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Large-scale computer simulations of cluster-cluster aggregation of particles undergoing 
Brownian motion have been performed to investigate the kinetic properties of the coagulation 
process. It is shown that the mean-field approach of the Smoluchowski equation accurately 
describes the kinetics if the fractal geometry of the clusters is taken into account. The kinetic rate 
kernels that enter into that equation are deduced explicitly from the simulations. 

I. INTRODUCTION 
There has recently been a great deal of interest in the 

computer simulation of aggregation phenomena. I- 9 Initial­
ly, the motivation of this work was to study the fractal geom­
etry of the clusters that are produced, after the simpler parti­
cle-cluster aggregation model of Witten and Sander I had 
shown interesting nonclassical geometric behavior. It was 
found by Meakin2 and Kolb, Botet, and Jullien3 that the 
clusters formed by cluster-cluster aggregation are fractals 
with dimensionality Df -;:::, 1.75 (for mass-independent diffu­
sion coefficient, in three dimensional space), compared to 
Df -;:::,2.5 for the Witten Sander model, under the same condi­
tions. In the much earlier work of Vold,IO Sutherland and 
Goodarz-Nia, II and Medelia,12 fractal aggregation clusters 
were produced from models that collided only pairs of parti­
cles, producing an ordered series of events but no well-de­
fined time. 

More recently, attention has turned to the kinetic prop­
erties, which physically are of importance. Viscek, and Fam­
ily,4 and Meakin, Viscek, and Family5 have investigated the 
scaling properties of the distribution with respect to both 
size and time. Scaling properties allow the kinetic behavior 
to be classified with respect to other kinetic processes, but 
describe only the long-time behavior of the system. The ki­
netics, however, concern the complete time development of 
the cluster size distribution. 

The classical understanding of aggregation kinetics is 
given by the Smoluchowski theory,13 which follows from the 
assumption that the collisions are binary and that fluctu­
ations in density are sufficiently small so that the collisions 
occur at random. The Smoluchowski equation is of universal 
use in the fields of colloid chemistry, aerosol dynamics, at­
mospheric science, etc., and is an obvious reference in inter­
preting the results of computer simulations of aggregation. 
Indeed, the simulations can serve as a means to test the valid­
ity of the mean field approach, and some work has been done 
in comparing results of computer simulations with the re­
sults of the mean-field Smoluchowski theory. 

However, a simple comparison of the observed and pre­
dicted size distributions does not test the basic assumptions 
of the theory. The size distributions are only a coarse­
grained reflection of the basic processes going on. Further-

more, since there is an adjustable rate matrix in the Smolu­
chowski equation, there is a great deal of freedom in the type 
of behavior that it can predict. Even if the Smoluchowski 
equation were found to predict the evolution of the size dis­
tribution correctly, it does not follow that the equation itself 
is valid or that it has any physical relevance. 

The fundamental test of the applicability Smolu­
chowski theory is to show in detail that the underlying as­
sumption is valid-that the rate of collision between two 
species is proportional to the product of their concentra­
tions, even as the concentrations change. This test requires 
therefore that the collision histories are followed in detail. 
With current computers it is possible to collect a statistically 
sufficient amount of data to perform this test in a reasonable 
amount of time. We note that for a related model of particle 
trapping kinetics, Redner and Kangl4 have investigated the 
effects of the particle fluctuations and have shown that those 
fluctuations are important so that a mean-field equation is 
n~t valid for d<.2. 

We note that such a measurement of the collision fre­
quencies would be very difficult to do experimentally. The 
little experimental work that has been done on the validity of 
the Smoluchowski equation has been measurements of dis­
tributions and comparison with theory, and even this mea­
surement is difficult. 15 Simulation of aggregation allows an 
explicit test of a theory that has been used for almost 70 
years. 

In this paper we report on the results of a computer test 
of cluster-cluster aggregation kinetics. We use some of the 
standard models of hard particles (cubes) on a cubical lattice, 
for which fractal and scaling properties have already been 
studied. We check both the collision rates and the evolution 
of the size distributions over the entire time period and inves­
tigate the relation of these results with the Smoluchowski 
theory. 

