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Quantity pertaining to the n'th "symmetric-like" mode
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(2) Abbreviated notation for cosh w in the analysis of
infinitesimal vibrations

(3) Center of curvature for SP and S

~

cos r[' + ﬁ/ad)
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Center of curvature of midsurface when deformed into a cir-
cular arc

Abbreviated notation for cosh W

Young's modulus of elasticity

Total nondimensional energy, T+V

Total invariant nondimensional energy, E+§

Right side of the configuration vector equation §:§

Right side of the nonlinear system Yn:Fn’ n=l,2,...

Characteristic equation for simply supported symmetric
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H(©) Midsurface rise of the undeformed shell at ©

HO Maximum undeformed midsurface rise, H(O)

H* Midsurface rise of the deformed shell
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Kl’KE Left- and right-hand elastic bending stiffness constants

L Span of the arch midsurface
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N Tensile force resultant per unit length of cylinder

N Midsurface strain (and a dimensionless tension)

ﬁe External nondimensional tension applied to an edge

ﬁm Array used in calculating N in the nonlinear analysis (=nm)

ﬁ Nonlinear part of N

0 Material point on a cross section SO of the midsurface

O* Spatial point that O occupies at time t

P A material point on SP radially inward from O by a distance z

p* Spatial point that P occupies at time t

Q Material point on So a differential arc distance le from P

Q* Spatial point that Q displaces into

Qe Nondimensional shear resultant externally applied to the shell

at an edge
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<

<i?

X or X¥

Position vector CP* that locates P* after deformation

Position vector CO* that locates O* after deformation

(1) Abbreviated notation for sin r in the critical config-
uration analysis

(2) Abbreviated notation for sinh w in the analysis of

infinitesimal vibrations
(3) Part of the exponential representation Z = Ae

S8
Abbreviated notation for sinh W
Cross section of the undeformed midsurface, with radius a

Curve that SO deforms into

Undeformed circular arc cross section concentric to the mid-
surface with radius (a-z)

Curve that SP deforms into
(1) Abbreviated notation for tan r in the critical config-
uration analysis
(2) Abbreviated notation for tanh w in the analysis of
infinitesimal vibrations
(3) Kinetic energy of the cylinder per unit length of
cylinder
(4) Time varying modal "Fourier" coefficient (mode num-
ber is unspecified)
. . . . 2
Nondimensional kinetic energy, T(1l-v )/(Eah)
. . . . . - 2
Invariant nondimensional kinetic energy, T/(pa )
Strain energy per unit length of cylinder
. . . .. 2
Nondimensional strain potential energy, (l-v )V/(Eah)
. = 2
Invariant nondimensional strain potential energy, V/(go )

Distance from O or 0% to the undeformed plane of symmetry

Configuration vector whose components Yn congist of Y ’:Ti
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a Radius of the undeformed midsurface
a* Radius of midsurface when deformed into a circular cylinder

R Coefficients for the critical configurations
1 . . ~ 2\
(¢t = (gl sin qI' + 32 cos qI' + €5 sin rI' + gh cos rI' + 1)N/o )
c (1) Abbreviated notation for cos g in the analysis of the
critical configurations
(2) Abbreviated notation for cos v in the analysis of in-
finitesimal vibrations
(3) Wave speed, E/(p(1-v")

cn Abbreviated notation for cos vn

le Differential arc length PQ along SP

dl; Deformed arc length P*Q* of le along S;
;

Shape of asymmetric part of initial velgcity distribution
used in several examples ( = 33 I(1-T )/2)

f Function appearing in infinitesimal vibration analysis

g Function appearing in h and in an approximatign to E fﬁr
the analysis of critical configurations (= 2q /3-kq /n )

h The shell thickness
h(q) Function used to calculage B gor nogsygmetric critical con-
. . 2
figurations (h = g-1/cos” g~ 1 B4 /8)
9,3 Unit horizontal and vertical base vectors (3 points upwards)
n,n, Coefficient for midsurface strain for infinitesimal vibra-

tion of a linear mode (N = n sin (ut + ¢))

n Unit normal to the undeformed midsurface SO at 0 (or to
S_at P
p )

ﬁ* Unit normal to S; at p*

D (1) Inward radial pressure
(2) Part of the separation constant in the derivation of

linear modes
i Position vector OP



>

2
Nondimensional inward radial pressure, (1-v )ap/(Eh)

Position vector Oxp*

2
Eigenvalue for a critical configuration, 8 VA + VA -1

Larger of two values of g that satisfjr?%= 1 (used to de-
termine XN in the critical configuration analysis)

Quantity used in the critical configuration analysis,
B /a = BVA - VA-1

(1) Abbreviated notation for sin q in the critical
configuration analysis

(2) Abbreviated notation for sin v in the analysis of in-
finitesimal vibrations

Abbreviated notation for sin vn

(1) Real time

(2) Abbreviated notation for tan q in the critical config-
uration analysis

(3) Abbreviated notation for tan v in the analysis of
infinitesimal vibrations

Unit tangent vector to the undeformed midsurface S at O
(or to S at P)

Unit tangent vector to S; at p¥

Quantlt{ in the infinitesimal vibration analysis, Bwfﬁ

(1) Tangential component of & o T, VoS 6 - £
(2) Eigenvalue for the llnear modes of v1bratlon (BNptl )

Eigenvalues v for "asymmetric-like" and "symmetric-like"
linear modes of vibration, respectively

Radial component of midsurface velocity at the center
= A

(1) Inward radial component of & , i.e., w = =5 ' n
(2) Quantity in the 1nf1n1te51ma8 vibration analysls,

sip-1 = vZ-2p?

Cartesian components of the midsurface displacement, i.e.,
= N A
o =1ix - ]
o Jy
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B*

Distance from midsurface to generic point P

Difference between slopes of,Zf and E; used in a proof
o«

Subscripted functions in the nonlinear analysis, [ Zé ZAdF
-1

r

Part of approximate characteristic equation for simply

supported critical configurations (= qg)

pp¥ -

Right side of the characteristic equation t :=é?(v) for

"asymmetric-like" linear modes

~

Right side of the characteristic equation t :'Ef(vd for

"symmetric-like" linear modes

o 1
Array appearing in the nonlinear analysis, o / mm
‘. n

Part of the approximate characteristic equation for simply

supported critical configurations, q sec

Nonlinear part of differential equations governing the motion

of the "fourier'" coefficients T

2
Part of the equation cos ¢ =;Z/ whose roots determine where
B12 is positive for nonsymmetric critical configurations

Function used in the nonlinear analysis
Portions of expression for VB

Normalized angle coordinate, ©/8

A constant coefficient for the differential equation governin

the shape of the critical configurations
Tangential displacement mode shapes
A slenderness ratio, h/(a~12 )

Semi-opening angle before deformation
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2
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Dimensionless distance from the midsurface, z/a
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1
[ Har)

-1
Maximum value of © attained in the time interval T = 0 to
the next zero of &

N
n =

Response parameter,

1
[ atar /(
-1

—K
Displacement vector 00 for O
(1) Lagrangian strain along S
(2) Impulse parameter, v ﬂg/(c B2)
(3) Dimensionless time duration of impulse
Value of ¢ for BMAX = 1.5 during first swing

Midsurface strain, N

Dimensionless inward radial component of midsurface displace-

ment, & ﬁ/a

- 1 1
Linear part of N (= - > [ tar)
1

Clockwise angle between plane of symmetry and the ray CP
before deformation

Clockwise angle between plane of symmetry and the ray C*P*
after deformation into a circular arc

Geometrical shape parameter, B/'J57 ~ M8l/u (Ho/h)l/2
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ABSTRACT

The dynamic snap-through stability of the nonlinear, elastic, plane
strain, free vibration of a shallow circular cylindrical shell is studied us-
ing equations of motion based upon thin-shell theory.

Critical configurations, i.e., sclutions to the equations of motion that
are independent of time, are derived for general linear elastic bending re-
straints against rotation at the boundaries. The strain potential energy for
configurations with no bending restraints is presented. Based on the energy of
the critical configurations, a stability sufficiency condition is determined.
If the total energy of the shell never exceeds a certain level, the shell can-
not snap through. Tt is found that stability sufflciency conditions based upon
thin-shell theory and shallow-beam theory are qualitatively the same.

A stability sufficiency condition does not, of course, determine the mag-
nitude of initial conditions at which instability occurs for a given spatial
distribution. Here it is necessary to integrate the equations of motion di-
rectly. In the present investigation, the conditions of dynamic snap-through
are presented for cosine impulsive loading of a previously undeformed and mo-
tionless, simply supported shell.

As a preliminary to the latter investigation the linear mode shapes and
the infinitesimal motion are determined for the case of supported edges with
general linear elastic restraints against rotation. Plots of the character-
istic function and linear mode shapes and of central deflection and tension
versus time are presented for the simple support case. A beating effect is

noted for certalin geometries.

XV



Nonlinear ordinary differential equations are obtained through Galerkin's
method by representing the displacements as a sum of linear mode shapes,
treating the time varying coefficients as generalized coordinates, applying
Hamilton's Principle, and integrating out the spatial dependence. For a
given set of initial conditions the time varying coefficients are integrated
numerically.

The required number of modes of representation is examined and found to
depend upon both the size of the impulse and a geometrical parameter. It is
found that previous investigations of the shallow arch did not use enough
modes. Numbers of modes adequate for the convergence of a response parameter
® during its first half cycle are presented. More modes are probably needed
for longer periods of time.

Several results of the present investigation are found to be virtually
independent of small semi-opening angle B. These include the critical con-
figurations, the infinitesimal vibrations and the nonlinear solution for the
first two oscillations of 8. However when B i1s changed appreciably, important
quantitative differences in the nonlinear solution appear after longer periocds
of time. This suggests that investigations of long-time, large-amplitude mo-
tion of other shallow snapping elements may also need geometrical parameters
that characterize ratios of rise to span in some way.

Dynamic snap-through is observed only for geometries in which nontrivial
critical configurations exist. It is found that a delayed snap-through phe-
nomenon sometimes occurs for energy levels insufficient for immediate snap-
through. In this investigation the energy levels of snap-through are always

observed to be above the second lowest of the nontrivial critical configura-

xvi



tions.

A heuristic argument in terms of the topology of the potential energy
surface is presented to give both a general interpretation of results and an
implication of truncating the number of terms in the modal representation.
This argument suggests that the appropriate number of modes retained should

be adequate to represent the critical configurations.

xvii



CHAPTER I

INTRODUCTION

Dynamic stability of structures has received considerable attention in re-
cent literature. There are a great variety of dynamic stability problems even
when material behavior is restricted to the elastic range. The motion of the
structure may become unstable under time-varying loads which may be periodic
or aperiodic. Also the motion of a freely oscillating structure may be unsta-
ble in the sense that small changes in initial conditions glve rise to sub-
stantially different motions.

A number of authors have investigated problems in which the locading is
applied throughout the motion of interest. Loadings considered include those

(1-3)*

which are suddenly applied and maintained

(1)

and those which have periodic
variations about a mean.
The initial value or free vibration problem has also received much recent
attention. A prominent example is the impulsively loaded structure. If a
high intensity loading is applied over a sufficiently short time, an easily
determinable velocity distribution is imparted to the structure during a proc-
ess involving negligible displacement. The conditions just after completion
of the impulsive process serve as initial conditions for the free vibration
problem, The ensuing motion may be unstable in the sense that small changes

in initial conditions result in significantly different motion.

*
Numbers raised in parentheses designate references.



In a recent paper Hsu 0 considers dynamic instability "in the large" for
free motion problems in terms of trajectories in functional configuration
space. To obtain an analytical stability criterion is in general difficult.
Hsu presents sufficiency conditions for stability. The motion is stable if
the energy imparted to the structure is less than the potential energy asso-
clated with the first critical or static equilibrium configuration encountered
by an expanding level energy surface in the functional configuration space.
Hsu illustrates his approach with the sinusoidal arch problem using curved

(6)

beam equations derived by Fung and Kaplan. Several of Hsu's ideas are used
in the present study. Chapter III is devoted to obtaihing a sufficiency con-
dition for a simply supported circular cylindrical shell undergoing plane mo-
tion. The nonlinear equations of motion are derived in Chapter II and are
based upon thin shell theory. It is found that using the different equations
gives quantitatively different results. This approach obtains an energy level
for initial conditions of any shape below which the motion is dynamically sta-
ble.

A sufficiency condition does not, of course, determine the magnitude of
initial conditions at which instability occurs for a given spatial distribu-
tion. Here it is necessary to integrate the equations of motion directly.

The usual approach is to represent the displacements in terms of one or more
spatial functions whose magnitudes are time varying coefficients serving as
generalized coordinates. A system of ordinary differential equations in these

*
coefficients 1s obtained by a modified Galerkin procedure.

* (7)

See, for example, Kantorovich and Krylov.



Several authors have used this approach in treating the dynamic snap-
through of shallow structures. The various investigations differ primarily
in two respects: (1) the derivation of the partial differential equations of
motion, and (2) the spatial functions chosen for the representation.

To the author's knowledge, with the exception of a study by McIvor and
Popelar,(8) all previous studies of the shallow arch are based upon curved
beam equations of the type developed by Fung and Kaplan.(6) The partial dif-
ferential equations derived by McIvor and Popelar are a slightly simplified
form of those derived by Goodier and McIvor(9) for the complete circular cy-
lindrical shell undergoing plane motion. These equations are used in the
present investigation.

