THE UNIVERSITY OF MICHIGAN

INDUSTRY PROGRAM OF THE COLLEGE OF ENGINEERING

RELATIVISTIC TRANSPORT EQUATIONS FOR PLASMAS

" n

Ercument Ozizmir

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in the
University of Michigan
Department of Nuclear Engineering

1962

June, 1962

IP-571



Doctoral Committee:

Professor Richard K. Osborn, Chairman
Professor Kenneth M. Case

Professor Charles L. Dolph

Professor Chihiro Kikuchi

Professor Paul F. Zweifel



ACKNOWLEDGEMENTS

The author wishes to express his deep gratitude to
Professor R. K. Osborn, the chairman of his doctoral committee, who
suggested this problem to him, and generously provided his invaluable
guidance and assistance throughout the course of this investigation.

The author is also grateful to Professor Chihiro Kikuchi for
his valuable criticism on the presentation which brought about a consid-
erable improvement.

He is grateful to the Horace H. Rackham School of Graduate
Studies for awarding him a Rackham Pre-Doctoral Fellowship, to the
Radiation laboratory, Department of Electrical Engineering, University
of Michigan and to the Conductron Corporation, Ann Arbor, for their
supports through employment which provided the necessary financial sup-
port during his graduate program at the Nuclear Engineering Department
of’ the University of Michigan.

Finally, the author wishes to express his appreciation to the
Turkish Government for sending him to the United States for further study
and to the International Cooperation Administration for its financial

support during the early part of his stay in this country.

ii



TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS . v v e covvvvocronens et e s eees s s it cec e s ii
1. INTRODUCTION . ¢ o e covovoossosaonososcususosoooocssosacsosoa ceosean 1
II. BASTIC FORMULATION . :coscovoooocscoosssssss ceveone Cetisesenseaese O
A, Dynamical ASPECtS...oeoessoessnsssooesocsecsnsosocososonas 8

B- StatisticalASPGCtSae.oo..o.........oa...'.o.o.u.aoo..-... 1’\\/

ITI. DERIVATION OF THE TRANSPORT EQUATIONS IN THE "SELF-CONSISTENT
FIEID" APPROXIMATION...vcevovocossoncnacosns secoesseacecaesce e 19

A. Connection with the Usual Vlasov Equation.....ceceeeeeees. 20

IV. DERIVATION OF THE RELATIVISTIC BOLTZMANN EQUATION...... ceeeoe. 29
A, Derivation of the "Master" EqQuation....e.eoeeeeeoe cesacene 29
B. Deduction of the Boltzmann Equation from the "Master"
Equation..... e o oo e eacananaceacacaseaesoacanaaeeoenao ceeee. Bb
V. SOME ASPECTS OF EQUILIBRIUM...... Ceccoencsaseacaces cvarene cee. U3
VI.  BOLTZMANN-VIASOV EQUATION FOR A RELATIVISTIC PLASMA..... cevee. 50
VII. CONCLUSIONS..... cecoacenas e o ecooeeecoasoesceecasenacacecacenn 59
APPENDICES
A INVARIANCE OF f(x,p) UNDER LORENTZ TRANSFCRMATIONS..eeeeveooss 62
B DETAILS OF THE DERIVATION OF THE SELF-CONSISTENT FIELD
EQUATIONS coevecococacans cocencees Ceeeecane ceceeroeanas ceeecnas 6L
C GAUGE INVARIANCE OF £/X,7) c0ecocococonoscosns cosacecesasececons 71
D CONTRIBUTIONS TO (aFe/at) OF COMPTON SCATTERING AND PAIR
PRODUCTION . ¢ oo eoososcooscocoassoanes C et oo eeuococaeeenananon 72
E A QUANTUM DISPERSION RELATION FOR TRANSVERSE OSCILIATIONS IN A
REIATTVISTIC PLASMA, oo occooacceoosonoessssacssososassconons .17
BIBLIOGRAPHY ¢ ocvvvoovoccncs Ceececescacanan et e vacecaceacacasecaanns 79

iii



I. INTRODUCTION

In recent years increasing attention has been given to high tem-
perature plasmas due to their importance in connection with controlled
thermo-nuclear research. It is estimated that a minimum temperature of
roughly 20 kev would be required for a self sustaining device employing the
D-D reaction., Minimum temperature for a D—He5 device would be even higher
{~ 100 kev). Consideration of plasmas of still higher temperatures is not
beyond possibility. Since the rest mass of an electron is ~ 500 kev, one
sees that in an operating thermo-nuclear device there would be a considerable
number of electrons with kinetic energies comparable to the rest energy so
that a relativistic description for electrons would be required. It is,
therefore, of interest to formulate and study the balance relations appro-
priate to such high temperature systems. Several questions which have
received no detailed consideration in the study of plasmas present them-
selves in the context of very high mean energy systems. In particular, the
implications of the processes of pair creation and annihilation on irrevers-
ible behaviour and the nature of the thermodynamic state require careful
consideration. We shall pay particular attention to these aspects in the
present study.

In contrast to the non-relativistic case, it appears that the
statistical mechanics of tﬁe irreversible processes in relativistic systems
has been studied to a very limited extent. One of the earlier works is due to
Eckart$l> who has given a macroscopic relativistic theory of the simple
fluid. A relativistic form of the Boltzmann equation for a simple gas was
first presented by’Taub(g)a He derived the hydrodynamical equations and

.
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showed that some of the ad hoc restrictionsimposed upon the macroscopic
theory to make it consistent with the special theory of relativity were
furnished from this Boltzmann formulation of the theory. A comprehensive,
phenomenological description of the equilibrium properties of the rela-
tivistic gas was given by Synge<5>.

A relativistic form of the collisionless Boltzmann equation was
derived and its invariance under Lorentz transformations was proved by
Clemmow and Willson<u), A systematic approach to the derivation of trans-
port equations for spinless charged particles in the presence of external
electromagnetic fields was developed by Klimontovich<59 6)u His approach
is, essentially, a direct generalization of Bogoliubov's well-known method(Y)
to the relativistic case., He obtained a chain of equations for the rela-
tivistic distributions and showed that the first approximation to this chain
1s the covariant form of the Vliasov equ.at-ion(5>o In the next order the
retarded interactions of the charged particles are taken into account. By
studying the pair correlation function, Klimontovich derived<6> the rela-
tivistic form of the landau equation - an equation of the Fokker-Planck
type. "Exact" relativistic Fokker-Planck coefficients for a uniform plasma
including radiation were derived by Simon(8)°

It should be noted that all of the attempts mentioned above are
based upon cliassical rather than quantum considerations. Nevertheless, one
expects that the classical theory would be satisfactory for the description
of phenomena in which specific quantum effects are not important. However,

there are several phenomena which can be investigated only through a quantum

mechanical formulation of the problem. For instance, exchange effects which
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arise due to the indistinguishibility of the particles are specific quantum
effects, Creation and annihilation of particles cannot be described classi-
cally and therefore require a quantum treatment. The difficulties faced by
the classical theory of radiation in predicting the black-body spectrum is
well-known. In fact, there seems to be no satisfactory way of treating a gas
of photons within the classical formalism. In Synge's classical treatment(5>
of the photon gas, for example, where photons were considered as material
particles with vanishing rest mass, one is led, as was expected, to an equi-
librium distribution which is different than that of the black-body spectrum.
It is also true that calculationsof the transition probabilities for many
elementary interactions are most naturally carried out using the methodsof
the quantum mechanics. It is, therefore, important to find out in what way
the calculated transition probabilities for certain processes enter the trans-
port equations which describe systems of particles. To our knowledge, no
derivation of transport equations including the short range interactions has
been given for relativistic plasmas.

