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Potential energy surfaces for the ground and excited electronic states responsible for the 
Hartley continuum of ozone are used to obtain quadratic, cubic, and quartic force constants. 
Vibrational dependence of rotational constants to sixth order is calculated by perturbation 
theory. The spectroscopic constants enable computation of rovibronic energy levels. Overlap of 
ground state and excited state perturbed vibrational wave functions yield Franck-Condon 
factors. Electric dipole allowed rovibronic transitions are generated under the I r 

representation. The entire set of results generate the ultraviolet absorption spectrum. It is 
shown that inclusion of anharmonic terms in the vibrational Hamiltonian has a small effect 
upon the final spectrum, whereas rotational broadening plays a greater role in achieving 
agreement with experiment. 

INTRODUCTION 

The ozone molecule continues to be of interest to theore­
tician and experimentalist. 1-7 This is due to its importance in 
atmospht;ric chemistry and physics, and its amenability to 
ab initio calculations. 8

-
1O It seemed to us that an improve­

ment in theoretical band shapes is possible if several features 
normally disregarded for polyatomic systems were account­
ed for. These include transitions from discrete, Boltzmann­
populated vibrational levels, anharmonic effects in a 
Franck-Condon spectral synthesis, and rotational fine 
structure. 

In a recent article II the fact was expressed that certain 
features of absorption spectra are unique to polyatomic sys­
tems, including the vibrational structure of an electronic 
transition to a dissociative state. 12-14 This applies to ozone, 
in which the Cs dissociation pathway results in formation of 
diatomic oxygen which exists in a multitude of rovibronic 
states. Thus, our work may test such a concept on a system of 
interest. A word of caution in interpreting our results: It is 
completely nonempirical, making it difficult to compare 
with our calculations based upon fittings to spectral data. To 
our knowledge, this is the first such ab initio spectral synthe­
sis for a polyatomic system. 

Many studies have been concerned with the electronic 
states of ozone,15-17 and a number of workers have per­
formed studies of the ground-state potential energy sur­
face. 17-21 The ground state of ozone has the experimental 
equilibrium geometry listed in Table I, while the excited IB2 

state responsible for the Hartley continuum is believed to 
have a (C2v ) bond length of 2.655 bohr with a bond angle of 
108°. This surface is inherently dissociative and correlates 
with the fragments 02ellg ) + OeD). 

Hay and Dunning have performed ab initio calculations 
for several electronic states of ozone. 15 Hay, Pack, Walker, 
and Heller generated spectra out of the (000) level using the 
Gaussian wave packet method. 22 Sheppard and Walker used 
the classical Wigner method to obtain ultraviolet spectra out 
of vibrationally excited ozone.23 They employed both ab ini­
tio and empirically adapted surfaces, parametrized as out­
lined below. 

Adler-Golden has also contributed an interesting study 
of ozone absorption.24 In this work, a Franck-Condon spec­
tral synthesis generated the ultraviolet continuum, over a 
wide temperature range. Agreement with experiment (C02 
laser vibrationally excited ozone) is good, and a semiempiri­
cal expression is given for temperature-dependent ozone UV 
absorption. 

This article presents the theory behind our generation of 
the spectrum. All spectroscopic constants are obtained in 
the process. The final section is a tabulation and discussion 
of our results. 

THEORY 

The current work proceeds from the ab initio results of 
Hay and Dunning, together with the parametrization of 
Sheppard and Walker.15.22.23 Hence, we give details of this 
previous work first. Hay, Pack, Walker, and Heller per­
formed the calculation of the ab initio potential energy sur­
faces which we employ. The GVB-PP (perfect-pairing) 
MCSCF technique was used in conjunction with a (3s2p Id) 
contracted Gaussian basis set for all surfaces. This was done 
over a grid of points described by 95° < a < 135°, 2.1 < r l 

< 10.0 bohr, 1.9 < r2 < 3.1 bohr, with r2 ,rl • 

The authors22.23 decided to fit their calculated surfaces 

TABLE I. Calculated and experimental ozone geometries and vibrational 
frequencies. a 