Several different sets of representative spatial functions have been used.
One group of investigators has selected a single displacement function (one
degree of freedom model) which approximates the buckled configuration and sat-
isfies boundary conditions. This was done by Humphreys and Bodner(lo) in
their analysis of the symmetric buckling of spherical caps and cylindrical

(11)

panels and later by Fulton for shallow conical shells. Another group has
used the linear mode shapes of an equivalent flat element. Hoff and Bruce(l>
used the lowest symmetric and the lowest asymmetric mode shapes of a straight
beam to represent the deformation of a sinusoidal arch. To study the spher-

(12)

ical cap, Budiansky and Roth represented displacements as a sum of the
five lowest axisymmetric mode shapes of a circular plate.
Once the representative spatial functions are chosen, the conditions of

dynamic stability are usually obtained by direct numerical integration for

various initial conditions of a specified spatial distribution. One or more



measures of overall shell deformation are usually computed. If the measures
vary markedly for small changes in initial conditions the motion is considered
unstable,

In most investigations the spatial distribution of initial conditions is
fixed. Usually a comparison is made only of the maximum values of the defor-
mation measure attained for the various magnitudes of initial conditions.

(13)

Fitting into these generalizations are the investigations of Simitses,

ek, (227 (1) (12)

Hoff and Bruce, and Budiansky and Roth among others.

This type of analysis is made in the present investigation for the shal-
low cylindrical shell undergoing plane motion. Using the partial differential
equations of motion derived in Chapter II, the linear modes of vibration are
obtained in Chapter IV for general elastically restrained bending conditions.
In Chapter V the nonlinear displacements are represented by an expansion in
the linear mode shapes. Treating the coefficients as generalized coordinates,
a system of ordinary differential equations is derived. A detailed investiga-
tion of snap-through buckling is presented in Chapter VI for a range of geom-
etries. The initial conditions correspond to an impulsive inward radial pres-

sure of cosine spatial distribution. This numerical investigation is limited

to the case of simply supported boundary conditions.



CHAPTER II

MATHEMATICAL FORMULATION OF THE PROBLEM

2.1, GENERAL COMMENTS

In this chapter a set of nonlinear partial differential equations govern-

ing the dynamic behavior of a shallow, circular cylindrical shell 1s derived.

The derivation follows that in Popelar

(14)

and is given here for completeness,

Since the major interest in this dissertation is the motion following impulsive

pressure,

the appropriate initial conditions for this case are also obtained.

The analysis is based on the following assumptioné:

(a)

(g)

The external pressure loading 1s applied radially inward and does
not vary along the straight line generator.

The deformation is that of plane strain.

Material lines normal to the midsurface before deformation remain
so after deformation and do not change their length.

Damping may be neglected.

The normal stress acting on internal surfaces parallel to the mid-
surface is neglected compared to the other stresses.

The material of the shell is elastic, homogeneous and isotropic and
remains so during subsequent motion.

The shell is shallow.

2.2. DESCRIPTION OF THE SHELL CONFIGURATION

In this section the necessary geometric relations characterizing the

shell configuration are derived. A number of geometric approximations are

>



introduced in the derivation. The resulting error and limitations of the
theory are discussed.

The undeformed geometry is shown in Figure 1.

Figure 1. Cross section of the shell in its undeformed state.

The quantities shown are:
a The midsurface radius
h The shell thickness
B The semi-opening angle
H(6) The midsurface rise at ©
H The maximum midsurface rise

L The span of the arch

A general plane strain deformation is shown in Figure 2.



vertical

Figure 2. ©Shell cross section for general plane strain deformation.

The quantities shown are:

Q

Lol

A cross section of the undeformed midsurface, a circular arc of radius =
A circular section concentric to SO with radius (a-z)

A material point on So at angle 6 from the vertical

A material point on S_ radially inward from O

Y

The center of curvature of SP and SO

OP

Unit tangent and normal vectors to SP at Por to 55 at O
Spatial points that O and P occupy at time t

Curves that So and SP have deformed into at time t

—_
The displacement vector 00 for O

* X

OP



A A * *
t*,n* Unit tangent and normal vectors to SP at P
AL A
* * * *
to’no Unit tangent and normal vectors to S at O
% % *
R Position vector CP for P

w,v The radial and tangential components of 50, i.e., 60 =

Q A material point on S_ a differential arc distance le

P
Q  The spatial point that Q displaces into

<R
dl_ The deformed arc length P Q@ of le

The Lagrangian strain along SP is

The required squares of differential lengths may be written as

*D %!

a1~ = (R de)°(§*1 )

and

2 2.2
dlg = (a-z) de

where the prime denctes differentiation with respect to 6.

From Figure 2 we see that

-%

A - -
R =._na+ﬁo+p

As a consequence of Assumption (c) on page 5,

-% AK
P = zn

N A
wn + vt

from P

(2.22)

(2.2b)



It is convenient to introduce the following dimensionless quantities:

y = z/a
t = w/a (2.5)
o= v/a

Substituting Equations (2.4) and (2.5) into (2.3) yields

-

*
R = aln(¢-1) + %6 +n ] . (2.6)
The derivative of this with respect to 6 is

x !

R = aln(g'+) +E(v'-0r1) + 00 . (2.7)

A¥ *
Under Assumption (c) on page 5, the unit vectors t and ﬁ are parallal to

A¥ * %!
to and %O for every 7. Thus the vector R /a can be evaluated at the midsur-
face to give a vector

o= Uv'-ta)+ Be )

* *
that is tangent to SP at P . We will see later that the following inequalities

are valid for the deformations anticipated:

L>> [yr-t] > [er+y] .

- A¥ AKX
According to these inequalities, TO is nearly a unit vector and t and n may

be approximated by

*
(A (2.8a)



10

and

R (2.8p)
where

w = - (L) . (2.9)

The quantity @ is the infinitesimal counterclockwise rotation of the radial
section. By substituting Equations (2.8) and (2.9) into (2.7) and rearrang-

ing terms, we get

%1

R Ja = -B(1-p)o + B[-(£"+6)+(1-y) (14" )] .
Using this and Equation (2.2a), we get

01°%/(aa0)® = (1-9)%0% + [=(£™e)+(1-7) (14 1) 12 . (2.10)

Combining Equations (2.10) and (2.2b) with (2.1) and expanding 1/(1-y) yields

e = (@5-1)/2 + (¥ =t) (") (ot 4 )15 2

The second order displacement gquantities arising from the square bracket are
negligible. By dropping these, neglecting | in comparison to g',* and retain-
ing only terms through first degree in y, we obtain the strain displacement

relation

€ = N+ 9M (2.11)

* 2 . . )
The ratio y/{' is of order-(??ﬁs) for the type of deformation anticipated.
This is discussed in Section 2.2.%.
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where

=
]

(v'-t) + (c')2/2 (2.12)

and

=
1]

~(¢"+) . (2.1%)

From the form of Equation (2.11), it is evident that the midsurface
strain is N whereas the bending strain is 7M. We now show that N and M may
be interpreted as dimensionless tension and moment resultants, respectively.

The tension and moment resultants per unit axial length, N and M, are given by
N = J, oaz (2. 1ka)
and
Moo= [, o zdz (2.1kb)

where o is the tensile stress in the tangential direction. Throughout this

thesis the constitutive relation is assumed to be
2
o = eE/(1-v7) . (2.15)
Using Equation (2.15), Equations (2.1L) yield the relations

5 h/(2a) i
N(1-v7)/(En) = (a/n) _h/QQa) edy = N (2.162)
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and

5 s h/(2a) i
M2a(1-v_)/(En) = 3(2a/h) “h/(g&) ey dy = M. (2.16b)

Equations (2.16) may be regarded as defining relations for dimensionless ten-

sion and moment resultants per unit length N and M, respectively.

2.3, THE VALIDITY OF THE GEOMETRICAL APPROXIMATIONS

In the previous section a number of geometric approximations were intro-
duced based on the relative magnitude of displacement and displacement gradi-
ents. In this section the validity of these approximations is considered.
Since the actual nonlinear response is not known, it is not possible to ex-
plicitely determine the errors involved in these approximations. We can, how-
ever, get an estimate by considering hypothetical, but reasonable configura-
tions. If we neglect tangential inertia, it will be shown that the midsurface
strain is spatially uniform. Thus here we only consider configurations having
uniform midsurface strain. In particular, let us consider a family of hypo-
thetical shell configurations having circular arc sections each with uniform

midsurface strain as shown in Figure 3. The uniform midsurface strain condi-

tion leads to

* ¥

o
D

a8
aB * X

o
w

or

5 :‘%e _ (=7



The

o

s>

(oZh]
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Undeformed midsurface

Figure 3. Circular arc configurations.

quantities shown are:

The radius of the undeformed midsurface

The semi-opening angle of the undeformed midsurface

A midsurface material point with cartesian coordinates (X,H) and polar
coordinates (a,0)

The rise of point 0O

The unit normal vector to the undeformed midsurface

quantities corresponding to () for the deformed midsurface

— X
The midsurface displacement vector 00
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Using this and some elementary trigonometry, we find that

’ *
3 *
y = alcos 6 - sin B* cos (% 6) - cos P + Seas B* cos B] (2.182)
sin B sin B
and
. *
X = a3 s5in 5* sin (%‘ e) -~ sin 6} . (2. ].Bb)
sin B
where
*
x = X =X

o} =ix-jy=/ﬁa§+%adf@

The components in the two coordinate systems are related by

ag

- x s8in 6 + y cos 8

and

il

ay

X cos ©§ ty sin 6 .

Substituting Equations (2.18) into these and dividing by a, we get

B3
& = - sineliﬂg% sin(%‘@) - sin@]
sin B

*
sin in B
+ cos eﬁzos o - B* cos (%‘ 9) + &; cos B* - cos% (2.1¢)

sin B sin B
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and

x
¥y = cos 6 Lsm B* sin(%— e) - sin ®
inB

*
+ sin © [cos o - =2 P cos (%— e) y SinB cos B* - cos % . (2.20)

* *
sin B sin B

These last two equations are exact displacement expressions for a circular
arc shaped configuration with uniform midsurface strain. They form a basis
for estimating the relative magnitudes of displacement and displacement gra-
dient quantities. The quantity'B* may be regarded as the parameter for the
family of configurations.

The counterclockwise rotation is
* *
w = 86-6 = (1B Ble. (2.21)

Thus the normal and tangent unit vectors to the deformed midsurface are

ﬁ* = 7 cos (1-§*/B)e + % sin (1—673)9 (2.22a)
and
£ = Bosin (187 B)e + 2 cos (18 e . (2.220)

The midsurface strain is
* X * *
€ = ap /(aB)-1 =B sinB/(B sinp ) - 1. (2.2%)

To examine the relative magnitude of the various quantities, they were
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*
evaluated for two different values of B :

I

(1) B

*

(2) 8

O corresponding to the dead center position, and

il

-8 corresponding to the completely snapped-through position.

*
For 8 = 0, we find, by using L'Hospital's rule whenever appropriate,

that
t = 1 - (6 sinB sin 8)/B - cos 6 cos B J
¢ = (6 cos® sinp)B - sin6 cos B ,
®w = 06 (2.24)
and
€, = (sinB)B - 1. J

*
For B = -f, we get

2 cos 6 (cos 6 - cos B) ,\

¢ =
¥ = 2 sin 6 (cos 8 - cos B)
w = 20 (2.29)
and

Assuming that B is small, we find that in both cases § attains its maximum

value at 6 = B/ |3 . After expanding in a power series in P, we find that at
Xp ’

0 =pB/\3,

- 6% for8” = 0

Q

¢ /v
and

_2pZtorp = B .

Q

¢ /v
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*

WithB = 0.1 and B = -B, for example, ('/¥ = -200 and ¥ can be neglected in
comparison with {' with an error of about one half of one percent. All the
approximations of the previous section were examined for the two configura-
tions in a similar manner. In all cases the error of the approximations is

2 s s . . . s
& (7). This indicates that the analysis subsequent to Section (2.2) is valid

2 s , . .
to order B . Thus the analysis is restricted to semi-opening angles less than
about 0.1 to insure that the errors are within a few percent.
The assumption of elastic material behavior may also place a further re-
striction on P. For example, with mild steel the strain must remain less than
>

about 2 x 10 °. If the shell attains the dead center configuration, the mid-

surface strain given by Equation (2.24) is approximately

€ = 62/6 .
o)

For the steel shell B must be less than about .1l radian for no midsurface
yield. The actual dynamic response will not necessarily bring the shell into
the dead center configuration. Thus it may be possible for steel shells with
larger semi-opening angles to deflect below the dead center position without
plastic deformation via dynamical configurations with smaller midsurface
strains. Nevertheless, if B exceeds the value “Jg§7§ , where Y is the yield

stress; then the strain should be examined for possible yielding.

2.4, THE NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS OF MOTION
In this section the eguations of motion and the natural boundary condi-
tions are obtained from Hamilton's principle.

The kinetic energy per unit length along & generator is
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- %
If the rotary inertia is neglected, we can replace R with the corresponding

-% —

midsurface position vector, R = CO . After introducing the dimensionless
°

variables we obtain a nondimensional kinetic energy

2 p
% ;é [£54% a0 (2.26)

i
It
I

in which the dot denotes differentiation with respect to T, where

T = ct/a (2.27)
and
o w = (2.28)
2
p(1-v")

The strain energy per unit length of cylinder is

_ h/2

B
Vo= 2 ;é -HDQ oe(a-z)dz do . (2.29)

N f—

When the radial stress is neglected, Hooke's law reduces to
2
o = eB/(1-v7) . (2.15)

Substituting Equations (2.15) and (2.11) into (2.29), carrying out the integra-

, 2
tion and dividing by Eah/(l—v ) gives a nondimensional strain energy. It is

- 1
Vo= Vo= S L (KN eti) ae (2.30)
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where
a = n/(aVig) . (2.31)

The external loading is shown in Figure k.

p(6,t)

N (-g,t) R

Figure 4. Cross section with external loads.