Because the models we use lead to fractal aggregates, 
our study has a second aspect: how this fractal structure 
affects the kinetics. From the point of view of the Smolu­
chowski equation, the question translates into finding the 
form of the collision matrix when the clusters are fractal. 
The aggregation models we use are similar to smoke particle 
formation by Brownian coagulation, so the results of this 
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study will lead to a better understanding of that process. 

II. THE SMOLUCHOWSKI EQUATION 

Here we make more explicit some of the essential fea­
tures of this equation. From the assumption that the colli­
sions are random and binary, it follows that the rate of aggre­
gation of clusters of s units of mass (s-mers) with r-mers to 
form (s + r)-mers is proportional to the product of the con­
centrations of reactants 

( 1) 

where ns is the time dependent concentration (number per 
unit volume) of somers and the matrix K rs is the collision 
matrix or kernel, a function of both the collision and aggre­
gation processes. Smoluchowski's coagulation equation is 
then found by writing a population balance equation for the 
process described by Eq. (1), taking into account both the 
gains and losses due to collisions: 

s 1 

dnJdt = (1/2) L K r.s _ r nr ns _ r 
r 1 

'" 
- ns L Ks,r nr . 

r= 1 

(2) 

For particles undergoing Brownian motion, the solution of 
the diffusion equation implies that Ksr is given by13 

K rs = 41TR rs [D (r) + D (s)] , (3) 

where Rrs is the effective cross-section radius for collisions 
between r-mers and somers, and D (s) is the diffusion coeffi­
cient of an somer. For simple spherical particles where the 
radius ofans-mer, R •• is proportional toS

I
/ 3 (droplet coales­

cence),Rsr is proportional to (SI/3 + r1/3), and by the Stokes­
Einstein formula D (s) is proportional to R .- I, resulting in a 
rate matrix13 

K rs = 2 + (s/r)I/3 + (r/s)I/3 . (4) 

An explicit solution of Eq. (2) has not been found for K rs of 
the above form. If the above Krs is approximated as a con­
stant, independent of sand r, Eq. (2) can be solved explicitly 
for ns(t), yielding the complete time-dependent solution of 
this problem. 

For the Brownian coagulation of particles that form 
fractals. the Smoluchowski equation will apply if the mean­
field assumption is valid. For the collision kernel, one would 
expect that Eq. (3) applies with the cross-sectional radius 
replaced by the sum of the mean radii Rr + Rs where, for a 
fractal, 

(5) 

Note that the exponent is the reciprocal of the fractal dimen­
sionality Df of the cluster. Thus, one would expect l6 

Krsa:(rv+sV) [D(r)+D(s)] (6) 

since the basic diffusion mechanism is unchanged by the 
fractal properties. The diffusion coefficient will also depend 
upon radius, and we will consider two limiting cases of that 
dependence as discussed below. 

III. DESCRIPTION OF COMPUTER SIMULATIONS 

To answer the above questions we have carried out 
computer simulations of cluster-cluster aggregation in three 

dimensions. We considered between 4096 and 32 768 parti­
cles on cubic lattices of 803

, 1003
, 1283

, and 1333
, most com­

monly 10 000 and 20 000 particles on 1283 sites. Most of the 
simulations were carried out using an IBM 3081 computer. 
In order to reduce the effects of statistical fluctuations it was 
necessary to average the results from quite a large number of 
runs. Most of the results reported in this paper were obtained 
from simulations in which the effective total number of par­
ticles was:::::: 107

• Particles occupying adjacent sites on the 
lattice were considered to be touching, so that the particles 
were effectively sticky cubes centered on the lattice points. 
First the particles were placed down randomly, subject only 
to the constraint that no two particles can occupy the same 
site. Consequently there were a small number of dimers, 
trimers, etc., besides the monomers, in the initial state. 

In order to simulate the aggregation process clusters 
were selected at random and an attempt was made to move 
them in one of the six equally probable directions (also cho­
sen randomly) on a cubic lattice. A random number (x) even­
ly distributed over the range 0 < x < 1 was generated and the 
attempted move was made if x was smaller than sY (the clus­
ter diffusion coefficient). After each attempted move the 
time (t ) was incremented by 1/ N, where Nis the total number 
of clusters in the system. Consequently time is measured in 
units of attempted moves per cluster. After each successful 
move the perimeter of the moved cluster is examined for 
contact with other clusters (via nearest neighbor occupancy). 
If two clusters contact each other, they are joined irrevers­
ible to form a larger rigid cluster. Occasionally a cluster will 
simultaneously contact more than one other cluster. In this 
event all of the contacting clusters are joined. The procedure 
outlined above is repeated many times during the course of a 
simulation. 

