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A form of the Glimm-laffe-Spencer cluster expansion, adapted to the statistical mechanics setting, is 
shown to converge for certain two-body potential interactions. The theory treated corresponds to negatively 
charged fermions and positively charged bosons interacting by a modified Coulomb interaction-the 1/ r 
potential, cutoff at high and low momenta, becoming (ll r)(e- Q, -e- Y'). 

INTRODUCTION 

In Ref. 1 a formalism was presented to adapt the 
semi-Euclidean approach from constructive quantum 
field theory to statistical mechanics. In the present pa­
per the Glimm-Jaffe-Spencer cluster expansion2 is 
shown to have a close analog in this setting. The theory 
treated corresponds to negatively charged fermions and 
positively charged bosons interacting by a modified 
Coulomb interaction-the 1/r potential, cutoff at high 
and low momenta, becoming (1/r)(e-ar 

- e-rr
). For suit­

able values of the parameters the cluster expansion 
patterned after ReL 2 will be shown to converge. We 
hope to come back in a later paper to the y == 00 case, 
whose treatment should require only technical improve­
ments over the present procedure. The methods of Ref. 
3 apply to the interaction treated in the present paper, 
but not to the y = 00 situation. We have no definite ideas 
on how to treat the physically interesting case with Ci 

=0, y=oo. 

A knowledge of Ref. 2 is required to read the present 
paper. Space is cut into unit cubes-the greater flexi­
bility of allowing other size cubes is sacrificed to agree 
most completely with Ref. 2. Before presenting fUrther 
details we point out the following similarities and dif­
ferences to orient the reader. 

(a) The potential (1/r)(e-ar - e-rr ) is interpolated by 
exactly the same procedure as in Ref. 2. 

(b) Unlike Ref. 2 we here interpolate Hamiltonians 
rather than covariances. 

(c) The interaction portion of the Hamiltonian is inter­
polated as indicated in (a). The kinetic energy portion is 
interpolated by erecting parameter dependent barriers­
an infinite barrier giving Dirichlet data. 

(d) Estimates of integrals of functions on Euclidean 
space are replaced by operator estimates from Ref. 1, 
characteristic of the semi-Euclidean approach. 

We anticipate extension of the present work to more 
general interactions, as well as the development of a 
cluster expansion for boson-fermion field theory models 
within the semi-Euclidean formalism. 

1. THE CLUSTER EXPANSION 

Space is filled with unit cubes {.c./}. Each.c. i is of the 
form ai <S Xi <S a i + 1, i == 1,2,3 for some set of integers 
(al, a2, as). A union of such cubes is said to be intimately 
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connected if it remains connected after removal of all 
edges and vertices (i. e., contacts must take place 
across faces). The set of faces is denoted by {Ft}, the 
indexing of .c. j and Fi being unrelated. If W is a union 
of cubes, we define 

(1. 1) 

for a small parameter I). 

With a given Was above, we associate the Foch 
Hilbert space, Hw, constructed of functions vanishing 
outside W. Trw is the trace over this Hilbert space. 
Our interaction will be made up of Yukawa interations 
e-rrr /r, in the infinite volume. For a union of cubes W 

we define y:;"(x, y), x and y in W, by 

(1. 2) 

and 

y:;"(x,y)==O ifYEOW. (1. 3) 

Note that 

y~3(X, y) == exp(- n \x - y \)/ \ X - y \. (10 4) 

With a union of cubes W, we associate .c.w, the 
Laplacian on functions defined in W satisfying Dirichlet 
data on oW. A is a fixed finite intimately connected 
union of cubes. -;jJ, <J; and (jj, ¢ are fields describing 
fermions and bosons, respectively. H == HA is the 
Hamiltonian defined on H A: 

HA ==H~ + VA, (1. 5) 

1 - 1 - Jl- Jl-
H~ == - 2M <J;.c.A<J;- 2m ¢.c.A¢ +13l/Jl/J + 73 ¢¢, (1. 6) 

VA=~: (/[Jl/J- ¢¢)vA(-;jJl/J_ ¢¢):, (1. 7) 

VA == q2lv~ _ y~). (1. 8) 

Integrals have been suppressed. If it is clear, the A 
indicators may be omitted. For any union of cubes, W 
say, a similar expression HW may be constructed. Using 
the notation of Ref. 1, we want to consider an expres­
sion of the form 

(1.9) 

with A a polynomial in the fields. For simplicity we 
will also assume all the fields in A localized in a fixed 
cube .c.o• 
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We now proceed to consider the interpolated Hamil­
tonians. A chanracteristic function for a neighborhood 
of the face F j is defined as follows: 

Xj ={x I d(x, F j) < o} (1. 10) 

With each F j is associated a parameter S j, 0"" S j "" 1. 
We define 

h(s)= (l/s)-l (1.11) 

so that h(O) = 00 and h(l) = O. The barrier potentials are 
given by 

(1. 12) 

(1. 13) 

v s is v interpolated by the same definition as in Ref. 
2. This makes sense since exp(- nr)/r has a Fourier 
transform with the same form as a covariance. Thus 
we have 

(1. 14) 

Time dependences are introduced as in Ref. 1. Finally 
we have the interpolating Hamiltonians: 

Hs(t) = Ho(t) + Vs(t) + Es(t). (1. 15) 

Note Hs(t) =H(t) if, for all i, Sj = 1. 