IAI Expt.b IB2 

r(bohr) 2.464 2.403 2.746 
a(deg) 115.75 116.83 111.05 
liJI(cm- l) 1209.0 1134.90 822.8 

(1200.9) (1103.1 ) 
liJ2(cm- l ) 680.7 716.0 341.3 

(674.7) (700.9) 

liJ3(cm-l) 1086.1 1089.2 1282.6;" 
(1038.7) (1042.1) 

a Frequencies are the harmonic frequencies; the fundamentals VI' V2' and V3 

are given in parentheses. 
bReference 5. 
C Imaginary frequency. 
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to an analytic form, and chose that of Murrell, Sorbie, and 
Varandas, 19 with details given below. As the authors state22 

the accuracy of these XeA I ) and BeB2 ) surfaces may be 
described by the number of points (N) and rms error (0'): 
X(N = 93),0' = (0.02 eV), B(N = 93,0' = 0.06 eV). Shep­
pard and Walker parametrized the ab initio surfaces calcu­
lated by Hay and Dunning as the sum of two-body and three­
body terms: 

V2B = - D L e -t1
X
'(l + /3X; + r Xt + oX:), (l) 

; 

30 

V3B = [l-tanh(rql)] L C;P;(ql,q2,q3)' (2) 
;=0 

The term V2B represents the potential contributed by the 
three pairs of oxygen atoms (given the form of an extended 
Morse potential), where X; = r; - ro for i = 1,3 is the dis­
placement from the diatomic equilibrium separation ro and 
D is the dissociation energy in eV. The term V3B represents 
the potential energy which cannot be accounted for by consi­
deration of pair interactions and vanishes if any atom ap­
proaches infinite separation from the remaining two. Here r 
is a constant (for a given surface) which yields the correct 
asymptotic behavior, while ql' q2' and q3 are external sym­
metry coordinates defined by 

1 
ql = - (rl + r l + r3 - Ro), 

13 
{i 1 

q3 = - r l - - (r2 + r 3) 
13 .J6 

(Ro is a constant for a given surface) andp; are polynomials 
of the form q~ b mcn, where b 2 = q~ + q~, c3 = ql ( q~ 
- 3q~), and 0<.1 + m + n<.7. Values for the coefficients c; 

are in the appendix of Sheppard and Walker's paper23; we 
have used the set based on ab initio diatomic curves. 

Some key parameters for these surfaces are as follows. 
The vertical excitation energy from the IA I equilibrium ge­
ometry to the IB2 surface is 5.36 eV, while the energy differ­
ence between their respective C2v minima is 3.25 eV. In addi­
tion the IB2 state correlates with the fragments 02eag ) 

+ OeD), lying 1.72 eV below the saddle point on the IB2 
surface, or 1.53 eV above the IAI ground state. There is a 
shallow minimum 0.3 eV lower still, or 1.23 eV above the 
ground state, along the C,-dissociative pathway for the IB2 
surface. 

We devised a computer program to compute all deriva­
tives to fourth order with respect to the internuclear separa­
tions r l , r 2, and r3 at any given geometry for both ground and 
excited eB2 ) states. To determine harmonic frequencies 
and anharmonic constants we converted to normal coordi­
nates QI' Q2' and Q3 for the three vibrational modes VI (sym­
metrical stretch), V2 (angle bend), and V3 (asymmetrical 
stretch). This was done via the internal symmetry coordi­
nates defined as 

Here note that r2 and r3 are the bonded internuclear dis­
tances, while r l is the nonbonded distance. Such a transfor­
mation of derivatives through fourth order was nontrivial, 
and involved the evaluation of dozens of terms based on the 
Jacobian a(qk' ql' qm )la(rl ,r2,r3)· The calculations were 
performed by the program. The L matrix which converts 
symmetry adapted to normal coordinates was found by stan­
dard GF matrix formalism, obtaining enroute the zeta-ma­
trix elements for both electronic states. Let z be the C2 axis 
and X be perpendicular to the molecular plane. Using this 
choice of axes (known simply as the I r representation), only 
the (; y 3 X 3 matrix is nonzero, as 

(3) 