The external bending moment, tension and radial shear force resultants
per unit length along a generator are Me’ Né and Qe, respectively. The inward
surface pressure is p. We shall take the direction of the differential pres-
sure force acting on an element of the shell to be the same as that of the
current midsurface normal; its magnitude is considered as p multiplied by the
undeformed midsurface differential area. These approximations are consistant
with approximations already introduced. It is convenient to introduce the

following dimensionless external loads:

Ne = (1-v2)Ne/(Eh) (2.32a)
N% = 12a(1-v2)Me/(Eh5) (2.72b)
ie = a(l—vg)p/(Eh) (2.32¢)
G 2 i z0.

4 = (1-v )ge/(hh) : (2.223)
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The equations of motion can be obtained through Hamilton's principle.

They are
- P - - (i) = 3, (2.7
and
F- = -t 7 (2.3L)

(N-F )sy = 0O (2.35)

(N'«x M'+Qe)ag = 0 (2.36)
and

(M -Msle'] = 0. (2.37)

The quantities in the parentheses always vanish at the ends. They represent
force boundary conditions when there are no restrictions on the variations.
When a variation quantity is required to vanish at the end, it replaces the
corresponding vanishing parenthesis as the boundary condition; there the ex-
ternal loading is an unprescribed constraint force.

Henceforth we shall restrict ourselves to boundary conditions where the
ends are fixed against translation and have elastic restraints against rota-
tion. The fixed end conditions imply that ¢ and | are zero at 6 = #3. The

restraints against end rotations considered here have the form given by
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(2.38a)

0 at 6

1
>

S W I

and

=
H

0 at ©

i}
1
w

S YR (2. 380)

where Kl and K2 are elastic constants. The factor l/B has been included for
later convenience.

To complete the statement of the forced vibration problem, initial con-

ditions must be specified on { and V.

2.5. CONDITIONS JUST AFTER AN IMPULSIVE PRESSURE LOADING
In this dissertation we take the external surface loading as an impulsive
pressure applied to the shell at 7 = 0. If the duration of the impulse is g,

then a dimensionless impulse is
€
I(e) = épe(e,'r)d'r. (2.29)

The geometrical configuration of the shell changes very little during the im-

pulse for sufficiently small &, Thus we take

((6,e) = t(s,0) (2. 40a)

and

i

¥(6,0) . (2.L0ow)

b

¥(e,€)

Equations (2.3%%) and (2.3%4) can be integrated to obtain an impulse-momentum
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relation. Since the force quantities which depend upon deformation alone are
always finite, they will make a negligible contribution for sufficiently small
€. Discarding these terms and taking the geometry to be constant during the

impulse gives
t(e,e) = t(e,0) + 1(6) (2. 418)
and
¥(e,e) = ¥(s,0) -¢'(e,0)I(6) . (2. 41b)

In most problems of interest, the shell is undeformed and motionless prior
to impulsive loading. Letting € approach zero, we take the conditions just
after the impulse to be at T = O. Thus the initial conditions at the onset

of free vibration are

t(s,0) = 0 (2. 42a)
t(e,0) = 1I(e) (2. 42b)
y(6,0) = 0 (2. 43a)
¥(e,0) = 0. (2.43b)

For these initial conditions the tangential velocity component ¥ may be
¢ ¥
neglected in comparison to ¢. If it is neglected in the kinetic energy ex-
pression (2.26), then the tangential inertial term does not appear in Equation

(2.3L4). Whereas Equations (2.3%3) and (2.34) constitute a fourth-order system

* (15)

This approximation was introduced by Reissner. Recently it was examined
in some detall for the linear vibration of a cylindrical shell of finite
length of Lovell. 16)
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with respect to time and hence require four initial conditions, by neglecting
tangential inertia we reduce the system to second-order in time. With this

we may no longer impose Equations (2.4%); ¥ and ¥ must assume whatever values

are necessary so that N remains spatially constant.



CHAPTER III

SUFFICIENCY CONDITIONS FOR DYNAMIC STABILITY

3.1 GENERAL COMMENTS

(5)

In a recent paper Hsu considers dynamic stability "in the large" for
free motion problems in terms of trajectories in functional configuration
space. For dissipative systems he discusses asymptotic stability regions;
within each region all motions asymptotically approach a statically stable
equilibrium configuration. Hsu presents sufficiency conditions for sta-
bility. He considers the motion tc be stable if the energy imparted to the
structure is less than the potential energy associated with the first critical
or static equilibrium configuration encountered by an expanding level energy
surface in functional configuration space. For a conservative system Hsu
tacitly considers orbital stability and points out that the above sufficiency
condition applies there also. Hsu asserts that the sufficiency condition is
also necessary for conservative problems. From continuity considerations it
is evident that the trajectories within Hsu's asymptotic stability regions
are also orbitally stable. Hsu illustrates his approach with the sinusoidal
arch problem using curved beam equations derived by Fung and Kaplan.(é)
Several of Hsu's ideas are used in the present study in which we treat the
circular arch using thin shell theory.

In this chapter we develop conditions which are sufficient to insure

orbital stability. For our analysis the critical configurations and their

strain potential are determined as a function of geometry.

2k
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3.2 THE CRITICAL CONFIGURATIONS

The critical configurations are deformation fields which satisfy the
equations of motion and are independent of time. For the shallow cylindrical
shell the differential equations governing the critical configurations are
obtained by setting the time derivatives to zero in Equations (2.%%) and

(2.3&)* For no radial pressure we have

of (4V +ag" ) - F (L) - g =0 (3.1)
and

-N' =0 (3.2)

From Equation (3.2) we conclude that N is a constant for each critical con-

figuration. Thus Equations (%.1) and (3.2) imply that
' 1" Y -
¢V r2at"+ ¢ = N/ (3.3)
where
~ 2
A = 1-N/(") . (3.4)
The general solution to Equation (3.%) may be written

- 2
¢ = Bl singl + BQ cosql + B5 sinrl + BU cosrl’ + N/of (%3.5)

*
In the footnote on page 22, we discussed an approximation in which the

tangential inertia term is neglected. Here, however, there 1s no ap-
proximation involved.
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where
q = Bﬂ/ﬁﬁl (3.6a)
r o= pa- 1 (3.6b)
and
r = o/p (3.7)

For supports fixed against translation we have
¢ = 0 at I = %1 (3.8)
v = 0 at I = +1. (3.9)

For the elastic restraints against rotation considered here, Equations (2.3%8)

may be written

¢! Kl/s -t -t" =0 at ' = -1 (3.10a)
and

¢ K2/5 + e+ t" = 0 at I' = +1. (3.10b)

After substituting Equation (3.5) into Equations (%.8) and (3.10), we can

express these two sets of boundary conditions in matrix form by

— - (A r
b

3 1
s c S C 1
2 2 2 2 A
-(q s-K_qgc) -(q ¢*K gs) -(r"S-K rC) -(r C+K rS) b 0
o 0 o o ol
2 2 2 2 14 (7 (3-11)
- - + - - + b 0
(q s Klqc) (g ¢ Klqs) (rs Ker) (r ¢ KlrS) 5
A



e

2 -
b, = - Bi/N for i = 1,2,3,k (3.12)

and we have used the following abbreviated notation:

-
s = sin q
¢ = cos q

( (3.13)
S = sinr
C = cosr .

A
Fquations (%.11) may be solved for the bi' The determinant D of the

square array in Equation (%.11), after some algebra, may be expressed as

22 2 2 2 2
-Df(2cC”) = [(q -r )+K2(qt-rT)]‘[T(q t-Kl)-t(r T-Klr)]
; (3.14)
2 2 2 2
+ [(q7-r)*K (at=rT) ]} [T(q t-K )-t(z T-K,r)]
where we have introduced the additional abbreviated notation:
t = tan g
(3.15)
T = tan r.
A
After some algebra, the b_l coefficients may be expressed as
A 2 2
cb (g +K _qt)(r +K_rT)
;D_._ . .__]_'_ = 2 1 (5 l6a>
2cece T 2 2 ’
-(q +K gt)(r +K rT)
1 2
2 2 2
A (r +K rT)[t(r T-K.r)-T(q t-K.q)]
__'2__ * ob = e 1 1 (3 l6b>
2cCe 2 ‘

+(r2+Ker)[t(rgT—KEr)—T(qgt-Keq)]
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. 085 —(q2+K2qt)(r2+Ker)
2c2c? v T > o (3. 16c)
+(q +K. qt) (r"+K_rT)
1 o
2 2 o
D A (a 7+ qt) [T(q t-K q)-t(r T-K r)]
pelce - by = (3.164)

2 2 2
+(q +K qt) [T(q t-K, q)-t(r T-K_r)]
1 2 2
The dimensionless midsurface strain (i.e., the dimensionless tension) is
related to geometric variables through Equation (2.12). It is

2

N o= y'- b+ (8) e (3.17)

From Equation (3.2) N is independent of 6. Thus Equation (3.17) can be inte-

grated with respect to I to give

- 1 .
N o=-3 [ tar +3 [ (¢)Tar. (3.19)

Equations (3.14), (3.16), and (3.19) define the five coefficients
Bl,...,B and N that appear in Equation (3.5) for (.
3.3 BALANCED SUPPORT CRITICAL CONFIGURATIONS

If the two elastic restraints against rotation are equal, i.e.,

K. = K = K (%.20)

then Equations (3.1L4) and (%.16) can be rewritten as
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D = uDlD2 (%.21)
A A B

Dbl = Db5 = 0 (%3.22)
A 2

le2 = C(r" + KrT) (3.23a)
A 2

Db, = -c(q” + Kat) (3.2%b)

where
2 2
Dl = ¢cC [(r -q ) +K(rT - gt)] (3.24)

and

()
it

cC [T(qgt + Kq) - t(rgT + Kr)]

eC (8[(¢° - £2)T + Kr] - TKq) (3.25)

1!

In Equation (%.11) let us subtract the fourth and second rows from the
first and third, respectively; then add the first and fourth rows. After

dividing each row by two we get

—~ - A W Y
s 0 S 0 b 0
1
(—q25+K qe) as (-rgs+K rC) KDrS g 0
2 2 =9 “>(5’26>
(g"c*K gs) (r C+K, rS) A
K_rC A b 0
Kch A Dr 5
A
0 c 0 C bu 1
L B W v \_ _/
where
K, = = (K +X) (3.27)
A 2 1 2
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and
= 2 (k -K) (3.27)
KD 2 1 2
For balanced restraints (i.e., Kl = K2 = K) System (3.26) divides into two
sets:
A
s S b 0
1
, , N (3.28)
(g s-Kae) (r s-KrC) b5 0
and
b 1
o C b2 ,
2 2 A = - (5'29>
(qd etKas) (r C+KrS) by, 0

The determinants of the square arrays in Equations (3.28) and (3.29) are the

same as D2 given by Equation (3.25) and Dl given by Equation (3.24), respec-

tively. Two possibilities exist for satisfying Equations (3.22) and (3.23):

A A
either (1) bl and b5 are both zero, or (2) D2 vanishes. Equation (3%.28) re-

A A\
lates b5 to b1 for the second possibility:
A
b s
2 . . (3.30)
by

3.4 SIMPLY SUPPORTED SYMMETRIC CRITICAL CONFIGURATIONS
A
For balanced supports the possibility in which bland €5 both vanish cor-
responds to symmetric critical configurations. Here, Equation (3.19) serves
as the characteristic equation.

For the simple support case (i.e., Kl = K2 = 0) the symmetric critical
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configurations may be written

212
B cosrl
2 [_ } (q) ] 1 cos qrl cosr !
¢ =8 7 [ (.1..————-)+(———2 )] (3.51)
B cos q T
- @]
q
where we have used identities (A.1) and (A.6) from Appendix A. We will see
2
later that g > 1 and that r < 8. Hence an approximation for { may be ob-
tained by using the relations
B 2
(q) <1 (%.%2)

and

r << L, (3.33)

Thus a good approximation for { is

L= [(—ll-g (1~§§:—f)+?§—<1-r‘2>] n (3.34)

2 2

The term B (1-I")/2 approximately represents the dead center position. The

- 2 2 s .
remaining term, g (l-cos qF/cos q)/q , represents deviations from the dead
center position; the deviations are smeller in magnitude and have more rip-
ples for larger values of q.