Another point could be mentioned in favor of a quantum mechanical
formulation of the transport problem. We are here concerning ourseives with
aspects of many body systems which depend crucially on electron dynamlcs,
Therefore, it would seem most desirable that the statistical description be
based upon the best microscopic theory of the electron, i.e., Dirac's theory.
Then, for example, effects on the system arising from intrinsic magnetic mo-
ment of the electron will be accounted for both relativistically or non-rela-
tivistically. Furthermore, it is the second-quantized version of Dirac's

theory that provides a natural framework for the description of processes in-



volving the creation and destruction of electrons and positrons and their
interactions with radiation fields. Finally, within this framework,the
effects on the system due to particle statistics (Fermi-Dirac or Bose=-
Einstein) are naturally accounted for.

It is, therefore, our feeling that our understanding of the rela-
tivistic (as well as any) plasmas would be incomplete before an appropriate
quantum mechanical description of such systems could be achieved and that
any attempt which might shed some light upon this problem would be of Inter-
est. In the present study, we attempt in a systematic, self-contained
manner to formulate transport equations appropriate to relativistic plasmas
based upon a quantum mechanical formalism.

In quantum mechanics, the description of a system of many particies
is conveniently achieved by the use of the second quantized formalism. In
systems where the number of particles is conserved this is nothing but an
alternative expression of the many-particle Schrgdinger theory. However, in
the relativistic systems where actual creation and annihilation of particles
may occur it is necessary to account for the physical phenomena. Therefore,
we shall employ this formalism in the present study. In the non-relativistic
approximation, the second-quantized formalism has already been used both to

(9)

derive the Boltzmann-Tehling-Uhlenbeck equation , and to obtain kinetic
equations for the particle and photon transport in a fuily ionized plasma(loz
We shall attempt in the present study to generalize the latter work to the
relativistic case,

Another aspect of the problem under consideration is the introduc-

tion of the statistical concepts into the description of a system consisting

of huge numbers of degrees of freedom consistent with the principles of quan-
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tum mechanics, In classical statistical mechanics, for the description of
a system of N particles one introduces a distribution function which
depends on the coordinates and the momenta of the particles and which satis-
fies the classical Liouville equation. A quantum mechanical distribution
function {QMDF), as a function of the coordinates and the momenta of the
particles,was first introduced by Wigner(ll)a This function, in contrast

to the classical distribution function, is not an observable quantity due

to the impossibility of the simultaneous measurement of the coordinates

and the momenta in quantum mechanics. However, it has striking similarities
to the classical distribution function, For instance, the equation satis-
fied by QMDF reduces to the Liouville equation as # -0 . Including
higher order terms in “ one obtains quantum corrections to the classical
equation. It should be stressed that although the QMDF itself 1s not an
observable it can be used as an appropriate weight function for calculating
the averages of the obervables pertaining to the system. A detailed study

of Wigner's QMDF is given by Moyal<12)

and others. We shall introduce a
relativistic generaliization of the Wigner distribution function appropriate
to the study of spin 1/2 particles described by the Dirac equation.

In Chapter II, we introduce the formalism which we adopt for the
dynamical and the statistical description of the system., Dynamical aspects
are described via the conventional methods of the quantum field theory.

For the statistical description we use the aforementioned invariant distri-

bution function., Physical meaning and some properties of the distribution

are discussed,



In Chapter III, the equation satisfied by the invariant distribu-
tion function is derived in the self-consistent field approximation. As
i -0 this equation reduces to the covariant form of the Vlasov equation
&, 5) . . s .
7 . To the first order in % it includes the spin effects on the
transport. We derive a coupled set of equations for the invariant distri-

bution function and the spin distributionsignoring the terms of O{ﬁg) ,

The meaning of the higher order terms is not evident since to higher orders
the resulting equations are no longer invariant under gauge transformations,

In Chapter IV, we derive a Boltzmann equation appropriate 1o a
system of electrons, positrons, and photons in the absence of external
electromagnetic fields.

In Chapter V, we discuss some aspects of equilibrium, An H-theorem
is proved for the system in which creation and destruction of the particles
may occur. FEquilibrium distributions appropriate to this system ars dis-
played.,

In Chapter VI, we sketch a derivation of a Boltzmann-Vliasov equa-

tion within the formalism developed in this study.

Chapter VII is devoted to the conclusions,

Notation
We adopt the summation convention uniess explicitly stated other-
wise, Repeated Greek indices indicate summation from 1 to 4, Repeated
latin indices indicate summation from 1 to 3. A three-vector is indicated
with a bar underneath {e.g. é); a four-vector is indicated with no additional
sign. The four-vector A = {Au}ﬂ (u = 1,2,3,4) has the spatial components

A = {Aj}ﬁ (§ = 1,2,3) and the imaginary time component A) = 1Ay . Thus,



for example, p ° X = Ds¥y and p ° X = pMXM =P ° X+ DX =P X = PgXge
Dirac matrices, 7y o satisfy the commutation relationg [7M’%’}+
= 26gv . We define Y5 = Y1Y2Y3YL - We use the following explicit represen-

tation of the Dirac matrices

<’O nioj I Ol
7J:icj o)’ 74:(0 ~I>’0

where Gj are the two by two Pauli matrices.

Commutator brackets are defined by

(A, B], = AB+3BA,

where A, B are any two operators.



II. BASIC FORMUILIATION
We consider a system of interacting electrons, positrons and
photons in the presence of external electromagnetic fields. This 1s taken,
for instance, as an idealization of a fully ionized plasma at high tempera-
tures., We assume that the temperature is high enough to require a rela-
tivistic description for electrons but not for the nuclel in the system,
Our object herein is t0 derive transport equations which describe the system

under consideration.