The rate coefficients (Krs) were determined by dividing 
the time into 100 time intervals and recording the number of 
"collisions" between clusters of size r and size s in each time 
interval. If a cluster of size r moves simultaneously into con-
tact with several clusters of size s l' S2' S3' ... , etc .• the colli-
sion is recorded as individual rs l' rS2' rs3, ... , etc. collisions. 

By accepting an attempted move with probability pro­
portional to sY , we are effectively choosing the diffusion co­
efficient as 

D (s) <xsY (7) 

because the motion of a particle (the displacement) is propor­
tional to its diffusion coefficient. We considered the r = 0, 
- 1, and in a few cases, r = 1. In those cases where r> 0, an 

attempted move for the cluster is accepted with a probability 
sY / s~ax where s~ax is the maximum cluster size and the time 
(t) is incremented by 1/(ns~ax) after each attempted move. 

These choices for r represent some limiting cases which 
bound the expected behavior of the diffusion coefficient. For 
spherical particles, D (i) is proportional to i- 1/3 (r = - 1/3). 
If the Stokes-Einstein formula were assumed to remain valid 
for a fractal, with the radius replaced by the radius of gyra­
tion, then by Eq. (5) above we would have r = - 1/ Dr Note 
that we cannot actually determine the value of r from a sim­
ulation, and the value of Df for the clusters depends upon 
that choice of y. Thus we choose model forms of the diffu-
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FIG. 1. The measured effective collision rate K" for r = 0, averaged over 
483 simulations of 10 000 particles on a lattice of 1283 sites. 

sion coefficient. 
The "real" time, t, introduced above, is related to the 

"computer" time (the actual number of trials), T, by 

T ( 

t = ;~I liN; z lIV Jo dT'/Mo' (8) 

where Mo is the zeroth moment of the cluster size distribu­
tion, so that VMo represents the total number of clusters. 
Thus, t increases by unity when all particles have attempted 
to move once, on the average. 

In the following sections, we describe and analyze in 
detail the results of the computer simulations. We consider 
the case of size-independent diffusion, D (s) = I (or r = 0), in 
greatest detail, since this model is a natural one for computer 
simulation; all clusters are chosen for movement with equal 
probability. 

IV. THE VALIDITY OF THE MEAN-FIELD ASSUMPTION 

We investigated the validity of the mean-field assump­
tion by measuring the concentrations of the species, n i 

= number of i mers/total number of lattice points, and the 
rate of collision of pairs over various time intervals, to find 
the apparent K sr : 

Ksr = (Rate of collision between s mers and r mers) 

(9) 

Verification of the mean-field assumption can be accom­
plished by showing that this quantity is independent of time 
(except for short times as discussed below). 

Figure 1 shows the results for the effective K is (for the 
case r = 0) for 483 runs of 10 000 particles on a 1283 lattice. 
Data is presented for particle sizes s = 1, 2, 3, 5, 10, 16-20 
(combined), 32-40, 51-63, and 81-100, as a function of ton a 
log-log scale. The large fluctuations for small and large 
times reflect the small number of clusters present at those 
times. In the middle region, where a sufficient number of 
particles are present so that the fluctuations are small, the 
K is can be seen to be well defined and nearly constant with 
time except for the increase for small times. 

The small-time enhancement of the aggregation rate is 
an effect of the initial distribution; particles placed down 
randomly will frequently be close together, and will aggre­
gate more quickly. As the close pairs are deleted, the diffu­
sive flux falls to a steady-state value of K sr • For a system of 

spheres uniformly distributed in space, diffusion equation 
predicts that Eq. (3) should be enhanced by the multiplica­
tive factor13 

1 + R / [l1Dt ] 1/2. (10) 