To obtain the characteristic equation for the simple support case, we
substitute Equation (3.31) into Equation (3.19). After using Definition

*
(A.7) and Identity (A.8) and rearranging, we get the characteristic equa-

tion

*
The geometrical parameter A\ introduced by Equation (A.7) is discussed in

Section 4.5 on page 92.
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G(q) = 0 (3.35)
where
2 2.5/r-C b g
¢ = ke[l + (B) J(Cs-cqlo+a( =1 - c(3) -8 1
q r A q
8 2 {: 5 sin 24 th[cq(%)—sC}
+ [1-(5) 77 aC (1- ) +
1 2 1-B"

1 - sin 2r
- c2q5h [———?§§§§*%J :}. (3.36)

By expanding C, S, and sin 2r and using the relations (%.32) and (3.33), we

*
obtain the approximation

G~ - sctq {l-gcg} (3.37)
where
2 b
g = 29 /3 - h(a/N) . (3.38)

By setting the right side of Equation (3.37) to zero we can approximately

express the characteristic equation as

T - Fw (3.39)

where

FPla) = a = al2d?/3 - b/ (3.10)

*
A careful numerical investigation varified that this approximation is wvalid
over the entire range of interest.
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and

Agf(q) = q sec2 q - tan q. (3.41)

Sketches of F and & are indicated in Figure 5. Inspecting Equation (3.L40) we
see that for a given value of g, Efxnonotonically increases with N. Hence the

% curves never intersect for @ > 0 and are all bounded by the limiting curve
B X
y = 24/3. (3.k2)

To see if Equation (%.39) is satisfied in the open interval 0 < q < /2, con-

sider the difference of slopes

L(q) = ﬁ_ﬁ

T - 1) . (5.43)

=00

We have the following inequalities:

sin g <g<tan @ for 0<g < n/2

and

cos g < Ei%—ﬂ <1l for 0<qg<«<n.
Hence

1< qsizsqq < qtjzsqq for 0 <qg< g .
Thus

Ar(a) >0 for 0<gq< g .
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y=X = b /15
(Locus of Maxima of )

/
y =49 ¢
(Locus of
’_%:5'5!? Minima of/y)
| 1 | 1
1 T T 1 1
62Tr 8 3 10
Legend: Broken Line y = /ﬁ
Solid Line y = F

Figure 5. Flots of Er’and yfunctions.
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and it follows that Equation (%.%9) has no roots on the interval 0 < q < g
The local minimums ofﬁgfoccur at (N, Nn) where N = 1,2,3,... Becausefézcon—

tinously varies with A, there are values of A, Xﬁ, for which Equation (3.39)

is satisfied at these points. They are

N (3.L4)
N 2
(Nx)"-3/2
The slopes of ?at these points are
g (Nn) 2 [1 - % (Nn)Q] <0 for N = 1,2,.... (3.45)

From continuity considerations we can conclude that as A increases special
values of A, XN’ are encountered where the 3 curve Jjust touches a new branch
of the,zfcurve and gives rise to a new pair of roots. Because of the In-

equality (3.45) we conclude that
N < (3.46)

A lower bound to the il may be obtained as follows. The maximums of §§3

occur at

o = A (3.47)

By using this to eliminate A from Equation (3.40) we obtain the locus of maxi-

mum of~§£:
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This intersects the line

at

V13
2

T
~1.935 > 7

From Figure 5 we see that a lower bound for il is A such that ;{:n = n. We

get
1
L 1
A =“\/ch3 (22110 < 2.68 .
L

The upper bound to Xl is readily calculated from Equation (3.4k). We
get

xl ~ 2.895.
Hence,

2.68 < il < 2.895. (%.49)

3.5 SIMPLY SUPPORTED NONSYMMETRIC CRITICAL CONFIGURATIONS

For balanced supports (i.e., Kl = K2 = K) the possibility in which D2

(given by Equation (3.25)) vanishes corresponds to nonsymmetric critical con-

figurations. Here the vanishing of determinant D2 serves as the character-

istic equation; once we have an eigenvalue g, Equations (3.19) and (%.30) and

A A -

Identity (A.6) enable us to calculate bl’ b5 and N.

The characteristic equation is
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t = (qE—I‘E)T ¥ Kr . (3‘50)

~ -q. (3.51)

For the simple support case of interest here, we set K to zero and get the

*
roots

q = nx; n =1,2,3,... (5.52)

The simply supported nonsymmetric critical configurations may be written

2.2
2 B
B [? } <q).J 1 (g . I+ ] cos qF)
¢ = 5 i ag | sina -
1- (q)
cos rl -1
C
b (3-53)
where
, k
-
gl: ‘: ;q>J2 éz : (3.54)
L[ @

As with Equation (3.%1) we have used Identities (A.1) and (A.6) from Appendix

A. Equation (3.53) may be used for the symmetric configurations by setting

gi (or Bl) equal to zero. Equations (3.5%) and (3.54) are well approximated
by
* .

The root q = O corresponds to no deformation. We also have roots q = -nr
(n = 1,2,...) which correspond to configurations whose shape is the mirror

image of configurations with q = +nm.



38

~ cos ar
—)

1 2
Q-1 (3.55)
where
b, ~ el 6
1 (E)g ‘ (3.56)
q
After substituting Equation (3%.53%) into Equation (3.19) and solving for
~ 2
bl we get
B2 T
g 2 I [l + (q) ] (g)u [1 ] (E)h-t _[r l} q2 .
1 B2 A q’ - re
(1 - (5]
q
sin 2r T
y o1 |t T 2 b
-Z - S| b - ok (3.57)
(er) [1 - q) ]

By expanding T, C, and sin 2r and using the relations (3.32) and (3.3%3) we

*
obtain the approximation

~ 2
wWhere
1
nla) = - == 3" g(q). (3.59)

The function g is given by Equation (3.38).

* . . .
A careful numerical investigation varified that this approximation is

valid for the entire range of interest.
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After examining Equation (3.59) we see that h is negative for sufficently
small q and for all q greater than some constant that depends upon A. If
h = 0 has no roots, there are no nonsymmetric critical configurations. For
each odd pair of two successive roots of h = O that are end points of an in-
terval containing integral multiples of n, the multiples of n are eigenvalues
q for nonsymmetric critical configurations. Thus we next study the roots of
h = 0.

The roots of h = O may be obtained from the equation

2

cos” q = Af(q,\) (3.60)

where
_ 1 _ 1L
#(qn") - g q2 i u(g->u - g (5~6la)
3 A
or
L
A (qn) = 57 2 x NG . (3.61b)
o (Zz o) (7 - 9)

In Figure 6 we have sketched the left and right-hand sides of Equation (3.60).
An examination of Equation (3.6la) reveals that & is a monotonically decreas-
ing function of A; hence the curves never cross each other. Further, the

positive branches are always above the curve

y = Mq,0) = 525 (%.62)
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2
Figure 6. Plots of cos g and‘ﬂf(q,x).

This latter function has no intersections with the curve

y = cos q (3.63)

in the interval

HIAN

0 = ¢ < 2 (3.64)
2
Hence no members of the family
y =AHg,n) (3.65)

intersect the curve (3.63) on the interval (3%.6L4). The second root of AL = 1

is given by
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1 ]
qQ = q*(k) = 3 g(l+ l-f}:) ‘ (3.66)

The function q*(x) is a monotonically increasing, unbounded function of A.
As N is continuously increased from'dgl values of A, i;, are encountered that

satisfy

q*(i‘) = nm,n o= 1,2,... . (3.67)

When N\ is increased to Xg, the n'th nonsymmetric critical configuration first

arises. After a little algebra, we find that Xﬁ is given by

L 1
~ 6(nn

This is identical to the expression for Xﬁ, Equation (3.44). Since the ex-

pressions for xn and Xﬁ are identical, the nonsymmetric and the even numbered
symmetric critical configurations have the same eigenvalue, q = nu, for
NED Y
n

It is of interest to note that as A 1s increased, a pair of symmetric
critical configurations always arise slightly before a single nonsymmetric
configuration; we can see this from Inequality (3.46). This result agrees

(5)

with the results of Hsu for the sinusoidal arch using curved beam equations.

3.6 THE POTENTIAL OF THE SIMPLY SUPPORTED CRITICAL CONFIGURATIONS
It is convenilent to introduce a second dimensionless form of the strain

potential as

~ .V
Vo= Pz (3.69)
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where V is given by Equation (2.3%0). After imposing Equation (3.2) on Equa-

tion (2.%0) and substituting V into (3.69) we get

<31
i

o Fo
+

1
5 f M2 ar . (3.70)
-1

After substituting Equation (A.7) and Identity (A.8) into {/’J, we have

L 1

R _ B2k gy L1 v

Te QTG eg ] i ar . (3-71)
The bending part of V is given by

~ _L l

v, = = i ar (3.72)

B 2

-1

where

Moo= (t" L) (2.1%)

Substituting Equation (3.53) into (%.72) we get, after some algebra,

22 L
~ _«[:-(q)_] 1 2 sin 2 q
V. o= = b, (1 - ———)
B 22]2 2 1 29
1
L&
1
t 5z +3/l +3; (3.7%8)
where
1 1 sin 2r bl r
J/1 B 21“2{2_ er [2+2qJ
C(a)

1 2
3 [L + cos 2r] [1 + i] } (3.7%b)
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and
2
t il .
= ooy 1t/ I - 5 3. 13¢c
2 2q e E g
Gl-&] &

Limiting processes, such as we have already done several times, lead to the

approximations

:TZ ~ 1 (3.Tha)
and

N~-Z (5.710)

Thus a good approximation for §£ is

~ 1y 2 _ sin 2q 1 _ 3t
g ;Dl (1 2q ) ¥ 22 Toq b (3.75)

The total potential is well approximated by

I ~ 2

~ 1
VAR

sin 2q 1l 3t .
2q )+ 22 T 2q + 1. (3.76)

~

For the symmetric configurations, bl is zero and G simplifies to

L
4 1 3t )
v (x) t 52 2q+l- (3.77)

The approximate expression for the characteristic equation, Equation (3.3%7),

may be rewritten as

2
1y o 4,49y _ %
+ EEE) = 5 2(X> . (3.78)

(-

21

Using this in Equation (3.78) we have
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- I
Vs ~ 1 + 3 -()\) -a‘ . (5'79)

For nonsymmetric critical configurations, by using Approximation (3%.58)

and q = nxn, we obtain the accurate approximation

2
(V) = 1+ (nn)  _ fom)" (3.80)

It is interesting to note that Equation (3.79) gives the same result for

1]

q@ = nx. Since we already established that when A = X;, the eigenvalues are

1l

g = nx for both the nonsymmetric and the even numbered symmetric critical

configurations, we now see that the potentials are also the same for this A.

Plots of ; versus A using the exact expressions (3.7%) with q also ob-
tained from exact expressions are shown in Figure 7.* The values of A where
each nonsymmetric curve begins are given by Equation (3.68). If we eliminate
nn between Equations (%.68) and (3.80) we obtain the locus of nonsymmetric
critical configuration beginning points. The locus is

A
> n_ _ 26
vV = 5/u+72 (L +1 {u). | (3.81)

n
Although it is not obvious from Figure 7, the v curves for the even numbered
* %
symmetric configurations cross this locus.

Turning back to the original purpose for the critical configuration

analysis, the second lowest V curve constitutes a stability sufficiency

*The calculations were also made using the approximate expressions for V and
for q; the agreement was excellent.

** ~ .

It was not determined if the V curves for the odd numbered symmetric con-

figurations also cross this locus.
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boundary; if the total energy of the shell is less than this level the shell
cannot exhibit snap-through instability in the sense discussed in Section 2.1.
In Figure 8 we have redrawn the % versus A curves shown in Figure 7 in
~ Ly 2 - .

the form 8V(\/n) versus A" /4. These last two quantities are directly com-
parable to ones used by Hsu(5) for the sinusoidal arch. The stability suf-
ficiency curve given by Hsu is also shown in Figure 8. Hsu's curve begins at
2
AN /b=2 (i.e., N = 2.828) with a symmetric critical configuration; however

2 C . . L .
as A /4 is increased beyond 5 (i.e., as A is increased beyond 2.91), his
curve is associated with a nonsymmetric critical configuration. For the

present analysis, the stability sufficiency curve begins at A = A (see

1

Inequality (3.49)) with the second symmetric critical configuration; as A is

increased beyond n, = 2.895, the curve corresponds to the lowest nonsymmetric

1
configuration.
In terms of V, Hsu's sufficiency curve 1s below our present curve by a

o]
constant value, (1- n”/3- nu/EM) ~ 0.23. In Figure 9 we have shown the per-

centage that Hsu's sufficiency curve is below ours.
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Legend:
2n'th Symmetric Critical Configuration: —— — — ——

n'th Nonsymmetric Critical Configuration: — — — —

~ (2n-1)'th Symmetric Critical Configuration:

Beginning of n'th Nonsymmetric Configuration at x=xn
(2n'th Symmetric Configuration Curves Also Pass Through
These Points): +

Stability Sufficiency Curve
of Present Analysis

Hsu's Stability Sufficiency Curve

~ 2
Figure 8. Flots of 8V(k/ﬂ)u versus A /L.
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CHAPTER IV

INFINITESIMAL VIBRATIONS

4h.1. GENERAL COMMENTS

In Chapter II we derived the nonlinear equations governing plane motion
of a shallow cylindrical shell. If the motion is sufficiently small, the sec-
ond-order terms are not significant and the equations governing the motion are
linear. Although this thesis is primarily concerned with nonlinear motion,
the linear solution is obtained to effect approximate solutions of the non-

linear differential equations.