Weare now set to define the cluster expansion. For 
any union of cubes X define 

X"=A_X (1. 16) 

and Zw by 

(1. 17) 

Our substitute for (3015) of Ref. 2 is the following: 

Tr A[T exp(- ]oBHA(t) dt)A]/Z A 

= 6 Jar Trx[Texp(- J:H~(t)dt)A]ds(r) 'Zxc/Z. 
x 10 Co 
l10eX 
rex (1. 18) 

The notation L c. means that X must be intimately con­
nectedo r, as in Ref. 2, is a subset of the faces in the 
interior of X, such that the faces not in r but in the in­
terior of X do not separate the interior of X. The result 
we claim is that for fixed /3, m, M, and y- O!, if IJ. and 
O! are large enough and If and 0 are small enough then 
(1. 18) converges uniformly in the volume A. From this 
result follows analogs of all the results in Ref. 2. 

2. UNIFORM STABILITY OF THE POTENTIALS 

The two-body potential v (x, y) is said to be stable if 
for any set of N points {Xi} 

N 

L v(xj,x) '" - CN 
jv 

(2.1) 

for some constant C independent of N and the {Xj}. Ap­
plying this definition to our problem, we claim there is 
a constant L such that 

205 J. Math. Phys., Vol. 17, No.2, February 1976 

'" - Lq2Jwdx(~1/! + ¢cp)(x). (2.2) 

We say the v~ are uniformly stable. L is independent of 
W, q, and {Sj}. In fact, L can be picked equal to 
t(y- O!). Without loss of generality we set q = 1 in the 
remainder of this section. 

For orientation we consider the free case, W=R3 

ands j =l, alli. Thenv=exp(-O!lx-yl)/lx-yl 
- exp(- ylx-y 1)/ Ix- y I. There follows 

tIl dxdy: (~I/!- ¢cp)v(~I/!- ¢cp): 

=i f J dx dY(~1/! - ¢cp) J ~ exp(ik 0 x) exp(- ik· y) 

x (k2 ~ 0!2 - k2 ~ Y) (~I/! - ¢ cp ) 

-i f dX(~I/!+¢CP)(x)(y- O!) 

",..:..t(y- O!) f dx(~I/!+¢CP)(x). (2.3) 

We have used the fact that a positively weighted integral 
of operators times their conjugates is positive. 

In the general case v~ is constructed as a positively 
weighted sum, with total weight one, of {v~, in which s 
the values of the Si are restricted to one and zero. It is 
sufficient to prove the result for a single v~. Say the 
Sj in s equal to zero are those for which iEI. Let{cpJ} 
be the set of eigenvectors of A in W satisfying Dirichlet 
data on a Wand F j for i E I: 

ACPj = - AjCPj, 

Assume the CPJ are normalized: 

Jwcp~=1. 

Then 

and 

t J Jw dx dy : (~I/! - ¢cp)v~(~1/! - ¢cp) : 

'" - i Jw dx(/pi/! + ¢cp)v';(x, x) 

as in (2.3). There follows 

'" - i J dx(~1/! + ¢cp) 0 sup v~(x, x). 
x 

We are reduced to estimating v~(x, x): 

w 47T 47T 
vs= _A+0!2- -A+Y 

for the Laplacian satisfying the data in (2.4): 

So 

v~(x, x) = 47T 10" (exp(- 0!2t) - exp(- /32t) Jj dlJ.~.x dt, 

paths (W, s), 
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(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2. 10) 

(2.11) 
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where dJJ.~.x is the path space measure constructed for 
mass 1/2 and the paths summed over lie in Wand avoid 
oW and U 1E1 F i • Clearly this is ~ the value of the sum 
over all pathso So 

v'f-(X, x) ~ y- Q. 

3. A GRAND CANONICAL ESTIMATE 

We define local number operators N i : 

Ni = [t::..("!PI/J+¢¢)dx. . , 
For a set of integers {QI} we want to estimate 

G(Q) = Trw[exp(- (3Hf /2)rrN;'i~]. 
i 

(2.12) 

(3.1) 

(3.2) 

We claim if I W I is the volume of W, and if JJ. is large 
enough, there is a Cl such that 

G(Q).:s (~Q~i) . exp(cll WI). (3.3) 

Letting D(z, V, T) be the grand canonical ensemble par-
tition function, we see 

~ 

D=:L,ZNQN(V, T) 
o 

= (ze2)N QN(V, T) exp(- N) exp(- N) 

= (ze2)N QN(V, T) (~exp(- N i ») exp(- N). 

(3.3) follows from 

and D(ze2 , V, T).:s exp(cl V) for z small enough. 