We would expect the same behavior to occur for hard cubes. 
Indeed, the small time behavior of Kl1 can be well fit by Eq. 
(10) if the numerical factor R /[l1D ]1/2 is taken to be 0.6, as 
the plot of this function in Fig. 1 shows. (Note, that both the 
length scale andD in our problem is 1.) Evidently, the regime 
where the coagulation kernels become nearly time indepen­
dent is only approached toward the end of our simulation. In 
of our simulation. In order for the coagulation kernel to be 
nearly constant during the coagulation process, the density 
should be sufficiently low so that tz 1000 (i.e., each cluster 
moves roughly 1000 times) before a significant amount of 
aggregation takes place. The transient effect on the collision 
rates for higher sand r will be smaller than that for K II' 

because most of these larger clusters are formed in a reac­
tion-few, if any, exist initially-and it is the uniform initial 
distribution which causes the transient behavior. Indeed, the 
curves of K 12, K 13, etc., in Fig. 1 show less time dependence 
than that of K II' Below we will show that the overall effect of 
the transient behavior is also less than that for K 11' 

Thus, because the reaction rates have been shown to be 
proportional to the concentrations and time independent, 
except for the expected initial enhancement, it follows that 
the mean-field behavior is shown in these simulations. 

V. THE FORM OF Krs 

To study the behavior or K rs as a function of rand s, we 
calculated the average values of the apparent coagulation 
kernels, averaging the curves like those in Fig. lover all time 
where significant data exists. The results are shown in Fig. 
2(a) for rand s in the range 1-100. As the size of a cluster 
increases, there is evidently a gradual increase in the rate of 
aggregation. 

For r = 0, Eq. (6) predicts, simply Krs zr" + s", and 
other studies l

? have shown that vz lI1.75z0.6 for clusters 
formed by this process. Thus, we expect K rs to be given by 

K rs =K(rO.6 +SO.6), (11) 

where K is a constant. In Fig. 2(b), this function is plotted 
and indeed it appears to agree with the observed K rs • The 
value of K is found to be z 3.0. 

For r = - 1 (diffusion coefficient inversely propor­
tional to the mass), much different behavior in the rate was 
seen, as shown in Fig. 3(a) for a run of 814 simulations of 
20000 particles on a 1283 lattice. Here the small particles 
move more frequently and thus have a higher aggregation 
rate. Figure 3(b) shows, rather strikingly, that such behavior 
is well fit by 

K rs = (3.0) (rO. 6 + SO.6) (r- I + s - I) 

as predicted by Eq. (6). 

VI. ASYMPTOTIC BEHAVIOR 

(12) 

In this section we discuss the use of the asymptotic be­
havior of the distribution to study the kinetics. Viscek and 
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FIG. 2. (a) The time-averaged values of K", for the simulations of Fig. I. (b) 
The behavior predicted by Eq. (11) with K = 2.5. 

Family,4 Kolb6
, and Botet and Jullien l8 have characterized 

the long time behavior of ns by an expression of the form 

ns~t -ws-rj(s/tz), (13) 

where j(x)~onst as x-o and j(x)-o for x large, and 
where, by mass conservation, the exponents satisfy 
W =z(2 1"). Equation (13) implies that the moments M; 
= l:si n s satisfy4 

{

tZ(i-I) 1"< 1 + i 
M.-

I t - W 1">1 + i (14) 

as t-+ 00. The scaling of the Smoluchowski equation has also 
been studied in detail. Most of the known solutions ofEq. (2) 
satisfy Eq. (13), the exceptions being some special cases such 
as Krs = r + s, where the long time behavior is exponential 
in time. For those regular solutions, the exponents w, 1', and z 
can be related to properties of the coagulation kernel. For 
example, for kernels of the form K rs = r-" S8 - It + sit ,8 - It, 

with () < 1, z is given by 

z = 1I( 1 - 0 ) , (15) 

which follows immediately by inserting Eq. (14) into the 
equation for the time evolution of the moments [which fol­
lows directly from Eq. (2)]. More generally, for K rs com­
posed of any combination of terms of powers of rand s with a 
homogeneity of 0, [K (Oi, (}j) = A. 8K (i,j)], Eq. (15) holds. Es­
sentially, z tells how the size of the largest cluster grows with 
time; therefore, that growth rate depends only upon the ho­
mogeneity of the kernel. As (}-+1, Z-+oo and the system ap­
proaches a situation where seiation occurs in a finite time. 