A. Dynamical Aspects

The dynamical description of the system will be based upon a
Tagrangian for the system which is commonly adopted in the relativistic
quantum field theory of the interacting electrons and which 1s discussed

elswhere¥, The lagrangian density is given by

Lix) = I, + L

A\

,},+L13

whers Le is the lagrangian density for the free electron-positron field,

Ly is the Iagrangian density for the free electromagnetic field and L. is

o

the lLagranglan density for the interactions. Explicit expressions for

these are¥*:

fie [~ NV 2 7.
Le =7 0 {% qn ox, Cox, 7p¥} mme W {? Q} ’

. . OA, A, -

Y 8r | oxy, oxy |7
A (j, = iec N{? 12 (2.1)
MJI o 39 W i 7“ ‘ ol )

See any book on the relativistic quantum field theory.
*¥
CGS Gaussian units are used throughout.

8.
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where ¥ {(and ¥ = nyu) are four component wave operators describing the
electron-positron field and AM = A& + Aﬁ o Aa stands for the internal

electromagnetic fields which are quantized. AS stands for the external

lectromagnetic potentials which are presumed to be glven and which satisfy

the Lorentz condition, namely,

—H =0, (2.2)

BXM

The symbol N denotes the usual "normal product" which,acting upon a pro-

duct of creation and destruction operators, re~orders them so that annihila-
tion operators operate first with a factor of minus one being introduced

for each transposition of the anticommuting field operators during the re-

ordering.

The fieldequations in the Heisenberg representation are readily

cbtained using the variational principie with respect to V¥, ¥ and Ai and

are given by

0 + mc\ e A
—— Y
7 ox, T 7e Yo
s
- me A
A e =2} = e ==\ 7y A
\l\f"‘“ax.ﬂ; o flC\lJ:y.uP"’
i
5 ba (
Oa% = - 5 g s 2.5)
where
2
)
O =
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The physically realizable states, ¢ . of the system satisfy the

condition that

o, gy Z 0 . (2.1)
Bxu

B, Statisticali Aspects

A statistical description of the system will be obtained by the

use of an invariant phase-space distribution function. This will be a

T I

relativistic generaiization of the Wigner distribution‘™ appropriate to

the study of the spin % particles described by the Dirac equaticn, However,
before we introduce this functlon it seems desirabie to review briefly the
usge of the phase-gpace distributionswithin the context of the quantum

thzory mainly to establish the terminoiogy.

For simplicity, let us consider a system of N didentical, non-

-

i 3 3 o 3 - 3 - 1 o
Interacting particles in a static external potential. The Schrodinger equa-

tion describing this system is given by

W (N2 T .
i% 3¢ = Z‘, < A TS + L"\X’, ) ¥ (X" 5e0esX sUiy
o O om Ox ;0% ¢ h - -
3 oJ

2.5}

i

where ¥ is the wave function for the system from which all the possiblie

prhysical information about the system may be obtained. If ¥ 1s given at

a certain time, then one, in principle, can determine it at any later time
using the above equation. Then,using V¥, one could calculate all the observ-

able quantities pertaining to the system., Specification of ¥ at a given
time would require the knowledge of a compiete set of constants of motion

which could, in principle, be obtained performing a cet of compatible meas-



urements on the system. However, 1t is usually assumed that for reasons of
complexity this information about the system is not available to us. One
then sets up an ensemble to represent the physical system under considera-
tion. In the present example, each of the systems in the ensemble would
have the same number of particles. It is assumed that the state of each of
the systems in the ensemble may be specified by giving the complete set of
constants of motion. Then, one assumes that the average behaviour of the
systems in the ensemble corresponds to the behaviour of the system under

consideration. The expected value of an operator O is defined by

<0 > = % wik/PdBalaoodBXN v (xb.eoxe) 0w G )
(2.6)
where V¥5; 1is the wave function describing the i-th system in the ensemble

o s RSN s . n
and w3 1is its statistical weight: 7>3 and 1 7runs over the systems in the
engemble,

Now, Wigner introduces a function of both coordinates and momenta

of the particles by

iy (x7, eeanx 5 ol D)

-3N . 21 (phegle. . ooy /n
= () x/:ngi/pd5zi°aad52N e i{prz Lz >/

, v _
° ; wi ¥ \g;mg;,ooo,§N=5N,t) Yi(§;+5;,ooo,§w+;ﬁ,t) . (2.7)

It is easily seen that the integral of fN over coordinates or momenta

gives the ensemble averages of the usual probabilities in momentum or coordi-
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nate space, respectively, i1.e.,

v (xh, x| (2.8)

J[fN (5},,.,,§N; g},oa.,gw,t) aOxt. .. a0xN

2
v, (e, ...,0%0) |7, (2.9)

= ZW.
H 1

where Y(g},a..,gw,t) is the wave function in the momentum space. Proper=-
ties (8) and (9) must, of course, be required of a sensible phase-space
distribution. There is, however, a seemingly disturbing feature of the
Wigner distribution. Although it is a real quantity it is not positive-
definite. Therefore, it could not be interpreted as an observable probabil-
ity distribution in the phase-space, In fact, one should not expect the
existence of a physical probability distribution (in the fine-grained sense)
which is a function of the eigenvalues of a set of non-commuting operators
(here coordinates and momenta). It should be emphasized that one is usually
interested in the phase-space distributions not for their own sake but for
the purpose of employing them as appropriate weight functions to calculate
the expected values of the observable quantities. It 1s in this sense that
Wigner distribution proves to be a useful quantity. To be specific, let us

consider the quantity

0y 2
SRS DT RCE 1 N1 T
- o0 o X p oo e p O":l 2m fN (?ﬁ :)500)2_(_ 5} g ,9°°°?£ )t)ﬁ'

(2.10)
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which is precisely what we would have written down if we wished to calculate
classically the total kinetic energy of the system. Using the definition (7)

it is easily seen that Equation (10) may be written as

1 N ¢* (41 N U o2 & 1 N
T :%wi\/:iEX .o d0x ‘l’i (?E yecayX ,t){cgl- EW}Yi(ﬁ seees X t),
(2.11)
which is, by definition (6), the quantum-statistical average of the kinetic
energy of the system. This suggests that quantum-statistical averages of
the physical quantities pertaining to the system may be calculated by
averaging,with respect to fN, the corresponding classical quantities.

The equation satisfied by fN is found making use of Equation (5)

and i1s given by

ofy N pfory # S 8’
N2 0y o =2 2 (o
ot T ozi m Bxg ol U(x?) sin < 2y > fN<} (2.12)

where the sin function must be understood in terms of its power series
expansion., It is seen that as %4 —» 0O Equation (12) becomes identical with

the Liouville equation for the corresponding classical system, namely,

ofy N {pg ofy  AU(x°) BfN}
— + =0 .