Having thus arrived at a listing of all force constants to 
fourth order, one seeks to determine how the vibrational 
wave functions, being harmonic oscillator (HO) functions 
in zeroth order, are perturbed by the presence of six cubic 
force constants and six quartic constants. Using first order 
perturbation theory one writes 

< I/Iij~) IJY p I I/I~Jl, > .I,~~), 
I/IW = I/Iij~) + L (0) (0) 'I'!Jk , 

{t.f, k'#i,j,k} (E ijk - E i'lk') 
(4) 

where I/Iij~) is a triple product of HO wave functions 
I/I}O) 1/1;0) I/IkO) , JY P is the anharmonic Hamiltonian operator, 
and I/IW is the corrected function. Such an algorithm was 
devised for the 20 lowest-lying states of lAI zone, plus the 
555 lowest lying states of IB2 ozone; for the latter (4) is 
replaced by a sum of double products as we are considering 
only the nondissociative modes QI and Q2 at this stage. The 
number of I B2 vibrational states was based upon consider­
ations of the Los Alamos surface, and reflects the semiclassi­
cal nature of the wave function amplitUde for large values of 
vi and v2 . In fact, a subsidiary program was needed to calcu­
late all Hermite polynomials to order 50. The evaluation of 
Eq. (4) above was performed numerically using the Rom­
berg method to derive Cotes sums over a grid of points broad 
enough that the exponential factor in Hn (x) had decayed to 
at least e - 8, thereby ensuring sufficient coverage for the inte­
gration procedure.25 This was a triple integration; the three­
dimensional [ql' q2' q3] surface was summed over with a set 
of approximately one-third million points. A comparison of 
the vibrational energies obtained using this perturbation ap­
proach to experiment and to energies obtained by others us­
ing variational methods is given in the next section. 

The perturbed vibrational wave functions are first used 
to find the vibrational dependence of the three rotational 
constants Bx ' By, Bz • Here 

_1_= (I/IW l~l I/IW) (5) 
rijk r 

and 

_1 = (I/IW I~I I/IW), 
aijk a 

(6) 

where I/IW is the corrected (perturbed) wave function for 
either electronic state. 
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Care must be exercised in recovering r i from this expres­
sion, as we are in normal coordinates. The success of the 
above was evident in a smooth, quasilinear variation of the 
rotational constants with increasing vibrational quantum 
number, in accord with the experimental result that 

B~ =B'f:I- La~(v+D· (7) 
k 

Here v is the vibrational quantum number and k = x, y, z (l r 

rep.). 
Using standard formulas26 one easily computes the vi­

brational level energies in cm -I, given the harmonic fre­
quencies and anharmonic constants. Any levels closer than 
50 cm -I were then recorrected due to Darling-Dennison 
resonance, employing r calculated from the data. In truth 
such a resonance exists between the (200) and (002) levels 
of ground state ozoneY 

Having found the vibrational band origins we calculate 
the higher order rotational constants starting with the Bk 
above. The theory employed is that of contact transforma­
tions,28 leading to the result that the vibrational-rotational 
Hamiltonian is just H = l:m,n H mn' where m refers to the 
degree of the vibrational operators and n to the degree of the 
components of the angular momentum operator J. 

Considering more specifically the pure rotational Ham­
iltonian, using the notation ofWatson29 one has 

~t= L hpqr(J:J~J~+J~J~Jn, (8) 
p,q,r=O 

hpqr being a constant. The expression is written as is because 
it should be Hermitian. We wish to apply a unitary transfor­
mation to the given Hamiltonian in such a fashion that its 

I 

general form remains the same, yet with new coefficients. 
We write H = U-IHU, where U is one such unitarytransfor­
mation. Selecting the form U = e''S is convenient, as it re­
quires only that S be Hermitian. We may separate Sand 
thereby factor U as 

(9) 

where S has only terms such that p + q + r = n. The impor­
tant result is that for any given order of the rotational Hamil­
tonian, the terms off-diagonal are removed to the next higher 
order, allowing for the determination of formulas for the 
quartic, sextic, etc., constants. 