For kernels ofthe form (6) we have () = v + r and there­
fore expect 

z = 11(1 - v - r). (16) 
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FIG. 3. (a) The average K", forr = - 1, for 814simulationsof20 OOOparti­
cles on a lattice of 1283 sites. (b) The behavior predicted by Eq. (12). 

The value of w, and thus of 1', will depend somewhat more 
upon the details of the' form of Krs • For Krs = ,e + S8, 

0< () < 1, Leyvraz19 has shown that W is given by 

W = (2 () )/(2 - 2() ), l' = 1 + () /2 . 

For K rs = r-" S8- u + sit ,e-I', with O<.u < 1, 0<0 < 1, 

w=l, r=I+(}, 

(17) 

(18) 

Thus the asymptotic exponents w, 1', and z, can be used to 
verify a particular form of the coagulation kernel K,.., and 
find the values of a parameter such as () in the examples 
above. 

To investigate the asymptotic properties of our simula­
tions, we have plotted In Mo and In M2 vs In t in Fig, 4, for 
483 simulations of 10 000 particles on a lattice of 128\ with 
r = O. It can be seen from these plots that the asymptotic 
behavior is only approached near the end of our simulations. 
According to Eq. (14), these moments should have the 
asymptotic behavior Mo~t - W and M2::::::t Z [since 1 <1'<2]. 
The asymptotic slopes in Fig. 4 give W:::::: 1.8 and Z:::::: 3.4, im­
plying v::::::0.6 and v::::::0.7, respectively. However, because 
the asymptotic behavior is barely reached, its analysis is not 
accurate for these simulations. The time could not be ex­
tended further here because a single, large cluster is formed. 
For longer times, lower densities, and larger lattices, are 
needed. 

When r is decreased, the asymptotic region becomes 
more easily accessible. For r = - 1, the plots of Fig. 5 show 
Mo and M2 as a function of time, for the run of 474 simula­
tions of 10 000 particles a 1283 lattice. The slopes give 
w = 0.74 and z = 0.75. The latter implies by Eq. (15) that 
() = - 0.33 and by Eq. (16) that v = 0.66 or Df = 1.5. In the 
simulations of Meakin, Viscek, and Family, 5 a wider range 
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mass independent simulations of Fig. 1, showing the approach to the 
asymptotic behavior. 

of y's have been studied, and the time has been carried 
further when possible. The values of z and ware consistent 
with the relations (16) and (18) above. 

VII. THE COMPLETE TIME BEHAVIOR 

We will study the complete time dependence for the 
case of r = 0, and see how well the simulation results can be 
described by the Smoluchowski equation with Krs of the 
form 

K,s = K (rB + il) (19) 

as predicted by Eq. (6) and consistent with the measurements 
of the effective K,s for small rand s. In Eq. (19), K is an 
overall rate constant and remains to be determined along 
with O. 

The above K,.. belongs to a class of kernels Krs 
= fIr) + f(s) [where f(s) is any function of s growing less 

rapidly than s), which can be solved explicitly for nJ 
Mo(s = 1,2,3, ... ) as a function of the "computer" time T 
introduced in Eq. (8). For s = 1, the result is simply20 

nl/Mo= exp ( -KT) (20) 

independent of O. Checking whether this is obtained is a 
good test that fIr) + f(s) is followed, since for other forms of 
the kernel, in particular the product K,.. = f(r)f(s), the be­
havior of n l / Mo is not given by Eq. (20). The plot of Fig. 6 of 
In nl/Mo vs T, for the simulation of r = 0, shows the predict­
edlinearbehaviorstrikingly. Its slope impliesKrs ::;::(2.4) (lat­
tice spacing)3/(unit time), consistent with the previous re­
sult. The small deviation at very short times can be 
attributed to the short-time enhancement of the aggregation 
rate discussed above. Note that the enhancement is of a 
shorter duration than that of K II' The deviation in Fig. 6 at 
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FIG. 5. The asymptotic behavior of the mass-dependent model with 
r = 1; 474 simulations of 10 000 particles on 1283 lattice sites. 

large times can be attributed to the finite size effects. Note 
that the corresponding plot for r = - 1 is definitely not lin­
ear, as expected. 