3% g=1 1lm 0x° 0ox°  op°
o= % j J P3

Higher order terms in % give quantum corrections to the classical Liouville
equation,

We should point out that for calculating many quantities of
interest the full knowledge of fN is not required but one can use the

reduced distribution functions which are obtained by integrating fN over



1k

all but a few coordinates of interest. Reduced s-particle ( 1 <s <N )

distribution functions are defined by

fs(ﬁlya,,,§ 3 Dy eeesD,t)

1 N 1 N
= L/Fd5xs+l.”d5xN d5ps+l,°°d5pN fN (X 500esX 5 P seeesd 5t)

It is easily seen that the kinetic energy of the system may be

expressed as

p2
T :L/Fdax dap o £1(x,p,t)

The equation satisfied by fy(x,p,t) 1is found by integrating Equation (12)

over coordinates of particles 2,...,N as

of p: of
ot S it

2
ot il ij A

U(x) sin (

no | X

«— =
9 o ) £, =0 . (2,13)

A problem of considerably more interest, however, is the case in
which particles are interacting via a two-body potential. It is found in
that case that the equation satisfied by fl involves the doublet density,
fr, the equation satisfied by fo involves the triplet density, f5 , etc,
This gives one a gquantum analog of Bogoliubov's chain equations.

S0 long as we are interested in but a few reduced distribution
functions, a reformulation of the above problem using the second-quantized

formalism* seems to be more convenient in that only the relevant distribu-

*
For a detgiled discussion of this formalism the reader is referred to
Reference (1) , Chapter VI.



-15-

tions enter the discussion. In this formalism, the state function V¥(t)

of the system satisfies, in the SchrSdinger representation, the equation

2
i S - {fd5}< v (05 Pul) + [ vl y @w@} ¥ty

(2.1h)

where y(x), W?(ﬁ) are operators satisfying the commutation relations

1
B{x=-x ) for bosons,

~
<
N

>
w
<

—t
—~
(ke

S
]

3]

[ vix), ¢+(§')]+ = B(x-x") for fermions.

where §/x; x ) = ¢+(§)¢(§ ) 1is the operator for the number density at x .
The equation satisfied by f;(x,p,t) may be obtained by using Equation (1L)
and the commutation relations to yield Equation {13) without recourse to the
equation satisfied by the N-particle distribution. As we see, however,
nothing new is gained by using the second-quantized formalism in this partic-
ular problem. So long as no actual creation and annihilation occurs in the
system, this formalism is simply an alternative expression of the N-particle
Schrgdinger theory, However, in systems in which creation and annihilation
of particles occurs so that the total number of a particular kind of parti-

cles in the system is no longer a constant of motion, this formalism is

necessary.



It ig seen that in the definition of the expected value of an
operator given by Equation (6) two different averaging processes are in-
volved., One is the quantum averaging with respect to the state of the i-th
system in the ensemble and the other is the statistical averaging with
respect to the systems in the ensemble. The point of view is taken some-
times that in the quantum mechanical formulation of the transport problem
the concept of an ensemble neéd not be introduced at all., It was argued
by van Kampen<lu) that one pure quantum mechanical state corresponded to a

(15)

classical ensemble. Osborn has derived transport equations for parti-
cles and photons in plasmas without introducing an ensemble and has argued
that the probabilistic nature of the problem was provided by the quantum
mechanics itself.

We now proceed with the statistical formulation of our problem.

. s 3 . 3 3 . H *
We define an invariant phase-space distribution function for a pure state

by

T{x,p) = (wﬁ)muk/ﬁduz emgipox/ﬁ < o, N {-W(x~z) w(x+z)}-® >3
' | (2.15)
where d z = diz dzp, and ¢ denotes the state vector describing the system
in the Heisenberg representation, It is intended that f{(x,p) could be
used for calculating the averages of certain physical quantities pertaining
to the system in a fully covariant manner. It will be illustrative at this

point to derive an expression which relates the quantum expectation of the

X
When the system 1s represented by an ensemble we have

- -2ipex/h :
£(x,p) = (n%) Mk/;hz e */ % Wi<®in 4W(x~z) W(x+zi} ®?> .

~



-17-

charge four-current to f(x,p). This will also enable us to give a direct
physical interpretation of the gquantity f(x,p). The gquantum expectation

of the charge four-current density is given by

JM(X> = ( o, (j“@) }) (2']—6)

where

j, =iec N {:W(x) 74 W(x)} . It follows from the first two of

Equations (3) that jM can be written as

. _ .0 D
JM = JH + Jp s

where

e ! g§ e ! g- e
LeEr{TGa-ta)v-TE i) v f, ew
p_¢€h 9 ~
Ju—gmgg;l\]{\ycwxy} s (2.18)
1

and where ¢ =

W [ Tus Ty 1. This particular decomposition of the

total four-current operator into the '"orbital' and the "polarization" four-
currents as indicated by the superscripts o and p , respectively, was,
apparently, first given by Gordon (see Reference 16, p.34%3), One may show

that both jg and jﬁ satisfy the continuity equations

dj d5%

S Sy

ox ’ ox °
" M

By this decomposition we separate from the total current the part due to

spin which we do not expect to express solely in terms of f£(x,p)
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Defining

7 - 4 — e i
wx) = (o, Aj®) = AL+ (o, Au®) s
o — .0
J = (o,
M(X) LD, JHQ) s

it is a straightforward matter to show that the quantum expectation of the

orbital four-current may be expressed as

where

The term gp{x)

e [h e ‘ ) )
= EL/Q p (PM - Edgu) (x,p) + gu\x) s (2,19)

) . s —_
= .1 (o, NvAv}e) - (o, Aje)(e, Ny} o) } :

mc

appears as a correlation term in the expression for the

orbital four-current,

We also note that f{x,p) transforms like a scalar under

P

Lorentz transformations as,will be shown in Appendix A,



IIT. DERIVATION OF THE TRANSPORT EQUATIONS FOR A RELATIVISTIC
PLASMA IN THE "SELF-CONSISTENT FIELD" APPROXIMATION
We shall derive here an equation satisfied by f(x,p) . To do
this, we take the first two of Equations (2.3) and let x —»x + z in the

first one and let x - x - z 1in the second one to obtain

dy(x+z) me ie
oy vg v Oez) = gl B y(xe) 3-1)
I
GE 'x-12) me — 1e - '
Y / e - - (
3x,, yn Vx-z) = - 22y (x-z) A (x-z) (5:2)

We multiply Equation (1) from the left by y(x-z) and Equation {(2) from the

*
right by wax+z/ and add the resulting equations to find

O Jeiye / ; _'_ ( o ( _
axp Tix z)y.@w\x&z)} Y(x- z)yH{A X+2) = A“(X z)} Vix+z) = 0 ,
(3.3)
- , 4 -21 gl
Multiplying (3) by {xh) 2 Z/ and integrating over 2z and taking the

expectation with respect to ¢ one finds

UV (x,p) e =4 L .2ipez/A
~_%;;___ + ;g;{wh) dze =P / <§y$(x=z)iyu{%u(x+z)mAu(x-z)}w(X+z)®>:=O,
(3.4)

where

i

(g h [h_-2ipez/n
%(X;M (78) f tpz/ /<I>»\|f(x z) 17, W{xtz) o > .