With this background, the quartic and sextic centrifugal 
distortion coefficients are determined as follows. Inertial de­
fined as af! = (alafJ1aQk). (a.u.) are used to find rota­
tional derivatives, defined as 

B'i!=B,/:,= - (fr'/2h3/2c3/2OJl/2)(a~{J/lal{J)' (10) 

Here lafJ is an element of the inertia tensor and Qk is a nor­
mal mode. Due to symmetry considerations it turns out that 
there are only six nonzero B ~{J. Finally one has 'T a{Jr6 
= - 2 l: k B ~{J B r6

/ OJ k for the quartic centrifugal distortion 
coefficients. One converts these to "primed" coefficients by 
'T~aaa = 'T aaaa' 'T~a{J{J = 'T aa{J{J + 2 'T a{Ja{J' and uses these to 
find the empirical constants IlJ' IlJK' IlJ' etc., as linear com­
binations of the 'T~r6' Again the I r representation is used. 
The appropriate expressions are given in the appendix of 
Kivelson and Wilson's paper.30 

The computation of rotational energy levels is made 
simpler by initial transformation of the rotational Hamilto­
nian to cylindrical tensor form28: 

+ ct>420(2)2J; + ct>24;i 2J: + ct>owf~} + H (B002 + T20;';2 + T02zI; + ct>402( 2)2 + ct>22;';2J; + ct>04zI:),02+ 

+J2_ )]++H(TOO4+ct>204J2+ct>024J;),0~ +J~)] +ct>OO60 6+ +J6_), (11) 

where [P,Q] + = PQ + QP (anticommutator), andJ ± = Jx ± iJy • Due to the presence of arbitrary parameters in Eq. (11), 
certain assumptions are usually made. In the "A" reduction,onesets T 004 = ct>204 = ct>024 = <1>006 = O. One then obtains a form 
for the Hamiltonian in which the diagonal elements are given by28 

EKK = (J,K IK!:/IJ,K) = HBx + By]J(J + 1) + {Bz - !(Bx +By)}K2 - IlJJ2(J + 1)2 

- IlJKJ(J + I)K 2 - IlKK4 + ct>Jr(J + 1)3 + ct>JKJ 2(J + 1)2K2 + ct>KJJ(J + I)K 4 + ct>KK 6 (12) 

and off-diagonal elements are simply28 

EK,K±2 = (J,K ± 2IK!:/IJ,K) = {HBx - By] - oJJ(J + 1) - !OK [(K ± 2)2 + K2] + tfJJJ2(J + 1)2 + !tfJJK 

XJ(J+ 1)[(K±2)2+K2] + !tfJd(K±2)4+K4]}X{[J(J+ 1) 

-K(K± 1)][J(J+ 1) -K(K± I)(K±2)]}1/2. ( 13) 

Here the superscript "A " refers to theA reduction, while the 
relations between the coefficients in Eqs. (12) and (13) to 
those in Eq. (11) have been given.28 

Recall that ozone, with an asymmetry parameter K = 
- 0.968, is a nearly prolate asymmetric top, for which there 

are 2J + 1 values of K _ I ranging from - J to J. Thus one 
must diagonalize a set of matrices, J max in number, of in­
creasing size up to (2Jmax + 1) X (2Jrnax + 1). Fortunately, 

each Jblock may be factored into a K _I-even and a K _I-odd 
subblock. 31 Figure 1 reveals that these subblocks are in sim­
ple tridiagonal form, and hence the complete eigensystem is 
solved by any subroutine which diagonalizes tridiagonal 
real, symmetric (Hermitian) matrices. In the actual pro­
gram, the diagonal elements are components of a vector of 

dimension l:~:'o (2J + 1),2 and the off-diagonal elements 
are placed in a similar vector of dimension J ~ax' The eigen-
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J=3 
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-2 

IX 
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X 

0 X 
0 

-311~ -I +1 +3 -2 0 +2 
-20 
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+3 X 0 +2 0 

X 0 

FIG. 1. Factoring of J = 3 matrix into K _, odd and even subblocks. Circles 
are diagonal elements, crosses off-diagonal. 

values are returned to the original vector and added to the 
vibrational energies. 