L.2. GENERAL SOLUTION OF THE LINEAR EQUATIONS OF MOTION
The equations of motion for infinitesimal free vibrations can be obtained
by neglecting the nonlinear terms in Equations (2.33) and (2.34) and setting

pe equal to zero. After neglecting the transverse inertial term.é the equa-

tions become

C LB ) - = o (1. 12)
and

o= o (L. 1p)
where

o= (¢ (4 1¢)
and

49
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N = ¢y' -¢. (k.1d)

By differentiating (L.1la) with respect to 6 and using (4.1b) and (L.1lc) we

find that

.ot 2 v " 1
e = at(gag ) (1.2)
We seek a separable solution of the form

¢ = 2(e)T(r) . (k.3)
Substituting this into (4.2) leads to

v 2

zV + 22"z (1-p ) = O (L. La)
and

2 2

T+apT = 0 (k. kb)

2 2
where (-0"p~) is the separation constant. The solutions of (L.l4a) and (4. hb)

are

A eSe (4.5a)

N
1t

and

H
I

sin(apt+o) (4.5b)

where ¢ is a constant and s satisfies

s5 + 255 + (l—pe)s = 0. (4. 5c)
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The roots of this last equation are

s = 0, +in[p+T, #\|p-1'. (L. 6)

A solution to Equation (h.lha) is

Z = Al sin\|p+l 6 + A2 cos-4p+l'e + A5 sinhqlp-ﬂ 8

+ A coshejp-1'6 + A_ . (ho7)

Substituting Equations (4.7) and (4. 5b) into (L4.3) gives the following sOlu-

tion to Equation (4.2):

t(e,r) = [%l sin\[p+l e + A2 cos4/ptl 6 + A5 sinh4/p-1 6
+ ALL coshyp-1 6 + Aé] sin (apT+e) . (4.8)

It is convenient to introduce the following gquantities:

A= fB/\/-a-1 (k.9a)

v = Pyptl (49D)

o= oyp e VPsT (k.9c)

w = BYp-l = Jve-? (. 9a)
2 .2

u v P
u = ap = _E = —_2 — (u'9e)
A A
where the signs of the radicals are taken to be positive. The quantities p,

u, w, and p may be considered as functions of v. Using Equations (4.9) in

(4.8) we have
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t = Z(6)sin(ur+o) (4.10a)

where

N
]

Al sin vI + A, cos vl + A5 sinh wl + A, cosh Wl + A5 . (4.10p)

By substituting Equation (4.10a) into Equation (4.la), solving for N and using

xu = Bu/az, we get

N(t) = n sin (ut+¢) (k.11a)
where
v2w2
n = nA5 xu (4.11b)

Thus N is independent of 6 which is consistent with Equation (b.1b). If we

solve Equation (4.1d) for ¥' and use Equations (L4.10) and (4.11) we get

Vr(pT,T) = Al sin vI + A, cos VT + A5 sinh wl
v2w2
+A coshwl +A_[1-— sin (ut+o)
4 5 }
A
Integrating this yields
¥(e,7) = BY¥(e) sin (prt+e) + F(7) (k.122)

where
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A A

Y o= 7} (cos v - cos vI') + ?§ (sin vI + sin v)
A AM
+ ;%‘(cosh wl' - cosh w) Ll (sinh wI' + sinh w)
v2w2
+A |1 - (r+1) . (k.12b)
5 W

For each of a countable infinity of eigenvalues v, the value of v, the
ratios of constant coefficients, Al:AQ:AirAM:A5’ and the arbitrary function
F(T) can be determined from six boundary conditions. For each eigenvalue the
magnitudes of both ¢ and the set of cocefficlents can be determined from two
initial conditions.

4.3, NORMAL MODE SHAPES FOR END SUPPORTS ELASTICALLY RESTRAINED AGAINST
ROTATION
4.2.1. The Boundary Conditions

For infinitesimal vibrations the boundary conditions for supports elas-

tically restrained against rotation are

é KQQ' te+t" = 0ate = B (4.132)
% Ke -t - t" = Oate = -P (4.13b)
t(B,7) = 0 and t(-B,r) = O (k.1ka)
¥(B,7) = O and ¥(-p,T) = O . (4.1k4b)

Imposing the latter of conditions (4.14b) on Equation (L.12a), we see that

F(r) = O . (4.15)
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The first of Equations (4.14b) and Equations (4.15) and (4.12) imply that

A sinv A sinhw AT
2 b
" 2L (4.16)

v w AU

where

22
£, = (1-— h)vw. (4.17)

Imposing the Boundary Conditions (4.1lka) on Equation (L.10a) leads to

A sinv +A_ cos v+ A sinhw + A, coshw ¥ A5 = 0 (4.18a)

1 2 3
and

—Al sin v + A2 cos vV = A_3 sinh w + AJ+ cosh w + A5 = 0. (4.18p)

In view of Equations (4.1lhka), Equations (L4.13) imply that

2
A (v sinv - K. vecosv) -A (v cos v+ K2 v sin v)

1 2 2
2 . 2 .
+A5(w sinh w + K, w cosh w) + Au(w cosh w + K, w sinh w) = 0 (L4.192)
and
-A (v2 sin v - K. vcos v) +A (v2 cos v + K. v sin v)
1 1 2 1
2 > _
+A5(w sinh w + Kl w cosh w) - Ah(w cosh w + Kl w sinh w) = 0 .(4.19b)

In this chapter the following abbreviated notation is introduced:



55

©n
i

sinv, ¢ = cosv, t = tanv

w
I

sinhw, C = coshw, T = tanhw (L.20)

With Equations (L4.20) the Boundary Conditions (k.16), (4.18), and (4.19) can

be expressed in matrix notation as

s c S c 1 rAi\
2 2 2 2
- - - + + +

(v's ngc) (ve ngs) (w's KZWC) (wC KéwS) 0 A,

0 = 0 WS 0 Vo f A
y (" >

+(v25-K ve) -(v20+K vs) ~(w25+K wC) (w20+K wS) O A

1 1 1 1 L

-5 C =3 C 1 A
- s,

(k.21)

4.3.2. The Characteristic Equation
For Equation (4.21) to be satisfied, the determinant of the square array
must vanish. This condition gives the characteristic equation which may be

expressed as

2 3 2 3 2
- + . + - + -2u f -
[ (2u T+K w)t + K vT] [ {w K1(2u T Vfl))t (v’ T-2u ) Klwa ]

5

2 3 2 2
+[ - + + . + - + - -
[-(2uT Klw)t KlvT] [ {w K2(2u T vfl)}t (v'T-2u fl) Kgwal]

- 0. (4.22)

For brevity we introduce the quantities

2
a, = 2u T+ Ksw
1
% 2
= + K (2uT ~ vf
Py v  (eu vEy)
_ P e
12 T - 2u fl - Ki wal
5y = KT | i = lor 2. (k.23)
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Using these, Equation (4.22) can be expressed as

AtS - 2Bt - C = O (L.2k)
where

A = aEBl + alBE (4.25a)

2B = (6261 + 51B2) - (oc27l alyg) (L.25D)

¢ = 6271 + 6172 . (L.25¢)

Solving Equation (L.24) for t gives

t = F(v) (k. 26)
and

t = ’éé(v) (4.26b)
where

— .

Fy) = FAE (1.272)
and

- B - J32 + AC

Fv) = : (L.27b)

A

These results simplify for several speclal cases. When the two elastic

restraints are the same,; Equations (k.27) reduce to
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KvT

X(v) = — (4.28a)
2u T + Kw
and
V§ 2
~ -(v'T-2u fl) + Kwal
F(v) = 5 > (4.28b)
w + K(2u T—vfl)
where

K = K. = K_. (4.29)

For this case the characteristic Equation (4.22) reduces to the product of two

factors

5

2 3 g ' 2
[-(2u T+Kw)t + KvT][{w" + K(EuaT—vfl)}t + v'T-2u f_ ) - Kwal] =0 .(L.20)

1

Equation (4.28a) is associated with the vanishing of the first factor whereas
Equation (4.28b) is associated with the vanishing of the second. We shall see
later that Equation (4.28a) leads to asymmetric modes while Equation (4.28b)
gives rise to symmetric modes. Thus in the more general case the set of roots
given by Equation (4.26a) can be considered to give rise to "asymmetric like"

modes, i.e., modes that become asymmetric when K. approaches KE; similarly, the

1
set of roots given by Equation (4.26b) gives rise to "symmetric like" modes,
i.e., modes that become symmetric as Kl approaches Kg'

For the case of rigid end supports, the eguations for the two sets of

roots are obtained by dividing the numerator and the denominator of the right
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side of Equations (L.28) by K and letting 1/K approach zero. They are

- vT
Fv) = = (4.51a)
W
and
~ wal
F(v) = —. (4.31b)
T -
2u Vfl
For the simple support case, we can set K to zero in Equation (4.28) and
obtain
F(v) = 0 (L.32)
and

2
~ —VBT + 2u fl

F(v) = : (4.3%3a)

Equation (4.%2) implies that

v = nn; n = 0,1,2,... . (4.33b)

*
The zero root corresponds to a trivial solution. In numerical work that fol-

lows, attention is focused on the simple support case.

To obtain roots associated with Equation (L4.32%a) we need to examine the

*
We will be able to see this from Equations (4.41a), (L.L2), and (4.43) and
the identity Ve 4wl = 2u°,
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~

behavior oszﬁ. Figure 10 shows plots of'zﬁ versus v for A = 3, 7, and 15
and B = .25. Although difficult to detect in Figure 10, there are two roots

near the origin:
v = B, i.e., u = O (4.3ka)
and

B2, i.e., w = 0. (4.2hD)

<
i

~

These two roots lead to trivial solutions. The function 3 is essentially in-
dependent of the semi-opening angle B and hence N is the only significant geo-
metrical parameter. This parameter will be discussed in Section 4.5. 1In gen-
eral, the function’ék increases to a maximum at v approximately equal to .658..
It then decreases very sharply. As can be seen from Figure 10, the roots of
Equation (4.26b) will be nearly odd multiples of n/2 except for one or two
roots in the vicinity of v = A or v = n/2.

In general we will denote the nontrivial roots of Equation (L4.26a) as

;n and the nontrivial roots of Equation (L.26b) as v For the simple support

case, it is clear from the above discussion that

(2n-1) g < §n < (2n+1) g (k.35a)
(2n-1) g(;n < (2n+1) g— , n o= 1,2, (L. 350)

and K_ are not equal

This is also probably true for the general case when Kl 5

to zero.
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’ | |

5t +

_31-(.

_5]1.,

-4

- t
0 /2 7 3n/2 2% 51/2
v

Figure 10. Plots of the characteristic function Eﬁ for sym-
metric modes for % = .25 and A\ = 3, 6, and 15 for the simple
support case; also, plots of the tangent function.
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L.3.3. The Linear Radial Displacement Mode Shapes

For each eigenvalue obtained from either Equation (4.26a) or (L4.26b), the

ratio of coefficients Al:AE:AB:AM:AS can be determined through Equation (L.21).

When an eigenvalue and the corresponding ratios of coefficients are introduced

into Equation (4.10b), we obtain the linear radial displacement mode shape as

Z = A sinv [ +A cos v I + A sinhwl + A
n 2n n 3n n

coshwl + A
n 1n n

kn

5n

~

where vn represents either Gn or vnc We will denote the mode corresponding to

;n as Zn and the mode corresponding to ;n as Zne A similar notation will be

used for the constants Ain

For the special case where Kl = K2 = K, we will find that %n is a sym-

metric function while Z_ is an asymmetric function, i.e.,
n

A= X5n = 0 (4.37a)
and

E‘zn = L&Lm = 1‘&5n = 0, n = 1,2,... (4.37p)
Also we will find that

Aﬁn = 0, n = 1,2,... (4.28)
Anticipating these results, we solve for Azn’ Ain’ Khn’ and ASn in terms of
Aln but solve for Kln’ Kﬁn’ th’ and Z5n in terms of KQn' For the tilde set

we get
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A
:l = %? [(w2+leT)(v2+vK2t) - (w2+wK2T)(V2+VKlt)] s (4.29a)
b R
A s 2 2 2 2
2 o S (P T) (VL) - (WK T) (VL) ] (4.390)
K ffC 1 2 2 1
2
~ 2 2
) [2u Tt - K (vT-wt)] (v +vK_t)
C 1 2
- - 5 5 5 (4.39¢)
A &C [+[2u Tt - K (vT-wt) ] (v +vK_t)
2 2 1
A [20° + K (wT+vt)]-[-2u°Tt + K, (vI-wt)]
2 ~C 2 ,
~ T~ o 5 (4.294)
A2 B [+[eu” + Kl(wT+vt)]’[~2u Tt + KQ(VT-wt)]
where
N [EuETt - KE(VT—wt)]°(w2+leT)
= r‘ (h'596>
+[2u2Tt - K](VT—wt)]-(wd+wK2T) .
For the barred set we get
A [2u2Tt + X,_(wt-vT) ] (wl+wK_T)
2 T 2 1
I . > (4.40a)
A 66 +[2u Tt + K (wt-vT) ] (w +wK.T)
1 1 : 2 ’
"5 (w2+leT)'(v2+vK2t)
il I e (4.40b)
Al s | -(w +wK2T)-(v +VKlt)
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=g}

where

ard

For

plify to

and

il>2]|_JZ

N

m:1>2 IP’ 2

=] l\ﬂ:!>2
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2 2
[2u Tt + Kg(wt—vT)]-(v +thlt)

~ 2
JSTS +[2u Tt + Kl(wt—VT)]=(V2t+VK2t) ,

[ou® + K, (wve) T+ [ (20Tt + K, (wt-v) ]

51 |+[2u° + Kl(wT+vt)]‘[(2u2Tt + K, (wt-v) ]

2 2
(V'+VK2t)°(w +wK_T)

1

, 2 2
+ (VKL L) - (WK T)
(v vKl )« (w ‘WK2 )

(4.50c)

(4.404)

(4.40e)

the special case where Kl = X, = K, Equations (4.39) and (4.40) sim-

2
c(v Kvt)

C(w +KwT)

no
o

uc[2u2 + K(wT+vt) ]

2
(w~ + KwT)

(4.k41a)

(k.41b)

(b.h1e)
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=1

= 0. (4.42)

g IF\D
I
r—*:bl I\N>'
i
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|

Use was made of the characteristic equation in establishing that AQ/Al =0

= AM/A1 in Equation (L.42). From Equations (L4.L4la) and (L.42) it is now evi-

dent that 7 is symmetric while Z is asymmetric for the special case of Kl =

K2 = K. For this reason let us term En and Zn as "symmetric like" and "asym-

metric like" mode shapes for the more general case.

For the case of simple supports, i.e., for K = K2 = 0, we get further

1
simplifications:
A 2
:E _ CV2 (h.43a)
A2 Cu
and
A 2
-c2
2 - = (4.43b)
A
5 w

These equations are used in the numerical work to follow.