The method used here is the same as that of obtaining the continuity
equation in the x-spaceqif one takes z =0 ,

-19-
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We note that if g(x) 4is a function of x , then one may write

o-2ip-z/h { glx+z) + g(x-2) }

~

|2

F
2 e=21p°z/ﬁ cos (4O
T2 sin \ 2 Op

> g (x) . (3,5)

Q/

X

i

Using the relation (5) and recalling that A, = Aﬁ AL

Equation (4) may

be written as

« >
égi%—g_eAe 51n<35—a—>27
Bx“ fic 2 M
(3.6)
+.%g(fﬁ)mu dhz eagipoz/h<®y$<XmZ)7g{;i(x+z)=Ai(x~Z)}w<X+z)® > =0,

Equation {6) may be further simplified in the "self-consistent field" approx-

imation, that is, if one assumes

(0,70x-2) 7, (xe2) y(xe2) o) 5.7)

o <<b, Aifixiz)cb > (@ﬂf(x-z)mw(xn)@ > .

This amounts to ignoring the correlations between the electron-positron
field and the quantized internal fields., Consequently, we are also ignor-
ing here the correlations between the particles since they interact via
the electromagnetic fields. Equation (7) expresses this approximation on
a particular term, We shall make similar approximations on other terms in

the following, We wish to note herethat the correlation term g“(x) in
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the expression for the orbital four-current given by Equation (2,19) also
vanishes in this approximation., ZEmploying the approximation indicated by

Equation (7) in Equation (6) we obtain

3,
£, ES&Q sin < 2

S;; fic ¥ (5“8>

Q/

X

|~
&
~—
=
N
X
s
I
o

We now derive an expression which relates tL(xgp) to f(x,p) .
This may be obtained from Equations (1), (2) in the following way.
Multiply Equation (1) from the left by E(xwz)yv and Equation (2) by
7y y(x+z) from the right; then subtract the latter equation from the first

one, Making use of the relations

L7 7 1 =28,, [ 7o 7 lo=21 g,

one obtains after some manipulations,

— ) ) .
SE;'{ Yix-2) Y(x+z) }'“ i 8;;{.W(X-Z)OHV y{(x+z) }

= %% ﬁ(xaz){:Av(X+z) + A, (x-2) } V(x+z)

+'%E y(x-2) Iy {:Au(x+z) ~ Ajy(x-2) } Vi(x+z) . (3.9)

We apply to Equation {9) precisely the same operations and manipulations

that we have used to derive Equation (8) from Equation (3).
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The result is

=
Bo 9 : (3.10
mC'U:,(X;P) :{PV = %\AV COS<§&FP>} ’\X,p) (5 >
{ o
g ox

where

U‘ (x,D) = (nﬁ)=’u /;}-LZ ewEipoZ/ﬁ <®;1|7(x_-z) GV“ V(x+z) (I)> .

W

Keeping only the terms to the first order in # , one obtains

from Equations (8), (10) the following equations:

EI\
> |lQ/
+
ojo

M, ,.
5”& apw ,U‘ € )p =0, (.501»1)

, e , d M, o
me D},&xyp) = (p,-S8 ) Pix,p)+ %(5;; + % B—X-;i &—)@:u(x,p) .(3.12)

Introduce a change of variables from {x,p} to {X,ﬁ} by the rela-

tion p m‘%uﬂ = n , and define f{x,n) by
fix,n) abx alx = f(x,p)dhx dup

and similariy for Y);{x,n) and (j;v&x n) . Noting that under this change

of variables

{,_a_ ey b A o 1.
" an o

bx“ c  ox, O
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and defining

) (3.13)

d e 9 IT _ (3 11
{'g;— + . FVg >x, (x,n) =0, (5.14)
, A (90 e o N /
mCllz;’\Xﬂ{) = J‘[Vf(X,I[) + E &; + E Fp‘u. a; }O;N’\X’H'} . (3.15)

Inserting Equation (15) into Equation (14) and using the anti-

symetry of F_  and (5;@ it follows that

. en(dFy, | 3F, 0, (x,m
J ,é__ + = Fuvﬂvg?r}f(xyﬂ/ + )+C P+ S O ) =0 .(3.16)

M.
| vox, 1ox.,, ox, Jom
By definition (13) one finds that

afou . OF, 4 N BFMV o
ox Ax ox

v 0 g

(3.17)

°

Using Equation {17), Equation (16) reduces to*

It should be noted that if terms of O(ﬁg) and higher were kept, the
equation for f(x,n) is no longer invariant under gauge transformations,
that is, the transformations defined by

A A o=+ 2
b7 T ax

where A satisfies the equation [JA = 0. That this should be expected
may be seen from the very definition of f(x,n), as will be shown in
Appendix C.
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» of e of eh aFuv 5{§v

o YU
v axv c VM Bﬂv he Bxg on

= 0 , (3,18)

g

where f = f£(x,7), (U:w = O'LH,QX,K)Q

We note that, without the lastterm, Equation [18) corresponds to

(4,5)

the usual Vlasov equation in its covariant form® The last term
accounts for the interaction of the spin moments of the particles with the
electromagnetic fields. It is observed, however, that with this additional
term, Equation (18) is not simply an equation for f but involves the
quantity Qj;v . In order to obtain a closed set of equations we must find
an equation satisfied by Gjhv .

We shall not enter any more of the derivations here since they
are somewhat cumbersome, The details are given in Appendix B, However, we

shall quote some of the results. We have found it convenient to introduce

the quantity

5,69 = ()™ fits B ol )iy | o)
- . .

We note that QILV may be expressed in terms of Su as {see Appendix B,

Equation (1%) )

N

meQ . (x,1)

v S4lx,m) + 0(%)

= 1€uvpoﬂp

where euvpc is the completely antisymmetic Levi-Civita tensor density,

and SM(x,ﬂ) is defined by

Suix?n)dhx aly = Su(x,p)dux dnp .
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Using Equation (19), Equation (18) may be written as

. .t S
T of + S 5f + iy ° L ° Y200 (3,20)
Yoox, ¢ T VRO, omee Mg ¥ Oxg ’ -

where Fj; = 5% €yupo Fpg - We find a subsidiary condition to Equation (20)

as (see Appendix B, Equation {20) )

;2 2 D o eh + , _ .
(m+ mTe) fx,n) - 3 Fov nvsu(xﬁﬁ) =0 . (3,21)

Finally, the transport equation satisfied by Sp{x}n) and its

subsidiary condition are given by (Appendix B, Equations (23) and (24) )

.