For 160 3 the only allowed rovibronic levels are those of 
Al andA2 permutation-inversion (PI) symmetry, where the 
PI group is isomorphous with the point group C2v ' Figure 2 
shows the construction of these from electronic, vibrational, 
and rotational factors as well as the allowed electric dipole 
transitions, namely A I to A z, where the laboratory-frame di­
pole operator Ilz transforms as theA 2 representation of the 
PI group. We also note here that the Coriolis interaction 
within each electronic manifold involves the mixing of al 

vibrational levels (even number of quanta in the b2 asymme­
tric stretching mode) with b2 vibrational levels (odd number 
of quanta in this mode). 

Consider the determination of Franck-Condon factors 
for the IB2 <- IA I transition. As one wishes to make explicit 
the anharmonic force fields effect upon band structure, one 
cannot use standard formulas for the overlap of HO func­
tions.32 One must express the excited-state normal coordi­
nates in terms of the ground-state normal coordinates, or 
vice versa, in order to evaluate the overlap integrals. Using 
matrix algebra one has 

Q" = L"A"(A'-IK'Q' + A) (14) 

for conversion from excited state (Q ') to ground-state (Q " ) 
coordinates. The K" is inverse to the excited L' matrix, A 
converts internuclear separation coordinates to symmetry 
coordinates, and A is the displacement vector between the 
ground-state equilibrium geometry and the quasiequili­
brium geometry of the excited state. Thus, all" excited state 
functions are expressed in terms of ground-state normal co­
ordinates, and the overlap integrals are readily evaluated. 

A problem persists for the evaluation of the factor 
(t/J .It/Jv ), as the asymmetric stretch mode for the excited 

V3 3 

state, represented by t/J ., is essentially a perturbed, inverted 
V3 

re rv fr fevr revr fr fv fe 
lAf a, 0, A'~A' b2 

a, 182 

02 A2 A2 bl 

b2 b2 AI Alai b2 

b 1 A2 A2 02 

FIG. 2. Pattern of electronic, vibrational, and rotational components ofro­
vibronic states connected by the electric dipole operator Il-z which trans­
forms as the A2 irreducible representation of the permutation-inversion 
group for 1603' 

Potential 

1\01\(\1' vvvV 

Q' 
3 + 

FIG. 3. Wave function amplitUde for the asymmetric stretch mode of 'B2 

ozone. 

harmonic oscillator. The Schrodinger equation for a har­
monic barrier may be brought into the simplified form 
z" + (ax 2 + b)z = O. Assuming a power-series solution of 
the form z = ~:= ocnxn one obtains two independent solu­
tions which are essentially the parabolic cylinder functions. 
The three-term recursion formula we have derived is C n + 4 

= - (acn + bCn + 2 )/[ (n + 3)(n + 4)]. The power series 
obtained is convergent for reasonable values of coordinate x 
(Q 3 in a. u.) only upon going to the 50th or 60th power. 
However, our solutions do give the physically reasonable 
result that the wave function behaves as indicated in Fig. 3, 
for various heights above and below the top of the barrier. It 
turned out that the greatest amount of overlap with ground 
state wave functions occurs slightly above the barrier top, 
corresponding to a positive kinetic energy needed to form 
fragments. 

The final program receives input from all prior pro­
grams (vibrational energies, rotational levels, overlap inte­
grals, etc.) and generates an absorption spectrum assuming 
a constant electronic factor and a Boltzmann population of 
all ground rovibronic states. The assumption of a constant 
factor for the overlap of electronic wave functions was for 
the sake of computational tractability. In addition Hay and 
Dunningl5 have calculated a transition dipole moment for 
the 1 B2 <- lA 1 transition, and this is the factor used in our 
work. Note that anharmonic effects are made manifest in at 
least two ways: spacing of vibrational levels and magnitude 
of overlap integrals. The output is stored in 1 cm - 1 wide 
energy bins across the spectral region 0-50 000 cm - I. 