With the form ofEq. (19) thus verified, all that remains 
is to find O. A convenient place to look is the moments, which 
contain information from the complete distribution. For the 
kernel Eq. (19), it follows Eq. (2) that the time evolution of Mo 
is given by, dMofdt = - K MoMe, implying 

_1_ d1nMo = -K. (21) 
Me dt 

A plot of the quantity on the left-hand side above, for the 
results of our simulations, is shown in Fig. 7, for various 
values of O. For short times, there is a general decrease (note 
the negative scale) consistent with the decrease seen inK. For 
long times, constancy is reached if 0 is chosen to be 
::;::0.6 - 0.7, as found before. 
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fit by Eq. (11) we consider the explicit behavior of Mo( T). A 
direct numerical series solution of Eq. (2), for K rs given by 
Eq. (11), yields 

In [Mo(t)/ Mo(O)] = - Kt + 0.242 17(Kt f 
- 0.078 61(Kt)3 + ... , (22) 

which describes the complete time behavior of Mo given in 
Fig.4(a). 

VIII. FURTHER REMARKS AND CONCLUSIONS 

Simulations similar to those described above were car­
ried out at several different (larger) particle concentrations. 
We found that the effective rate constants (Krs) were concen­
tration dependent (particularly for the larger cluster sizes). 
Most of our simulations were carried out at the lowest prac­
tical concentrations. As the particle concentration is 
lowered, the simulations require more computer time and 
more simulations must be averaged to reduce statistical fluc­
tuations. A comparison of the results obtained from simula­
tions carried out at several different concentrations indicate 
that (except for large clusters at long times) our simulations 
were carried out under conditions which closely approxi­
mate the zero concentration limit. We have shown that the 
mean-field Smoluchowski equation is appropriate for de­
scribing the behavior of cluster-cluster aggregation simula­
tions. Since these simulations closely model the essential fea­
tures of Brownian aggregation, it follows that' for that 
physical problem, the mean-field approach is valid. 

We have shown that the kernel K rs follows the predic­
tion of the diffusion equation (6). When r = 0 (mass indepen­
dent diffusion coefficient) 8:::::0.65 (D/::::: 1.5), slightly higher 
than expected from measurements of Dr The overall rate 
constant K was consistently found to be ::::: 3.0 (lattice spac­
ing)3/(unit time), a result of the expected order of magnitude, 
since the for spherical particles in a continuum, K = 41T. 

The short-time enhancement of the aggregation rate 
was also found to follow the prediction of the diffusion equa­
tion. The enhancement for Kll did not die out until the later 
stages of the simulation, while the net enhancement of the 
overall aggregation rate was of somewhat less duration. To 
make the time dependence of the coagulation rate less im-

portant, lower densities (to allow larger times) should be 
used, but would lead to a presently impractical amount of 
computer time. Perhaps this transient behavior can be mini­
mized by making the initial state not completely random, 
but more like what is approached after aggregation takes 
place, where the particles are generally far apart (close pairs 
are less likely). 

The asymptotic behavior of the moments is consistent 
with the expected behavior of Krs; however, it was shown 
that the asymptotic behavior was only approached near the 
end of the simulation, so the results were not very clear. The 
asymptotic behavior is also less sensitive to the details of the 
kernel; for example, z depends only upon the homogeneity. 
Thus, the verification of the Krs came from a more detailed 
study of the kinetics. 

In the cases of mass-dependent diffusion coefficient 
with r = - 1, the apparent behavior of K rs was found to be 
consistent with the prediction ofEq. (12). The homogeneity 
ofEq. (12) is 8 - 1::::: - 0.3. The measurement ofz by Mea­
kin, Viscek, and Family5 verify this result, according to Eq. 
(15). While we did not carry out a detailed analysis of the 
time behavior in this case, there is every indication that Eq. 
(2) is well followed. 

In closing, we note that while we have shown the mean­
field Smoluchowski equation to be appropriate to describe 
aggregation of particles which form fractal clusters, the ac­
tual kernel needed in the equation can only be determined 
knowing those fractal properties which must be found from 
a measurement or computer simulation. There is no method 
of finding the fractal properties from the mean field theory 
directly. Once these properties are known however, the ker­
nel can be guessed, and the entire description of the kinetics 
then follows Smoluchowski. 
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