o e 0 e ,
{ =— 4+ =F g —— 8 =—F S (3,22
{fu A%, T Tou ong | Ve TVRTHR 3.22)
{ﬂg + moe?) s, = 0 , (3.23)

where the terms of O0O{%) are ignored,

Equations {20) and {22) form the coupled set of equations between
f(x,n) and S, (x,7) which we had aimed to obtain. Coupled with these
equations are the Maxwell's equations which are satisfied between the
expected values of the corresponding field operators. It follows from

equations (2.3), (2.4) and (2.21) that for the internal fields we have

oFt L

"V T[ T \ 7
B e - L) (3.24)
SFLt

LY

= 0, (3,2
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We can express Jv(x) in terms of fix,n) and Qj;V(x,ﬁ) as
) e , eh 9o . .
T (%) mﬁ“n m,f{x,m) + 55 S5 8" ﬁwtxm ; (3.26)
c— v o }-2, 1

where the correla*ions are ignored,

A. Connection with the Usual Vliasov Equation

We have noted previously that as # -0 our Equation (18)
corresponds to the usual Vlasov equation., However, there is still a slight
difference because in Equation (18) all four momentum variables m, appear
as independent variables whereas in the conventional form the distribution
function depends only on the first three components ﬂj

As % -0 , Equation (18) and (21) reduces to

.P'
L
Hoox

= v

Ofo

F,. m, =—— =0, (3.27)
, 2. )
‘7?4 me®) £ o= 0. ! %,28)
Equation (28) expresses the fact *hat f{x,n) vanishes except when

(g2 + mPc?) = O which is to be expected. In other words, it implies that

fi{x,n) must be of the form

=

4l

Tix,n) = o & - Eﬂ)F (x,m) + & Eﬂ)F ( ) (3,29)
(X = L0 E— e \‘X‘BE \:ﬂ’.o'i‘ Z-—-p Xy ==j£ s ‘50‘9
T~ .

|

]

where E_ =vmPct+ |n|2c? ; . n
. meet jmjtet ; and Fg , Fy are arbitrary functions of their

arguments.,
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Inserting this into Equation (27) and integrating with respect
Ex E,
to M, OVeET the infinitesimal intervals about U and Ty=" o one obtains

F, OFg iy OF 1 E. JF,
Z = +<—i —= + ed— an] + —EE‘Ei — =0, (5°5Q)
nee ot m Bx me - = mes ¢ éﬂj
E_ OF 15 OF E dF (3.31)
I P_,,J___p-e{.].:_[xﬂ] _..__“EE —2 -0,
mes ot m ij me J  me an

where Fe = Fe(xyﬁ)ﬁ Fp = FP(X.9£>3 € = = .e o

It 1s clear that ¥ and Fp are interpretable as distribution
functions for electrons and positrons, respectively. That is, Fe(x,g)d3x O
is the expected number of electrons in a%% about x , in d®n about =«

at time t . In the covariant languagek5>,
£x7) |80, /me |a%x (5.32)

determines the probability that the world-line of a particle intersects
the hypersurface element dch and that the four-momentum has a value in
ks

about =n . If one chooses doh in the direction of the time axis,

then Equation (32) reduces to
£0x,1) (ry/ine) dx a'x (3.33)

which is interpreted as the expected number of electrons in d5x about

X , in dun about n at time t ., The expectation of any quantity
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Q(x,n) 1is, therefore, defined by

<Q >(t) :\/FQ(xyﬂ) f(X,ﬂ)(Kh/imC)dBX by (3.3L4)



IV, DERIVATION OF THE REIATIVISTIC BOLTZMANN EQUATION

We shall congider here an infinite, homogenous plasma consisting
of electrons, positrons and photons in the absence of any external fields.

The derivation will proceed in two stages:

1. Derivation of a Pauli type equation (Master equation).

2, Deduction of the Boltzmann equation from the Paull equation,

A. Derivation of the "Master" Equation

In the Schrgdinger representation the time-dependent state vector
of the system satisfies the egquation

e %;— | P(t) > = B | F(t) >, (4.1)

where H 1s the Hamiltonian appropriate to the system.

The Hamilitonian can be written in the form
o= Hy + Hp (4.2)

where HO is the Hamiltonian of the free-fields and H.I is the interaction
Hamiltonian, In the present problem, HI is responsible for the self
interactions as well as the interactions between particles. Therefore, one
must be careful in the application of the perturbation theory. However, we
shall not be concerned with these questions here since they have been dis-
cussed elsewhere, For a detalled discussion of the formal theory of scat-

tering and its applications in the quantum field theory the reader is

referred to reference(lB)°

“29=
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The density operator p{t) is defined for a pure-state by
p(t) = |F(t)> <Ft)]| . (h.3)

If the state of the system is represented by an ensemble of the systems,

instead of this one has
S{t) = Towi |Fi(t)> <Fi(t)], (h.1)
i

where 1 zruns over the systems in the ensemble and LA indicatestheir

statistical weights.
One finds that in either case the density operator satisfles the

equation

8 (t)

= = [E 0] . (4.5)

We denote by |n> a complete set of state vectors in the
occupation-number space of the unperturbed Hamiltonian which has the

properties that

Holn> = E o>,

<nim> = 5nm 5

Y, |Im> <n| =1 . (4.6)
n

We expand the state |F(t)> into this set of states as

|P{t) > = 2 cp(t) |> . (k.7)

n

Thus, the density operator may be written as

p(t) = X cnlt) cz(t) |n> <m| for a pure-state,
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o ) -
At) = Y Y owicn(t) cm (t) |n> <m| for a mixed-state. (4.8)
n,m i

The density matrix in the (n> representation is given by

epmit) = <n|p(t) [m> = cpy(t) c;(t) for a pure-state,

(4.9)

i 1%/, :
% wic(t) ci™(t) for a mixed-state

so that the diagonal elements of the density matrix, pnn(t)} gives the
probability of finding the system in the state ‘n> at time % .

We shall be interested in finding an expression for the time
rate of change of the diagonal elements of the density matrix.

Using the first one of the properties (7) one finds from Equa-
tion {5} +that

S z:g: m { <n|EB(t) |n> | (k.10)

P
at nn

. , . . . + . .
Let us consider the "incoming'" wave eigenstates, \n > , which satisfy the

Lippmarn-Schwinger equation (see Reference 13, p.315), namely,

|a*> = o>+ 1im i H_ [n™> . (4.11)

One verifies that

H |ot> = Eyn®>
<0’ ’m+>: Onm ’

% In*> <] =1 n% lg> <g| , (h.12)

where |B> denotes the set of bound states of the total Hamiltonian H .
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It is expected that the bound states would have only a small
effect on the transport in a relativistic plasma., Thus, ignoring the

bound states of the Hamiltonian, one may take
2o |nt> <’ L1
n

Using the set [n+> we write Equation (10) as

0 2 R
S Py (t) 22 Im {mgpQ]HI]m+> < |0t |p> <p+]n>} (4,13)

In view of Equation (L.11) we write
+A \ +. _
< |p(t)|p > = Pmp * Bpp 4 (L.1k)

which also defines am_p . Note that amp vanishes as HI-;O . We shall
ignore the contribution of these terms in the present analysis.