RESULTS AND DISCUSSION 

Table I lists harmonic frequencies for the two electronic 
states IA I and IB2 together with vibrational fundamentals 
for the state IA I. Also given are the equilibrium geometries 
for both electronic states, obtained by setting all first partial 
derivatives equal to zero for the surfaces employed. These 
values are accurate to 0.001 bohr and 0.05° for the bond 
distance and bond angle, respectively. Comparison of the 
ground-state eqUilibrium geometry with the experimental 
geometry indicates that the ground surface is quite accurate 
for our purposes. However, the authors22 state that the rms 
error for their excited state is three times greater than for the 
ground state. Thus, although the ground state (UI' (U2' (U3 are 
roughly within ± 6% of experiment (with (U3 being fortu­
itously close and with (UI being too large and in the worst 
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TABLE II. Calculated and experimental quadratic, cubic, and quartic force 
constants. a.b 

IAI Expt.c IB2 

/, 6.02 6.163 8.61 

/" 1.47 1.602 5.74 

fa 1.32 1.300 0.40 

fro 0.36 0.402 0.26 
k"l (em-I) - 49.18 -48.1 - 27.62 
k222 (em-I) - 19.24 -19.2 - 8.47 
kll2 (em-I) - 54.49 -29.7 - 18.02 
kl22 (em-I) - 32.96 -25.5 - 6.55 
kl33 (em-I) - 225.47 - 225.8 + 91.63 
k233 (em-I) - 86.22 - 59.3 + 14.77 
k"" (em-I) + 10.51 +2.2 + 3.69 
k2222 (em-I) + 3.05 +0.6 -2.06 
k3333 (em-I) +4.51 +6.7 - 5.65 
k"22 (em-I) + 14.32 - 1.8 +4.81 
kll33 (em-I) + 28.10 +28.3 -16.84 
k2233 (em-I) + 22.31 -5.9 -9.93 

"The energy of I B2 ozone has been expanded about its calculated quasiequi­
librium as listed in Table I. 

bQuadratic force constants in mdynl A. 
c Reference 5. 

agreement), the values for the excited state may be of less 
certainty. 

Listed in Table II are calculated quadratic, cubic, and 
quartic force constants, plus the ground-state values ob­
tained by the usual spectroscopic fitting procedure. The cal­
culated values for the ground-state cubic constants correctly 
predict both the relative size of these constants, and in most 
cases are accurate within ± 15%. Such agreement is also 
predicted for the excited state cubic constants, except for the 
relative crudity of this surface. In contrast the ground-state 
quartic force constants agree only in order of magnitude 
with spectroscopic data, and sometimes even the wrong sign 
is predicted. However, the large value of k lJ33 is still appar­
ent in the ab initio data, as well as some remarkably close 
agreements for some of the other constants. 

Figure 4 displays the effect of anharmonic terms upon 

E(au) 

-
l- 0.02 

4000 I- 200 

~200 JQl~ 
__ 0<J2,,0 

Jll_ --.: 
1- 020 ~o 3000 

0.015 

• - =:::::::::::::,nn -
0.0 ~ 0.01 

2000 -
000 000 

I-1000 f- 0.005 

o perturbed unperturbed 
. expt I 

o 

FIG. 4. Effect of anharmonicity upon ozone band origins. Energies are rela­
tive to potential minimum. Experimental energies from Ref. 5 except for the 
(020) state from Ref. 3(b). 

TABLE III. Calculated and experimental rotational constants" for the 
(000) levels. 

IAI Expt.b IB2 

Bx 0.3820 0.394751 810 0.3246 

By 3.2885 3.55366633 2.3368 
Bz 0.4322 0.445283212 0.3770 

"In em-I. 
bReference 33. 

calculated vibrational levels for the ground state. The results 
of our perturbation treatment bring the levels into closer 
agreement with experiment3 (b),5 than otherwise. Overall, the 
level of agreement is satisfactory, although with the comput­
ed fundamental v I being 97 cm - I too large (Table I), the 
overtone (200) and the combinations (110) and (10 1) are 
also too large, by 213, 90, and 88 cm-I, respectively. The 
overtones (020) and (002) are 44 and 10 cm- I too low, 
respectively, while the combination (011) is only 8 cm -I too 
low. The recent variational calculations2

