5, cr=?r/2; and e=O.5, 
a=O. As expected, the critical parameters for both eccen- 
tric cases are higher than those for the concentric case. For 
a given eccentricity, the flow is more stable for angles that 
result in smaller clearances. 

In conclusion, we find that increasing ellipticity desta- 
bilizes the flow. It is well known that, for the concentric 
cylinder problem, wider gaps are associated with lower 

critical Reynolds numbers. Since the appearance of Taylor 
vortices may be dictated by an average gap in the elliptical 
cylinder case, the decreasing critical Reynolds number 
with increasing ellipticity makes sense. This is, however, in 
contrast to Snyder’sI experimental observation that, for a 
spinning inner circular cylinder and stationary outer 
square cylinder arrangement, the appearance of vortices 
was dictated by the minimum gap. 

Increasing ellipticity widens the Taylor vortices in the 
z direction. Snyder noted that the wavelength of the vorti- 
ces in his geometry lay somewhere between twice the min- 
imum and maximum gap widths. We find the same phe- 
nomena here, as is evident by the increasing ellipticity/ 
decreasing wave-number relationship shown in Fig. 2. 

As with eccentric circular cylinders, increasing eccen- 
tricity stabilizes the tlow and results in smaller vortices. 
For given eccentricity, ellipticity, and q, the flow is more 
stable for angles that result in smaller clearances between 
the two cylinders. 
’ We found no Hopf bifurcation for the elliptical geom- 

etry results presented here. However, since Hopf bifurca- 
tions do occur for eccentric cylinders with small gap and 
high eccentricity,” we suspect that at large enough values 
of q and e* a Hopf bifurcation will also occur for elliptical 
geometries. Computer resource limitations prevented us 
from trying the necessary higher truncations. Perhaps a 
mapping that stretches the radial coordinate in the narrow- 
est parts of the flow field would allow solutions with rea- 
sonable truncations. 
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