Finally, we employ the so-called "random phase approximation'.
One argues that the major contribution to the time rate of change of
pnn{t} comes from the diagonal elements of the density matrix, and that
the effects of the off diagonal elements tend to cancel out when averaged
over small intervals of time. When the system 1s represented by an ensemble,
it is presumed that the ensemble is set up with "random a priori phases"
such that off dlagonal elements of the density matrix vanish at time t .,
In any case, this quick elimination of the off diagonal elements is far

from being satisfactory. Nevertheless, this assumption is usually made in

the derivation of the transport equations and a detailed analysis of this

point is beyond the limits of the present study. Ignoring the contribution
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of the off diagonal elements one finds

9 2
3P 2 F g Pm(t) Vg (4.15)
The quantity
2 + ot
Y- n E%Im{Q|H1|m><m ‘m} ’ (4,16)

appearing in Equation (15) is equal to the increase per unit time of the
probability that a system initially in the state m> will be found in

|n> (see Reference 13, p.324) and may, alternatively, be written as

2 - 2 2
Ymsn TR Omn Ir {an} + %— 6(EmmEn) Ian] ’ (LLolY)
where
H H
Inp Iom
R = HT + Z “‘—_—‘E“"“"‘_g'“ + 0060 o0 o L['ol8
nm ‘nm p EmuEp+ ie ( )
It may be shown that (see Reference 13, p.325)

Ymsm 7 mniﬁ Y- n (4.19)
which expresses the fact that the rate of transition out of the state |[m>
must be compensated by a decrease in the amplitude of the state ]m> .
Using Equation (19) one finds from Equation (15) that

o 2 (

3t Pan(t) ~ & {pmm\t)wm—an - pnn(t)wn—am}, (4.20)

m#n
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where

0 - By) [Bppl? A )

Equation {20) is commonly referred to as Paull or "master" equation.

B. Deduction of the Boltzmann Equation from the "Master" Equation

#or convenience, we shall normalize the system in a large but
finite box of volume V with the periodic boundary conditions. We denote
by N;(k) the operator representing the number of particles of i-th kind
in volume V with momentum Xk . The subscript 1 refers here to electrons
or positrons of spin up or down and to photons of either polarization.

Ni(g) has the property that it commutes with the Hamiltonlan of the free-

fields. i.e.;
(), Hy 1. =0 . (4,21)

The set »f states |n> which hag been introduced previously diagonalizes
both Hy and Ny(k) simultaneously so that in addition to properties (6)

one has
k) o>, (4,22)

where ni{k) is the number of particles of i-th kind with momentum X in

the state |n> )

We define

i

f£i(k,t) == (F(8), Ny(k) F(t) ), (k.23)

1]
1]

<

so that fi(ﬁyt) gives the expected number of particles of the 1-th kind
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with momentum k , per unit volume, at time t . Using the expansion (7)

one finds
1
£ (kt) = T 5 Ba(t) my(x) (1.28)

where Pn(t) = pnn(t)°
It follows from Equations (20) and (24) that

324 (i, 1)

- =n§h P, (t) Mnsm {mi(E) - ni(g)} s (4.25)

m#n

where

. (0 #m) (4.26)

It should be emphazised that the normalization in a finite box of volume V
is introduced only for convenience; we shall be interested, eventually,
in the limit of the Equation (25) as V - .

The scattering amplitude, S_ (see Reference 13, p.323) is

related to Rpn by

Spn = - eni 8(E-E_) R, . (m £ n) (b.27)

Noting that
+T/2
1 i -

B f B E)Y/B gy | C o (B B,

T—)oo '—‘T/E
one obtains an alternative expression for Ih-;m as

. 1 2
r = lim =— |S
N m Voo VI | mnlVT

To o«
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where Mgy 1is interpreted as the transition probability per unit space-
time volume that a system initially in the state |n> will be found in the
state |m> .

In the following we shall restrict ourselves to the second order*
perturbation analysis for the calculation of the transition probabilities,
We hope it is understood at this point that our purpose is not to re-calcu-
late the already calculated transition probabilities for several collision
processes but to indicate the manner in which they enter into a Boltzmann

type equation., The S-Matrix, in this approximation, is given by**

s(2) - é— (%E)2 fﬁ“xed“xl T {N(%VAV\HXE N(%“Auw)xl} ;
where T denotes Wick's chronological product,which acting on a set of
operators re-orders them such that the earlier time operators operate first
with a factor of minus one being introduced for each transposition of the
anticommuting fermion operators during the re-ordering. In the present case,
no change in sign will result since the fermion operators appear in pairs

in each term. The momentum space expansions of the fields in terms of their

This is the first non-vanishing order in the present analysis.

*¥ . .
For a systematic and concise discussion of the processes described by

S(2)the reader is referred to Reference 18, Chapter 1k,
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positive and negative frequency parts are given by

2 2 ‘e

W0 - 28 @Y Lap) Hp) 2

. D ®p S=

2 -

¢(=)(x) =;ﬁ$_ 5 (g; )1/25291 ) (r+2)( ) i /A }

(-) 1 me2 1/2 _(s) -ip-x/%
v (%) =;ﬁ;_ % (Eéf) &1 Z(E) (p) e ,
_(#) 1 ne2 1/2 2 (r+2) igex/a

X = - Z = Z u

‘If ( ) \/_V q (Eg ) = d (_1_ q € J

(+) 1 ok, 1/2 4 (m) ikex
AM(X)=J;‘§ — m_am(E)eu(E)e s
A5 1 5 Drfic? l/2§ t () . -ikex 4 28

u (%) =ﬁ‘5( o) (k) e (k) e , (k.28)

where the terms have the same meanings as in Reference 18, and w = CIEI .

Boltzmann Equation for Electrons

The processes which effect the electron transport TO The second
order in perturbation analysis may be summarized as follows:

l. Electron-electron scattering,

2. Electon-photon scattering,

3. Electron-positron scattering,

4, Two quantum pair annihilation or creation,

5. Pair annihilation or creation in the field of an electron

or positron.
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To illustrate the method of deducing the Boltzmann equation
from Equation (25) we shall consider in some detail the first two of the

above processes.