Finally we select the coefficients A2 and Al So as to normalize the mode

shapes, 1i.e., so that

1L 2
[, Z7ar = 1 (b 4h)

where I' = 6/B. By substituting Equation (4.10b) into Equation (4.44) and in-
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tegrating, we get

2 sin 2v 2 sin 2v 2| sinh 2w
= A - =1+ A o=+ A =
! 1 l} 2v } 2 E 2v :] 3[ 2w ﬂ

2| sinh 2w 2 wCs~vSc
+A | —m + + A 2+ A_A —_—
h[ & ' 2 152[ u2 ]

-
wSc+vCs hs 4s
+AA 2|: > bk S A (L4.45)

u o

Equation (4.45) can be used to obtain A2 and Al for normalizing 7 and Z, re-
spectively.

For the special case where Kl = K, = K, we find by using Equations (4.45),

2
(b.4la), and (L4.42) that

~ \2 ~\2 ~
jg = 1 + s12 2v i Ei%i;gﬂ + 1] + 2 o+ i
A v A A A
2 2 1,
Nh wSe+vCs N5 Ls K5 Ls ~
e | B A2 2222 v = (4.462)
A W IS R VY
1 2 2
and
Lo L5 (4.46b)
-2 2v
A
1
For simple supports, i.e., Kl = K2 = 0, Equation (L4.46b) gives
AL = 1. (L.47)

Equation (4.76) gives the normalized inward radial mode shapes when v
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are given by either Equations (4.26a) or (L4.26b). The quantities A and Aln

2n
satisfy the normalizing condition, Equation (4.L45), with the ratios of coef-
ficients given by Equations (4.39) and (4.40). In Appendix B on page 131,
it is proved that these normal modes are orthogonal to each other. Thus we
have the useful orthogonality relations

il ZqudF = 6pq; p,q = 1,2,... (4.48)

where Zn represents either a "symmetric like" or "asymmetric like" mode shape
and 6pq is the Kronecker delta. Figures 11 through 16 show plots of

~

En(e)/Zn(O) versus [' = G/B with A as the parameter for the simple support case
_x_
for B = .05 for the first six symmetric modes. The corresponding plots for

the asymmetric modes are ordinary sinusoids.

L.3.4. The Tangential Displacement, Tension and Bending Moment
When the eigenvalues and amplitude ratios are introduced into Equation
(h.l?b), we obtain the tangential displacement mode shapes. Using Equation

(L.16), Equation (L4.12b) becomes

A
1m 2m
Y (Br) = — (cos v _=-cos vI)+—sinv T
m v m m v m
m m
AB Ahm
+ =% (cosh w I - cosh w ) + — sinh w T
W m m W m
m m
22
"in'm
+ A 1 r (b.k9)
5m L
A
where v, again represents either $n or vp.
*
Accurate plots were also made for P = .25 but no differences could be de-

tected by eye.
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Figure 11.

Plots of first symmetric mode shapes normalized to the center,

21(0)/Z110), versus I' = ©/p for § = .05 with the shape parameter 1. as the
parsmeter.
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Figure 12. Plots of second symmetric mode shapes normalized to the center,

zg(e)/Eg(o), versus I' = 8/p for A = .05 with the shape parameter A\ as the

parameter.
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Figure 15. Plots of third symmetric mode shapes normalized to the center,

Z5(6)/Z5(O), versus I' = 6/8 for B = .05 with the shape parameter A as the
parameter.
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Figure 14.

Plots of fourth symmetric mode shapes normalized to the cen-
ter, Zu(@)/%u(o), versus I' = 6/ for R

as the parameter.

.05 with the shape parameter
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Figure 15. Plots of fifth symmetric mode shapes normalized to the center,

%5(6)/§5(O), versus I' = 68/8 for 8 = .05 with the shape parsmeter )\ as the
parameter,
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Figure 16. Plots of sixth symmetric mode shapes normalized to the center,

~z6(e)/z6( 0), versus I' = 8/8 for p = .05 withthe shape perameter A as the
parameter.
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Unlike the inward radial displacement mode shapes Zn’ the tangential mode
shapes are neither orthogonal nor normalized. Figures 17 through 20 show plots
of En/Kgn versus [ = G/B with A as the parameter for the simple support case
for B = .05 for the first four symmetric modes.*

The constant tension associated with these mode shapes can be obtained

from Equation (4.11lt). We have

L (4.50)

Finally, we introduce mode shapes for the dimensionless moment resul-

tants:

mo= (2 +2). (4.51)

In Equations (4.50) and (4.51) we will again denote these quantities with
a bar when referring to asymmetric like modes and a tilde when referring to

symmetric like modes.

L.k, THE INFINITESIMAL MOTION FOR SUPPORTED ENDS
In the previous section we found a countable infinity of modal solutions
to the equations of motion, Equations (4.1). The general solution is a

linear combination of these soluticns. Thus

*
Accurate plots were also made for B = .25 but no differences could be de-

tected by eye.
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Plots of ?1/321 versus ' = G/B with A as the parameter for the

simple support case for the first symmetric mode and 8 = .05.
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Figure 18. Plots of ?2/7&22 versus I' = 9/8 with N as the parameter for
the simple support case for the second symmetric mode and 8 = .0S.
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Figure 19, Plots of §5/Z25 versus [ = 6/6 with A as the parameter for
the simple support case for the third symmetric mode and 8 = .05.
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simple support case for the fourth symmetric mode and 8 = ,05.
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For brevity, we write
t = X T 7 (4.53)

where

*
T = Tn sin (pnT + ¢n) . (k.5k4)

The summation will sometimes denote the right side of Equation (4.52) or may
also denote 7. Enin alone or 7, Tnzn alone, depending on the context. The quan-

*
tities Tn’ M and ¢n are constants. ©Similarly, we have

o= 0 ann (k.55a)

N = 2 Tn (4.55D)
nn

M = 2 Tmn (4.55¢)
nn

From Equation (4.53) we have at 7 = O

¢ = LT (0)Z (4.568)
and
¢ = LT (0)z . (1.56b)

Using Equations (k.56) and the orthogonality condition (L.48)

)

, !
Tm(O) = Tm sin o = [l g(a,o)zmdr . (4.57a)

and



9

=]
Py
(@]
NS—
1
-
=
=]
ISR 3
@]
O
n
<
I
1~

i é(e,o)zmdr . (4.57Db)

When the loading is a pressure impulsively applied to a previously
motionless and undeformed shell, the initial conditions are given by Equa-

tions (2.42). Introducing these into Equation (4.57) gives

6 = 0 (4.58a)

and

* 1
pwT o= £1 12 ar (4.58D)

where I is the nondimensional impulse. Equations (L4.53), (L.54), (4,55), and
(4.58) completely define the infinitesimal motion for the type of initial con-
ditions considered here.

As a specific example, numerical calculations were made for the dimension-

less impulse distribution

I(6) = ¢t(e,0) = %@(e,o) - %cosE (4.59)
where vo is the initial velocity of the shell at © = O. Figures 21 through 26
show plots of cﬁ/v0(= _CQAVG /vo) versus T; Figures 27 through %2 show plots
of cg(O,T)/vo versus T. For each series of plots, the semi-opening angle B is
.05 and the ) values are 3, 7, 8.25, 10, 13.25 and 15. The infinite series
were truncated after the first ten symmetric modes for these plots.

The dimensionless midsurface strain (i.e., the dimensionless tension)

shows a beating effect for certain values of A. The effect is quite pronounced
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for A\ = 8.28 and for A = 15. For small values of A the dimensionless central
deflection consists mainly of the fundamental mode; but for higher values of

A the presence of higher harmonics is evident.

4.5. THE GEOMETRICAL PARAMETER M

Previously we found that the modal solution is virtually independent of
the semi-opening angle P and essentially depends only on A. To appreciate the
geometrical significance of A let us first note that the rise of the midsur-

face is
H(e) = alcos © - cos B] .

The power series expansion of HE = H(O) is

2 L
§ é_.g_]

0 2!

2
In view of Equations (4.9a) and (2.31), this implies that A  approximately
._I 1 2, . . . .
equals HO h8/h. Thus N 1s essentially proportional to the ratio of the mid-
surface rise to the thickness.

The square of the geometrical parameter may be expressed as

G B (1.60)

where 1 = 2aB is the undeformed midsurface arc length. Figure 33 shows a plot
of » versus P with (l/h) as the parameter. Also indicated are two forbidden

*
regions: (A) l/h < 10 in which the shell cannot be regarded as thin, and

*
The ratio h/a is sometimes used as a measure of thinness. Since h/a may be
expressed as EBh/l, this ratio is always small when h/l is small for the semi-
opening angles allowed in our analysis.
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(B) B < 0.1 in which geometric approximations based on a small semi-opening
angle are not valid. There is no theoretical upper bound for A. However

values of A corresponding to l/h ratios much larger than, say, 1000 hold

little practical interest.
15 1=
- 1/h = 1000

Region A: 1/h < 10
Thin shell theory is not
valid.

104 1/h =500

Region B: 8 > .10
Geometrical epproximations
based on small B are not

514 1/h = 100
‘ valid.

NP

1/h = 10
0 i.xISS's!ESSE§!E§GIIEE§ﬁ§§§§!i"'
.05 B .10

Figure %3. Plot of X versus R with 1/h as the parameter.



CHAPTER V

METHOD OF SOLUTION OF THE NONLINEAR PROBLEM

5.1 GENERAL COMMENTS

In Chapter II, we derived the nonlinear partial differential equations
governing plane motion of a shallow cylindrical shell. To obtain an exact
solution does not appear to be feasible. In this chapter the nonlinear prob-
lem is reduced to a system of ordinary differential equations derived from a
Galerkin procedure. The method requires that the solution be represented
in terms of a series of orthogonal spatial functions which satisfy the bound-
ary conditions. Here we choose the linear vibrational modes for these func-
tions. The coefficients in the series are functions of time and may be viewed
8s generalized coordinates. The method yields an approximation whose error

is orthogonal to the spatial functions.

5.2 REPRESENTATION OF NONLINEAR DISPLACEMENT AND DEFORMATION QUANTITIES
For the nonlinear analysis let us represent the radial displacement by

a "modal Fourier series" analogous to Equation (4.53). Thus

t = L TZ (5.1)

mm

where the T ere time varying "Fourier'" coefficients. The coefficients can
be regarded as generalized coordinates.
We assume that tangential inertia may also be neglected in the nonlinear

analysis. Then from Equation (2.3L) with ie set to zero,

94
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N' = o. (5.2)

With this the tangential displacement | may be obtained by solving Equation
(2.12) for y' and integrating with respect to 6. Imposing the latter of
Equations (4.14b) and using Equation (5.2) gives

T

yo= (TrD ) g7 ar (5.3)
-1

™ |+

Substituting Equation (5.1) into (5.3) yields

%w = (r+1) N+ X T [-Q?Zm(r) - —;— 2 T Em(r)] (5.4a)
m=1 m=1
where
1 r
%m(r) = -3 _{ zmdr (5.k4p)
and
r
& (0 = {1 z! 2'dr (5.Lc)

The nondimensional tension may be obtained by imposing the first of Equa-

tions (L.14b) on Equation (5.Lka) and solving for N. Thus

No= e, T (5:22)
where
. o
Cave, = 2 tar s "? L (5.50)
-1 m=1

and



1 ®
= l‘_ v2 - ; !
No= g [ ()" ar L 3 re T (5.5¢)
-1 m,n=1
in which
= _ B -]:- l .
N o= 77m(1) = -7 {1 2 dI (5.5d)
and
1
e = Emn(l) = {1 z'2'dl. (5.5¢)

The arrays ﬁm and € caen be calculated directly from the functions 77m(F)
and.zilmn(F) once the integrals of Equations (5.4b) and (5.4c) are derived.
These functions are given in the next section.

The dimensionless moment resultant can be obtained by substituting Egqua-

tion (5.1) into (2.1%). The result is
M = 2 Tn (5.6a)
where

m.o= u(z[’r; + zm). (5.6b)

Thus once we obtain the Tm(T), we can calculate ¢, M, N, and y using
Equations (5.1), (5.6), (5.5), and (5.4), respectively.

5.3 THE FUNCTIONS 77m AND Emn AND THE CONSTANT ARRAY ﬁm

To express the functions 77m and E;mn defined by Equations (5.4b) and
(5.4c) in a concise manner, it is convenient to introduce the abbreviated

notation:



97
c = cosv I, s = sin v I, C_ = Cosh wl, S =Sinhwr (5.7)

When no confusion will result, we will drop subscripts for brevity.

Introducing z  from Equation (4.3%6) into (5.4b) gives gvm as

A c A s A_C AS T
N(r) = T + + I'A (5.8)
2 v v W w 5
-1
The array obtained from Equation (5.8) is
= A2msm Ahmsm
nos N s )
' m m I'=1
By adding Identity (4.16) to this, we get
2 2
= i'm
N =3 A . .
m }\K “m (5 9)

Thus ﬁm reduces to the convenient expression for nm given by Equation (4.50);

o]

this is to be expected since mzl Tmﬁm is the linear part of N.