1(b) of Adler­
Gorden et al. using a CASSCF /DZP ab initio surface yield­
ed fundamentals, overtones, and combinations of compara­
ble agreement with experiment, but with VI being 53 cm- I 

too low rather than too large and with v 3 being 114 cm - I too 
low rather than being essentially correct (our error is only 4 
cm -I; Table I). However, the vibrational levels they ob­
tained variationally using an empirically adjusted multidi­
mensional perturbed Morse oscillator surface are better than 
ours, with deviations from experiment of 5 cm -lor less, or 
somewhat better than the agreement obtained earlier by 
Carter et al.6

(a) also using a variational method and an em­
pirically adjusted potential energy surface. We conclude that 
our combined use of an ab initio surface perturbation theory, 
and numerical integration to obtain the perturbed vibration­
al energies and wave functions is generally satisfactory for 
our semiquantitative needs as input to the UV band shape 
calculation, although not satisfactory for reproducing pre­
cise details of the ground-state IR spectrum. 

The rotational constantsBx , By, Bz for the (000) level 
of both the IAI and IB2 states are listed in Table III. Agree­
mene3 is good. 

Due to the many means of defining quartic centrifugal 
distortion constants, care should be exercised in comparing 
published values. This is because of different axis labeling 

TABLE IV. Calculated and experimental quartic centrifugal distortion 
coefficients." 

7.84x 10-7 

-2.31xlO-' 
1.76 X 10-4 

9.87X 10-8 

4.34X 10-' 
- 2.IOX 10-' 

"In em-I. 
bReference 33. 

4.542716 76X 10-7 

- 1.84605222 X 10-6 

2.11661213XIO-4 

6.679660 80X 10-7 

3.233080 15 X 10-6 

9.24x 10-7 

6.69X 10-6 

2.88xlO-4 

1.01 X 10-8 

2.35X 10-6 

-1.46X 10-' 
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A 

\ 
40 42 44 46 

em-I x 10-3 

.......... 

FIG. 5. Classical band shape at three temperatures. 

schemes and because some prefer to report in the TaPr8 them­
selves while others report in their experimentally deter­
mined linear combinations. In Table IV we adopt the latter 
usage, under the I' representation and using the llJ' etc. as 
defined in the appendix of Watson's paper. 29 Direct com­
parison of this data to results obtained by the usual fitting 
procedure would be inappropriate and grossly underesti­
mate the value of our calculations. A better set of ab initio 
quartic centrifugal distortion constants for ozone has recent­
ly been obtained by US

34 at the HF/6-31G** and MCSCF 
levels using a new method35 employing analytical ab initio 
gradients. 

A classical band shape calculation36
•
37 taking no ac­

count of vibrational structure is shown by Fig. 5. There is a 
temperature shift of the absorption maximum. This shift in 
frequency is positive with rising temperature, starting at 
43 220 cm -I at 0 K and at the three temperatures indicated 
represent a shift of 650, 1180, and 1980 cm - I. In addition 
the bandwidth at half-height agrees with the trend that the 
classical bandwidth rises with temperature, and equals the 
quantum-mechanical bandwidth at T = 00. (For a one-di­
mensional HO the rati036 of classical to quantum band­
widths is [tanh x/x] 1/2, where x = hv/2kT.) Note also the 
skewness of the spectra (third moment), a result of the noni­
denticality of the ground- and excited-state vibrational fre­
quencies.36 

Figures 6-10 illustrate several calculated spectra plus 
the experimental data.38 The energy scale has been red shift-

A 

FIG. 6. Experimental absorption spectrum from Ref. 38 at 300 K. 

A 

50 

FIG. 7. Synthesized absorption from the (000) level with T'ot = 298 K. 
This spectrum as well as those in Figs. 9 and 10 have been red shifted by 
4620cm-'. 