4. CONVERGENCE 

(3.4) 

(3.5) 

Convergence is achieved basically the samE: way as 
in Seco 10 of Ref. 2. In (10.1) of Ref. 2 one must 
estimate 

(4.1) 

we have been led to consider 

(4.2) 

To compare the two expressions note: 

(a) The A in (4.1) is an arbitrary volume, and the 
use of X instead of A would have been clearer. 

(b) Our A abbreviates II~¢(xi) (rather an essentially 
equivalent expression); in fact, for the sake of conver­
gence we can pick A = 1 as this factor enters 
unessentially. 

(c) The trace substitutes for the Euclidean space in­
tegration J d¢ s(r ). 

The differentiations if are performed in (4.2) using 
(2.2) of Ref. 1. Thereafter, a polynomial in the fields 
is downstairs in the trace. We now use (2.3) of [1] to 
move the fields according to the following steps. 
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Step 1: One at a time move each annihilation field ¢, 
I/J to the right [using (3.2) of Ref. 1 to re-enter at left] 
until either it contracts with a creation field, or moves 
without contracting from t = {3 to t == {3/2, in which case 
stop the field at t == {3/2. 

Step 2: One at a time move each creation field cp, l[! 
to the left until either it contracts (with one of the an­
nihilation fields at t = {3/2), or else having passed t == 0 
just once, stop the field at t = {3/2, to the left of all an­
nihilation fields at t = {3/2. 

At the end of this finite, noninductive, process all the 
fields downstairs in the trace are at t = {3/2, with cre­
ation fields all to the left of annihilation fields. With a 
field that has moved from (Xl' tl ) to (xz , tz ) and then con­
tracted (for Simplicity without passing t = 0) there is 
associated 

(4.3) 

With a field ¢ that has moved from Xl, tl left to re­
entry at t == 0, and then brought to rest at t == {3/2 at 
(x2, (3/2) there is associated 

(4.4) 

These are representative of all possibilities. As in Ref. 
2, we localize-but only the space variables. Thus for 
(4.3) there are two localization indices (h,jz)' That is 
Xl E Ail' x 2 E Aj2 • For (4.4) there are three localization 
indices Vbj2,ja), with Xl E Ajl' WE Ah , XzE Aja · 

There are now sums (over j's, partitions of .r, and 
contractions) and integrals (over s's, x's, t's, and path 
space), the portion of the integrand we now consider is 
of the form 

Trw (E1 ll"!P(X/)fII/J{Yi)E2). (4.5) 

Here El and E2 are time-ordered expone~ials from {3/2 
to i3 and from 0 to 13/2 respectively. The I/J's (I/J's) stand 
for ~'s and '¢'s Ws and ¢'s)o In doing estimates we will 
take absolute values of the integrands, and use 

t Trw (E1 IT ~(Xi) IT I/J{y i)E2) t 

.:s tTrw ~lrr~I/J(Xi)Et) +tTrw (E~ll~l/J{yi)E2)' (4.6) 

Of these terms, that can be estimated alike, we con­
sider the first term. All the "!P(x/) in this term have as­
sociated to them, by (4.4), a path space integral 

(407) 

From the integrals to be performed we isolate the fol­
lowing portion of present interest: 

Trw [El i~ (Jt::. i 3
i 

dX i f dJJ.~~\"!PI/J(Xi») Er] . (4.8) 

We have used the key fact, largely motivating our de­
velopment to now, that El does not depend on the inte­
grals in (4.7). There are c2 and ca such that 

sup f dJJ.~~~Xi ~ c2 exp[ - cad(Ajzj ' Aj3j )]· 

WiEllj2i 

XiEt::.jai 

Pau I Federbush 
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(Exponential falloffs are good enough for us; we sacri­
fice the actual Gaussian falloff.) Using (4.7) from Ref. 
1 and (303), we find that (408) is less than 

c~exp (- ca6d(Cl.j2' Cl.Ja )) exp(cl/ W/)II clt/ exp(cslr I), 
1 1 1 I 

(4.10) 

where IIi a~1 is the product over squares Cl. i , and ai is 
the number of ja' s in Cl.1 • By changing the free param­
eters as stated at the end of Sec. 1, c2 and Cs can be 
made arbitrarily small and ca arbitrarily large. Cl is 
not chosen to vary. The factor e" in (3. 2) and exp(csl r 1 ) 

arise as estimates of the exponent 

H(t)? iHo- (N+ 81 r 1 )t(y- a)lf (4. 11) 

using the uniform stability of the interaction. 81 r 1 is 
an estimate of the maximum number of "particles" add­
ed to the exponent by (2.3) of Ref. 1. We have kept ~Ho 
in (4.11) rather than Ho to anticipate a development for 
more general interactions. 

Propo 5.1, Propo 5.2, and Prop. 8.1 (for v~) are 
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the same here as in Ref. 2. The completion of estimates 
for convergence are parallel to those in Ref. 2, Seco 
10. There is a mild novelty in the treatment of the bar­
rier potentials. 
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