Introducing the mode shapes into Equation (5.kc) gives

L
(r) = 1
Zmn\l) | Z BimIij(m,n,F) By (5.108a)
1;3=1
where
= vA ,B =-vA ,B =whA ,B =wA .10b
1n Yn 1’ Pon Vnon’ %n n 2n’ “hkn n Ln (5 )
e —
and Je ¢ ar fe s dar JeCcdr  fe S dr
m n mn mn mn
j‘smcndr f s s dl / s € dr J smSndF
Ii,(m,n,F)= (5.10c)
J JC e ar fC s dar fc ¢ dar fc s ar
mn mn mn m n
ar S Car S S dr
_ffmcndr fsmsn f mn f mn ]
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The limits are understood to be from -1 to I'. The functions I, (m,n,T) can
1J

be obtained by direct integration. For m ¥ n the matrix for Iij(m,n,F> is

IlB(H’m’T)

Ilu(n,m,F)

For m = n the matrix for I  (m,n,I') is

I
12

Ly

1L

vss treoe T wSct+tv (Cs T wCc +tvs S Trq
mmn nmn n mnm n m n
2 2 2 2 2 2
v -V v +w v +w
m n -1 m n -1 m n -1
vsc-vsec T wsS -ve C T wsC-vec S T
m mnm nmn m n nmn mmn
v2 V'2 V2+W' v2+w2
m n -1 m -1 m n -1
) wWSC -wSC T wCC-wSS |
lP5(n,m,F) m m n m nmn mmnm
) w2 w2 w2 w2
n -1 m -1
. wCS-wsS C I
I?u(n,m,F) I5u(njm,F) mmn m n
- w2 w2
m -1
(5.11a)
1d
Is I T -
sina vl wSc+vCs wCectvsS
2 4y +
v 1 vetw 1 votw 1
I T
sin QVF:] wsS-veC wsC-veS
- 24yl
b~y 1 1 v a1
, .2 T
I (Sinh 2wl . E:]P Sinh  wi
ek z 2w
23 - Lw ed | 1
. r
L X [Slnh ouT g]
2L 3 Uw 2 1
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5.4 DERIVATION OF THE EQUATIONS GOVERNING THE NONLINEAR MOTION OF THE
"FOURIER COEFFICIENTS"

After neglecting the transverse velocity in the kinetic energy expression,

Equation (2.26), we get

~ 1 02
T =3 fB t=de. (5.12a)
-B
Since N is independent of & we can replace Equation (2.30) with
2 B
v o= gﬁ2+g— [ ifae. (5.12b)
-B

The Lagrangian equations of motion may be written
é—(—.—)+-— = 0 qa = 1,2,... (5.13)
dr oT 0 e

where the Tq are generalized coordinates. Substituting Equations (5.12) into

(5.13) we get

1 .

d e
[5 S ar e
-1 q q -1

(=)
+

Q

(—

- aﬁd
M ﬁ r =0. (5.1k)

Substituting Equations (5.1), (5.4), and (5.5) into this and using the implied

summation convention and using Ni =0, we have

2
o T / mmquF = 0. (5.15)
-1

where the Eq are defined by Equation (3.5e). Using the orthogonality rela-
n
tion, Equation (L4.48), and noting that € is symmetric, we can simplify

Equation (5.15) to
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o - 1
T + 2N + T + T ° = 0 .
q (nq z memq) m zﬁmq (5.16a)
where
5 1
= dar. .
Eﬁmq o [, mm AT (5.16b)

For infinitesimal vibrations, Equation (5.1fa) reduces to

%q +T (enn +F ) = o (5.17)

m q mq

Since this must be equivalent to Equation (L.Lb) we can conclude that

(f)q - 2(n2)q for m = g (5.18a)
%, -
. - Enmnq for m # q. (5.18b)

which can also be verified by direct calculation. Substituting Equations

(5.18) into (5.16a) and using Equation (5.5¢) we get

o0t v g = o (5.192)

where

A&f = 2qu +NT & . (5.19b)

The quantities pq, ﬁ, nq, N and qu are given by Equations (4.9e),
(5.5¢), (5.9), (5.5a), and (5.5e¢). The last term of Equation (5.19a),
’gjq’ is & nonlinear coupling term which becomes negligible for infinitesimal
oscillations. After writing out the coupling term in detail, Eguation (5.19a)

becomes
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_— eI, = O (5.19¢)

The initial conditions for the generalized coordinates are

Tq(O) = 0 (5.20a)
and
1 1
[ t(e,0)z ar = [ 1z ar (5.20D)
1 a4 a2 ¢

i

Tq(O)

for an initially undeformed shell. The system given by Equations (5.19) and
(5.20) governs the nonlinear motion.

No closed form solution was found for the highly nonlinear system of
equations given by Equation (5.19c). If the system is truncated to find N
unknowns, however, it is readily integrated numerically using the Runge Kuta
method. To do this, it is convenient to convert the given system to the

system of first order equations.

%p = F, 5 p=l2...2n (5.21a)
where

. %q (5.21b)

(2q-1) = Tq (5.21¢)

Py - T - & (5.21a)

F(Qq_l> = qu (5.21e)
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Equation (5.21a) can be expressed by the matrix equation
Y = F(Y) (5.22)

where Y and F are vectors having 2N dimensions whose elements are given by

Equations (5.21). Letting io be the vector with elements

(y.), = T(0) (5.238)

and

(Tolpger = 1500, (5.230)

the initial condition can be expressed as Y(0) = &O. The solution to the
system defined by Equations (5.21) and (5.2%) is discussed in the next

chapter.



CHAPTER VI

THE NONLINEAR MOTION

6.1. GENERAL COMMENTS

For the freely oscillating structure with prescribed boundary conditions,
the dynamic stability problem is to determine the critical initial velocity and
displacement fields associlated with instability. A technically important case,
one of primary interest in this dissertation, arises from impulsive loading of
structures with a prescribed displacement field. Here only the critical
initial velocity fields are sought.

In Chapter III we obtained a sufficiency condition for stability. Viola-
tion of this condition does not, however, imply that snap-through will occur.
In this chapter we seek the actual critical initial velocity fields associated
with dynamic snap-through instability. We consider instability here as a dis-
continuity in an appropriate response parameter with respect to changes in
initial conditions.

To obtain all possible critical fields does not appear feasible. For the
numerical work in this chapter (except as noted) we restrict the initial con-
ditions to zero displacements and cosine shaped initial velocity distributions
with a slight additional asymmetric component. The initial conditions being

considered may be expressed as

. - f3\2 I —
t(e,0) = 1I(e) = Ej; cos(%? + kf) (6.1a)
7

and

10%
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t(e,0) = o (6.1b)

where

€ = 5 (6.1c)
is an initial velocity parameter and

Fo- zigi r(L-r9) . (6.14)

The function F 1s an asymmetric cubic having a maximum of unity at I' = l/J31
and k 1s a constant. In most of the subsequent numerical work, the initial
conditions are symmetric, i.e., k = 0.

To examine the sensitivity of the nonlinear response to slight deviations
in shape from the pure cosine initial velocity distribution, numerical results
are also presented for initial velocity distributions having the form of
(1) the lowest symmetric radial displacement mode shape, (2) a triangle, and

(3) a cosine plus a small asymmetric component (k = 0.1).

6.2. MEASURES OF RESPONSE

We have considerable latitude in choosing a measure of response. A sig-
nificant discontinuity in the motion with respect to initial conditions will
be attended by a discontinuity of many continuous functions of the elements of
the vector §.

Since the elements of Y are dimensionless, we could consider the length
of the configuration vector §,

- °° . 1/2
¥l =~/ 7 v - {?l t2ar + f* ngé] , (6.2)

-1 -1
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as a measure of response. We recognize the second integral in Equation (6.2)

as

(E - V)

w I
=1
il

™ Ine

where E is the nondimensional total energy. Thus

_ o 1/e
it ¢Far +—§- (E - V)] (6.3)

-1

x|

and hence Y depends upon current deformation and not explicitly upon the
velocity.

The response parameter which is adopted for presenting our results is de-
fined as

Ii at ar

8(r) = (6.4)

hOR TR TSN R0

1
[~ Har
-1

It represents the ratio of the average radlal displacement to the average rise
of the shell. This measure does not directly reflect the asymmetric component
of the current shell configuration. The asymmetric component of ¢ only affects
® indirectly through its effect upon the symmetric component of ¢. Neverthe-
less, 1t is a good measure of the overall shell configuration when the motion

is essentially symmetric and has been used by a number of investigators.

6.3. RESPONSE PARAMETERS FOR THE CRITICAL CONFIGURATIONS
For interpreting our results, it is of interest to make comparisons be-
tween actual configurations encountered and the critical configurations. For

simply supported critical configurations we have
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5 =~ %(1—3“—‘1)“ (6.5a)
a
q
or
L D gk
&~ S [V+ ()] (6.5Db)
q
”_;‘;_N q2 ql‘ t 6
Vv = 5 = 1+ ?; - (z) - a (6.6)
B
I
-NA 2
-~ 4q (6.7)
B

where g is either nx for the n'th nonsymmetric critical configuration or is a
root of Equation (3.35). The mode shape "Fourier" series expansion of Equation

(3.34) for symmetric critical configurations is

t ~ ) BZ (6.8)

where the coefficients are

3 5 sin vn . sinh wn
= B7A nﬁi—— +»€> + g —— é
n 2 2 v n W n
q n n

td
!

sin (v. ~q) sin (v_+q) 24
n n n
- + + (w sinh w cos q
v - q v +q 2 2' ' n n
n n w_ o tq
n
. gin q 1 )
N + -
+ ¢ cosh W sin q) 2€n ] 5 - [2vn cos v
A g ¢ q g
a
+ (v2 - 2) sin v ];L .= [(w2 +2) sinhw - 2w cosh w ]—-——E
n n VB w5 n n n n 3
n n

(6.9)
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6.4, THE NONLINEAR RESPONSE

To ascertain the nonlinear response, the system of Equations (5.20) was
numerically integrated on a digital computer using the Runge Kuta method.

Along with each solution point ;, various quantities were calculated including
E, t(o,T), E, 5, E, and the response parameter & defined by Equation (6.4), As
a check on the numerical accuracy, the total energy E was monitored at each
time point. It never varied from its first solution point value by more than
0.2% and the variation was usually considerably smaller.

The time step size and the number of degrees of freedom were selected by
trial and error. It is found that a time step size of one-twentieth of the
Infinitesimal vibration half period corresponding to the highest linear mode
shape retained is sufficiently small. Steps of about this size were used
while determining the number of modes required.

The number of modes required varies both with the shell geometry and with
the size (and possibly the shape) of the impulse. For very small vibrations,
the modes are essentially decoupled and the smallest modal expansion that con-
tains most of the energy of the initial conditions is adequate. However, for
the large amplitudes considered here this expansion may not have enough terms.
For example with » = 6.0, 8 = .05, and ¢ = 1.55 for a cosine impulse, four-
and six-mode expansions contain all but .00347% and .00231%, respectively, of
the theoretical input energy; yet the time response of & for the two expansions
begins to differ noticeably during the second oscillation (see Figure Loy,

Direct numerical integration reveals that the number of modes needed tends
to increase as the geometrical parameter A\ 1s increased. The number of modes

selected for subsequent numerical work was such that using an additional mode
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changed the maximum value of &, EMAX’ by no more than one percent. The time
interval used here was from T = O to the next zero of &. The impulse param-
eter ¢ for this determination was such that & exceeded unity. A two mode
representation was found to be inadequate for all geometries considered. The
following numbers of symmetric modes give acceptable convergence for & for the
first half cycles: four for A = 3, five for A = b4, six for A = 7, and eight
for A = 10. More modes are probably needed for longer periods of time.

Figures 34 through 42 show plots of the time responses of the parameter
d for geometrical parameters A of L4, 5, 6, 7, and 10. Except for Figure 36,
these curves are for initial conditions given by Equations (6.1). Of these,
all are for pure cosine impulses (k = 0) except for three in which k = 0.1:
one curve each in Figures 34, 37, and 40. With the exception of two curves
shown in Figure 38, all plots are for semi-opening angles 8 of .05.

Figure 42 illustrates that for a given A and dimensionless impulse I(9),
the response is virtually independent of 8 for a few oscillations when B is
small. As large amplitudes develop, however, variations in the motion appear
for different values of B. Moreover, it was found that the numerical solution
was completely different for B = 0.2. This is probably due more to the geo-
metrical approximations introduced into our analysis than to a physical phenom-
enon. The qualitative invariance to small P suggests that conditions for im-
mediate dynamic snap-through for one particular value of B are valid for a
range of B. On the other hand, if an accurate description of the long term
motion is wanted, the correct semi-opening angle must be used.

In the present discussion we are seeking to characterize dynamic snap-

through of the shell., As we have previously noted, such behavior should be
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indicated by a discontinuous jump in our response parameter at some critical
initial conditions. From a numerical viewpoint it is difficult to find such
discontinuities precisely. As a feasible alternative, we determine the condi-
tions for which the response parameter changes from relatively small amplitudes
to relatively large amplitudes for small changes in initial conditions. The
interpretation here is somewhat arbitrary. For definiteness we will consider
that the shell has snapped-through whenever & exceeds 628 if the motion is sym-
metric or exceeds B if the motion is nonsymmetric. The constants & and

1N 2s

ElN are values of & corresponding to the second lowest symmetric and the lowest
nonsymmetric critical configurations, respectively.

If the initial energy imparted to the shell is sufficiently high, the
shell snaps-through immediately (i.e., without intervening oscillations).

This type of behavior is illustrated by Figure 36, Figure 37 with ¢ = 1.85
and k = 0.1, Figure 40 with k = 0.1, and Figure 42 with ¢ = 1.2.

A delayed snap-through phenomenon is illustrated by Figure 34 with k =
0.1, Figure 35 with ¢ = 2.22, Figure 38 with ¢ = 1.2, Figure 39, Figure 40
with kX = 0 and Figure L1, The modal convergence of & was established only for
the first cycle of oscillation; the accuracy of these curves is not known over
the full intervals of time shown.

The shape of the impulse may have an important effect upon dynamic snap-
through. Adding an asymmetric component seems to enhance the possibility of
snap-through. This is illustrated by Figures 24, 37, and LO. From Figure 37 we
see that for A = 5, the shell does not snap-through with E = 11.581 when k = 0O,

whereas it immediately snaps through with E = 11,093 when k = 0.1. By compar-

ing Figure 35 (E = 6.44) with Figure 36 we note the response to three different
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shaped symmetric impulses having the same energy. The general character of the
responses is somewhat the same. However, snap-through was delayed for the co-
sine distribution, whereas it was immediate for a triangular distribution and
for a distribution in the shape of the lowest symmetric mode.