ed 4620 cm -I for the synthesized spectra, and an arbitrary 
set of intensity units has been affixed to all diagrams. This 
ensures ease of comparison. All spectra shown were run for 
T = 298 K. The main features are shown by comparison of 
the experimental spectrum (Fig. 6) to the calculated spec­
trum for excitation from the (000) level alone (Fig. 7). Not 
only has the proper overall band shape been realized, but 
also the effect of excitation into a vibrationally excited pure­
ly dissociative state is evident in the fine structure of the 
continuum. The numerical data reveals a series of progres­
sions. There is a basic periodicity of some 820 cm -1 and one 
of 340 cm -1. As overlap of zeroth order HO functions is 
appreciable only for low values of vibrational quantum num­
ber, Fig. 8 suffices as a rough guide to the origin of the alter­
nating 140 and 200 cm -1 periodicity in the synthesized spec­
tra. The region from vi to 2v; is emphasized, although any 
other portion may have served by substitution of (n + 1 )v; 
and (n + 2)vi for vi and 2v;, respectively. The experimen­
tal spectrum exhibits a similar structure, although the exact 
periodicity of the progressions await publication. Rotational 
broadening is seen in the smooth transition from one vibra­
tional peak to the next. It is intriguing that such structure 
should be present in excitation to a dissociative state, illus­
trating the presence of diffuse vibrational structure in con­
tinuous UV spectra as treated by Pack. 11 The Huggins sys­
tem of bands is believed due to a IB2_IAI transition into a 
shallow well in the I B2 surface, allowing for sharpened vibra­
tional structure.39 Our work is in agreement with this assign­
ment, with a minimum at '2 = 3.585 ao' '3 = 2.295 ao, 
a = 74° being located within the analytically fitted surface 
we employed. 15.22 Note this is a C2v structure with an acute 
bond angle, in the excited state. 

1I1+~ IIt2112 2~+2~ 

112 2112 111 ~ I 41121 2111 2111+"" I 3111 

I 1111111 I II 
I I I I I I I i I I I I I I I 
o 2 4 6 8 10 12 14 16 18 20222426 28 cm-1Xl(J2 

FIG. 8. Explanation for progressions in synthesized UV spectrum. 
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FIG. 9. Synthesized absorption from the 20 lowest bands of X IA,. TV;b 

= Trot = 298 K. 

When the calculation was performed at the theoretical 0 
K for excitation out of the (000) level, only theJ = 0 level is 
populated and one expects to see a diminution in the contin­
uity of the progressions noted in Fig. 7. This is due to the 
absence of rotational broadening, and was "observed" for 
this computer "experiment" at absolute zero. 

The suppression of rotational effects (Trot = 0, TVib 

= 298 K) diminished the quality of our calculated spec­
trum, as the rotational broadening disappears and we were 
unable to reproduce the experimental spectrum. Thus, it is 
likely that the effect of rotational broadening should be in­
cluded if one seeks an improvement in the quality of calculat­
ed spectra. Comparison of Figs. 7 and 9 shows the effect of 
considering excitation from the 20 lowest vibrational levels 
of ground-state ozone. At 298 K these account for over 99% 
of the population. The progressions of Fig. 7 are somewhat 
damped out in Fig. 9, probably due to an averaging process 
from considering twenty rather than a single band. Again, 
the agreement with experiment is good. 

Figure 10 shows the effect of including cross terms in the 
exited state vibrational wave functions, in effect the anhar­
monicity of the excited state. Comparison with Fig. 9 indi­
cates that the effect of including anharmonicity is minor, at 
least for the excited state. Most likely this is a misrepresenta­
tion, as in both cases the Q 3 dissociative mode, the potential 
of which creates the overall band shape, was a harmonic 
barrier. 

The key point is that explicit inclusion of higher order 
operators in the vibrational Hamiltonian did not markedly 

FIG. 10. As Fig. 9 except effect of anhannonicity in excited state included. 

effect the calculated spectrum. Again we caution that the 
overall band shape did not account for anharmonicity in the 
Q 3 dissociative mode, so that future studies may prove this 
conclusion false. 

SUMMARY 

In conclusion we note what has been learned from this 
study. A new method is employed to generate electronic 
spectra based solely upon ab initio considerations. The meth­
od directly accounts for rotational broadening and vibra­
tional anharmonicity. Upon application to ozone, a mole­
cule of great theoretical and practical interest, the method 
shows that consideration of rotational broadening and quan­
tized vibrational levels improves the fine structure of the 
absorption continuum, and lends support to the contention 
that vibrational fine structure is possible in a purely dissocia­
tive state. Vibrational anharmonicity has been shown to 
have a small effect, if any, upon the overall spectrum, al­
though this may be a spurious result. 
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