To study immediate dynamic snap-through, the maximum value of 6(=6MAX) in
the time interval T = O to the next zero of & is plotted versus ¢ with A as the
parameter in Figure L3. For A = 2.8, the curves have a nearly vertical part,
denoting the onset of snap-through. For definiteness, the critical value has
been selected as the value of e(=€CR) corresponding to & = 1.5. A plot of
€og Versus A is shown in Figure Lk,

It is difficult to obtain critical conditions for the phenomencn of de-
layed snap-through. Extensive numerical computation is required, since there
is no a priori condition for determining the time interval that should be ex-
amined, It is not clear that delayed snap-through will occur for all geome-
tries. The cases of delayed snap-through that were observed, of course, have
values of ¢ below the €cg CXVe of Figure 4k, 1In Figure 45, plots of the in-
variant form of energy versus A are shown for our stability sufficiency condi-

tion as well as for various dynamic snap-through conditions. All cases of de-

layed dynamic snap-through fall between curves 1 and 2.

6.5. TOPOLOGICAL INTERPRETATION OF RESULTS

It is expected that the critical configurations have an important role in
determining the type of motion that the shell may exhibit. We have already
used the critical configurations for determining a sufficiency condition which

insurcs that dynamic snap-through cannot occur. The numerical investigation
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Figure L45. Energy versus A\ for a stability sufficiency condi-
tion and for dynamic snap-through conditions with a cosine
impulse.
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has shown, however, that a wide variety of dynamic behavior may be exhibited.
It also appears that the sufficiency condition is quite conservative, at least
for some distributions of impulsive loading.

The following heuristic argument is an attempt to give a general inter-
pretation to our results. As a motion trajectory is traced out in functional
configuration space, a corresponding surface path is traced out on the poten-
tial energy surface. The general features of this potential energy surface
are determined by the critical configurations. In a generalized sense, stable
static equilibrium configurations are the low points of valleys in the surface.
Unstable configurations will occur either at the high point of a hill or as a
pass or saddle point in the ridges separating different valleys.

The undeformed configuration is, of course, a stable equilibrium point
located at the bottom of a valley. For impulsive loading of a previously un-
deformed structure, all surface paths originate from this point. These paths
can only lead out of this valley through passes or over ridges. If the tangent
to the surface path has just the right direction at the origin (i.e., the right
shaped initial conditions), the path may exit the valley directly through a
pass with the energy level of the critical configuration which is located at
the pass. On the other hand, if the direction of the tangent is held constant
(i.e., the shape of the initial conditions is prescribed), the surface path
during the early stage of the motion may not come near any critical point.

Thus immediate snap-through can occur only if the initial kinetic energy is
sufficient for the surface path to reach the top of a ridge. The total energy
of this trajectory will be higher than the lowest pass.

A surface path with energy insufficient for immediate exit will be a com-
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plicated curve traced out over the valley. 1In some circumstances it may en-
counter a lower ridge or even a pass and then exit (i.e., exhibit delayed snap-
through).

In the present investigation the static stability of the critical con-
figurations was not examined. For the case of simple supports the lowest sym-
metric critical configuration is statically stable. It is likely that all
other critical configurations are statically unstable. The lowest energy for
which a surface path could leave the valley is the energy associated with the
lowest pass. This pass is above the lowest (nontrivial) critical configuration.
To determine the specific critical configuration located at the lowest pass
involves a fairly extensive investigation. In the present problem, however,
it is probable that this point corresponds to the critical configuration of
second lowest energy: the second symmetric critical configuration for
Kl <AL Ti or the lowest nonsymmetric critical configuration for 71 < A
The rather high energy levels associated with the actual dynamic snap-through
found here are probably due to the particular form of initial conditions. We
would expect that distributions with large asymmetric components would snap-
through at lower values.

Finally we consider the implication of truncating the number of terms in
our modal representation. In our numerical work we are attempting to span

functional displacement subspace with the N-dimensional Fourier coefficient

vector
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We are, in effect, constraining the motion to paths for which all coefficients
with index greater than N vanish. It is difficult to say how constrained and
unconstrained surface paths of impending snap-through would differ. It is
clear, however, that the constrained surface paths cannot come near critical
points whose Fourier coefficients with index greater than N make a significant
contribution. Thus in numerical work it is necessary to retain enough modes to
accurately represent all of the critical configurations. As a check on the
number of modes used for A = 5, the Fourier coefficients for the first three
symmetric critical configurations were computed. The convergence of this rep-

resentation is illustrated in the following table:

MODAL FOURIER COEFFICIENTS FOR EXPANSION OF
EQUATION (3.34) FOR A = 5 AND B = .05

Mode Symmetric Critical Configuration
Number First Second Third
1 L764597 .5312k7 .315983
2 -.671k70 -,291530 -.505843
] -1 -1 -1
3 .313105 x 10 J1hoo1lk x 10 .170%16 x 10

-.514-0759x1_o"2 uzauslede nE%%Mileg
3 3

g

5 .148549 x lO_2 .730080 x 10 .828655 x 10

5 b 5

6 -.75%254 x 10 -.380660 x 10 - hzh175 x 107

The first six terms were used to compute the strain potential energy. The re-
sults agreed with those given by the analytical expression, Equation (3.72),
to within 1.16%, 0.170%, and 0.153%, respectively. We conclude that the num-

ber of modes used was adequate for representing the critical configurations.



CHAPTER VII

CONCLUSIONS

The dynamic stability of plane strain motion arising from prescribed
initial conditions of a shallow circular cylindrical shell has been analyzed.
Critical configurations based upon thin-shell theory have been determined; a
stability sufficiency condition has been obtained in the form of the strain po-
tential energy of the appropriate critical configuration. Quantitative differ-
ences are found between these results and Hsu's which are based upon a shallow
beam theory and apply to the sinusoidal arch.

As a preliminary to finding the nonlinear solution, an analytical solu-
tion was obtained for infinitesimal vibrations of the shell with general elas-
tic restraint bending conditions; detalled results were presented for the
simple support case.

Using a Galerkin technique, a system of ordinary differential equations
has been derived that governs large amplitude motion for general elastic re-
straint bending conditions. For the simple support case, the nonlinear response
has been examined and conditions of immediate dynamic snap-through instability
have been obtained for initial conditions corresponding to cosine impulses. It
is found that a delayed snap-through phenomenon sometimes occurs for energy
levels insufficient for immediate snap-through. The energy levels for impend-
ing, delayed snap-through have been observed to be between that of the lowest
nonsymmetric critical configuration and that of impending immediate snap-

through.

126
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The required number of modes of representation has been examined and
found to depend upon both the size of the impulse and the geometrical param-
eter kGBQyAE;VGi;E?). It is found that previous investigations of the shallow
arch did not use enough modes. Numbers of modes adequate for the convergence
of a response parameter © during its first half cycle have been presented.

More modes are probably needed for longer periods of time. For several exam-
ples of delayed snap presented in this investigation, the modal convergence of
& was not established for the full period of integration.

Several results of the present investigation are found to be virtually
independent of small semi-opening angle 8. These include the critical configu-
rations, the infinitesimal vibrations, and the nonlinear solution for the first
two oscillations of ®. However, when B is changed appreciably, important quan-
titative differences in the nonlinear solutions appear after longer periods of
time. This would seem to suggest that investigations of long time, large am-
plitude motion of other shallow snapping elements may also need geometrical

parameters that characterize ratios of rise to span in some way.



APPENDIX A

IDENTITIES FOR THE CRITICAL CONFIGURATIONS

Here we develop some identities that are useful for studying the critical
configurations.

If we multiply Equations (3.6a) and (3.6b) together we get the identity

qr = B . (A.1)

By squaring Equations (3.6a) and (3.6b) and taking their sum and difference we

get

2qr A (A.2)

Q

+
=
i

and

I

2 2 2
q -r 2qrV A~ - 1 . (A.3)

From (A.3) we have

5 2

(¢" - rz)

5 (A - 1)(A+1) . (a.4)
(2qr)

Solving (A.2) for A and substituting A into (A.L4) we get

(g -r)

2qr

(A - 1)(q + r)°

Solving this for (A - 1), we conclude from Equation (3.k4) that
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Using (A.1) in (A.5) we conclude that

P D <§’2]2
P 25)°

Let us define a geometrical parameter A\ by*

ro= pyal .

Then,
> B4 Blhagk
@ = (D) = Q)

Solving (A.6) for the midsurface strain N and using (A.8) we have

2

=1

y
(BFD - (B

From physical considerations it is clear that

= |
A

for the critical configurations. From (A.5) this implies that

A>1

*The geometrical parameter A is discussed in Section 4.5 on page 92.

(A.7)

(4.9)

(A.10)

(A.11)
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Using this inequality, we conclude from Equation (3.6) that q and r are both

real and that

q>r . (A.12)



APPENDIX B

CRTHOGONALITY OF THE RADIAL MODES

The orthogonality of the linear radial modes is proved in this appendix.

Equation (k4.1a) may be rewritten

ﬁ _ *E +062(CW

tath +¢t) . (B.1)
By substituting Equation (L4.3) followed by (L4.4b) into this we have

N o= nnefzt + ezt 4 (1 - p /)] . (B.2)

In view of Equation (L4.1b), this can be rewritten

= |

= 1 () (B.3)

where n is a constant. By using Equation (4.3) in Equation (k4.lc), we can

write

=1
]
A
@
~—
3
—~
A
~—
—~
sv]
=
~

where

m = -(z" +2) . (B.5)

Solving Equation (L.1d) for V' and using Equations (L4.3) and(B.3), we may write

vto= (n+2)T . (B.6)

This may be written
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vto= c'(e)T (B.7)
where
C' = o+ . (B.8)
By integrating Equation (B.7), we get
b= CT g g, (5.9)

where wR B is a constant corresponding to rigid body rotation. We shall as-

.

sume  vanishes at O = + B; hence we may set ngB‘ to zero and write
yo= c(e) T(T) (B.10)
where
c = (8 +B)y+ fe zde . (B.11)
-6

By substituting Equations (L4.3), (B.3), and (B.4) into Equations (k4.la) fol-

2
lowed by (L4.4b) and then canceling o T we get
2
»pZ»m"+Z"+Z—"Bé'=O¢ (B.12)
o}

After rearranging we have for the m'th mode

2 '
(1 - pm)Zm - mé +z" -— = 0 . (B.13)

[ 1a6 (B.1k4)



(O I O A A (B.15)
Then multiplying Equation (ii.13) by Zn and integrating we have
2 1" 1" 1
0 = (L-p)<Z2Z >-<m"Z >+<2"2 >- =<n 2z > (B.16)
m mn mn mn 2 m n
Q
Interchanging subscripts and subtracting we get
2 2 1" 1" 17 1"
(p_ - p)<ZZ >-<m"Z >+<n"Z >+<2"2 >-<2"2 >
n m m n mn nm m n nm
1 1
- — Z + — Z = .
5 <nZ > 5 <nzZ > 0 (B.17)
a (04
From Equation (4.1b) we have
Nt o= 0 (B.18)
This 1mplies that
- ' =
<nmcn> o . (B.19)
Integrating Equation (B.19) by parts, we get
- <n'C > = - + < ! .2
n.Co (nC ) +<nc > (B.20)
Using Equation (B.3), this becomes
- s = - ¢ + < >+ <72 > B.21
<n.c > (nCJ+<nn 2, (B.21)
Interchanging subscripts and subtracting, we get
. n + ' = = - + \ + < Z > - < Z >
< r]an = <nncm> 0 (nmcn} {n’nCm} 0nn "nm

(B.22)
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. . . 2
Appending Equation (B.22) multiplied by 1/a” to Equation (B.17) and the rear-

ranging we get

2 2 1" 14 " n
(p_ - p)<Z 7Z > <n"Z >-<m'"Z >-<2"7 >+<2"7 >
n m mn nm nm mn nnm

+

ie (nC) - 35 (nC) - (B.23)
a 04

Integrating the first two integrals on the right-hand side by parts twice,

Equation (B.23) reduces to
(02 -2)<ZZ > = mz)- mz]- @2+ (mz)
n “m’ “mn m n n'm m n n m

1 1
+S )-S5 e (B.24)
a a

Since ¢ and ¥ vanish at both ends, this reduces to

2 2
- 7 - temz') . .2

For the elastic bending restraints given by Equations (4.13a2) and (L4.13b), the

right side of Equation (B.25) identically vanishes and orthogonality is proved.



APPENDIX C

QUANTITIES NEARLY INVARIANT TO THE SEMI-OPENING ANGLE B

In Chapter II we found that the shapes of the critical configurations are
relatively insensitive to the semi-opening angle B. The same thing was found to
be true of the linear mode shapes in Chapter IV. 1In Chapter V we found that
the system of ordinary differential Equations (5.19) does not depend explicitly
upon B; it has only a mild, implicit dependence through Relations (L.9c¢),
(4.9d), and (4.9e). Thus it seems evident that there are several quantities
that are nearly invariant to the semi-opening angle B. Quantities found to be

nearly invariant to B are

2 2

€=V /(ep ), an initial velocity parameter.

=2 . . . .
BN /o, an invariant midsurface strain.*
N T 2 ) . .
V = V/(Ba), an invariant potential energy.**
e 2 . . c
T = T/(Ba )s an invariant kinetic energy.

2 ° . 1. . n . .

Tm/(B )y an invariant "Fourier" coefficient.
Zm’ a linear radial displacement mode shape.
Zlm and ng, asymmetric and symmetric mode normalizing coefficients.
l?[/a, an invariant configuration vector-length.
5, a response parameter defined by Equation (6.4).

*See, for example, Equation (A.6) for critical configurations.

**For example, cf. Equations (3.70) and (3.80).
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