Electron-Electron Scattering (Moller Scattering)

The part of 8(2) which describes this process is given by

e (- _(-)
é: (52)° /fiuxld“xQ N {(W( )7vf\°v‘|’(+))x2(‘l’ 7uf\u“’(+))xl}’

where
AV(XE)AH(Xl) = 2rhc 5quF(X2'Xl) R
ik ex
o1 b et
Dnix) = - d k o
p(x) (2n) b k°-ie
Defining,
(e-e) _ L (2) 2
]'-‘n > - VT ]<m'| Se_e 'n>l 2
one can show that
- - L 8 2
- Vi & DA P; Bo By
L2osPysPos Py
sé,si,sg,sl (4.29)

*{1-ng (1) H1-ne(2")}ne(2) ne(l)<m|..,ng@)+1,..,0(2")+L,..,06(2)-1,

ea,ne(l)"'l,ea- >

where ng(i) = ne(pi, si), 8, denotes the four-dimensional Kronecker
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delta and

A = A°7C (2v10 | 2;51)

E@%)(Bé)yu u(52)(22)> (ﬁ(si>(2i)7pu(sl)(£l)>

(pr-p )2
11

(4.30)

<E¢ﬁ)<£i)7u u(sg)(£2)> <E(Sé>(pé)7 u(sl)(gl)>

(Pé'Pl)

It may be shown that AS™F possesses the following symmetry properties:

A°"C(2;1 | 251) - A%T%(1r20 | 251)

*
A®=€(2;1 | 27;1) (4.31)

]

n

It follows from Equation (25) that the contribution to the

electron transport due to the electron-electron collisions is given by

g%g (p,s,t) _ nZth(t) Fz:fm {me(p,s) - ne(p,s)} - (k.32)
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Substitution of (29) into Equation (32) yields

ofe 5.2 VT k8
—£ = (2ne“h) > Pa(t) % _omle” oo
ot vh o D3, 01,01 EpiEp BBy PA+p{-p-py

85,81,8)

SIS

A (2=,-1_r|£,s,-1)'2 {{l~ne(g,s)}{l-ne(l)}ne(2')ne(l')

o

- {Lone (2)}H{12 (1} ne(p,2)me() | (h.33)

In obtaining this equation we have carried out the summation over the
states |m> and made use of the properties given by (31).
We now approximate the average of the products of the occupation

numbers, n by the product of the averages, namely, we assume

e 2

g Pro(t)ne(i).eong(J)ee. & {g Pn(t)ne(i)}.,“{% Pn(t)ng(3)}...

(k.34)
Making use of this approximation in Equation (33) one obtains
d hre?8)Z VT 2
—‘%:-(—E-e"—l"“ﬂz 8 end e Ae-e(ga;l; | p,s;l) [
ot 2 v Bé,gi,gl P5*+p1-P-Py =
82181581
° {{l-er} {1_er(1)} Ve (2') Vi (1)
thB
- - ! - ! ———
{1 er(e )} 1 er(l )} VE er(l)‘} T E 53D (4.35)
721

1|

where f_ fe(g,s,t) .
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Transition to the continuum variables in the momentum space is

achieved by defining

%Ed% fo(p,s,t) = Fe(p,s,t) adp , (4.36)

and noting that one must replace

2, 1 - v d.5p

ged5p (enf)3 ’
Vo, > (2m)° 8(p)
T o > (2nm)  8(Bp) . (4.37)

In the continwmvariables, Equation (35) becomes

E, OFa(p,s,t) 1 ) f 3.6
P e\tr = 2\2 =2 T ) m-c
= — == (2 2 d’pAd’pid’p; =———r
me? Ot 2 (2%)% 0 sé,s{,sl PRI R Ep By By
* ®(p'+pl-p -p.) B®(E_ +E_ -E -E_) ‘ A®"®(2;1" | p,s;1) !2
] 2" 71" p 1 ’ ="
A {oFe(p5,00} {p-Fe(} Fo(2) E (1)
- {p-Fe(2))} {pFe(11)} Felp,t) Felt) |, (4.38)

where p = (2r#)-3,

If we assume isotropic spin distributions, that is,
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Ey 3F 2 3,6

D e (p,t) _ 1 2\2 g k/PB 3,23 m’c

=, — = == (2e E /d“pld“pld —_— (L + P! - P - D
-5 5 (2e) L pPyA"P{47P¢ B, By By (__2 - R —l)

e-e
i) (EQI + Ell - Ep - El) B (BéJEi ’ B’El)

L J

{ oo - Felmt)} {20 - T} Fe(2) 7 (2)
- { 20 - Fe(z')} {2p - Fe(l')} Fo(p,t) Fe(lj} s (4.39)

where

e-e(

°

1 ) 2
0yl | Bp) =1L as-e(21510 | p,s31) |

It is noted that for the explicit calculation of the collision
terms we have specialized to a particular frame of reference by working
in the Schrgdinger representation, However, the covariance of the result-

ing Equation (38) may be seen if one observes that for a homogenous

Bp 3 o 3
system 25 & - 2 54 that 2 ig an invariant, and also that
2 m ox ’ s
mcs ot " Ep
IAe'e|2 is expressed explicitly in a covariant form by Equation (30).

A similar derivation concerning the contributions to the electron
transport due to the electron-photon scattering and the two quantum pair

creation and annihilation will be given in Appendix D.



V. SOME ASPECTS OF EQUILIBRIUM

Previously, we have derived an equation describing the electron

transport which has the form

aFe(E,s,t)

- =(aFe/at)e_e + (aFe/at)cs + eees s

In this section we shall discuss briefly the implications of this equation
for equilibrium systems. In particular, we shall prove an H-theorem for
electron~-photon systems. For the present, we ignore the positrons so that
only the terms describing electron-electron and electron-photon scattering
need be considered.

Before proceeding to the proof of an H-theorem, we need a trans-
port equation for photons also. This, however, may be written down imme-

diately in view of the derivation leading to Equation (D-4). One has

X (k,m,t)
S5t 7 = (BX/Bt)c‘SQ + se0e
where
N
X 2 \2-2 fj 3 .3 mee
= = (e % A?p'ddp a2k ——— 8(p' + k' - p -
(e, = (FPEL_ L Jorede @ s oy s st 2 - )

5 (Ep,-KIS'—Ep-ZIf) ‘A(:’So(_lzlys,'iﬁ':m" E:Ssﬁym) '2

°

{{p~Fe}{o+><}Fe'X' - {o-FéHp+x'} Fex} , (5.1)

where o =%w, k = fix . Equation (1) gives the time rate of change of the

|
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photon distribution due to the collisions with electrons. Corresponding
expression to this, in the non-relativistic approximation for electrons,

has been derived previously(l9),

Let us define a quantity S(t) by(20>

5) = - k 3 [ P { B 20(re/ore) - p 15 (o/pFe) |

-k %L/ﬁdak { X 1n (X/p + X) 4+ p 1n {p/p+X) 4} . (5.2)

where F_, = F (p,s,t), X =X {x,mt)

Using Equations (4.%8), (D-4) and (1) it is a straightforward

matter to show that
ds/at > 0 ,
and that
ds/dt = 0,

if and only if the following conditions are satisfied simultaneously,

that is,

In Feld) + 1n Fol2) in Fe(%'{_ + 1n Fe(2') (5.3)
Fed) T p-Fe(2) p-Fe (2! o-Fe(2")
for all S1s Sps si, sé = 1,2 provided
Py By =Py B (5.4)
E, +E = EP, +YEL (5.5)
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and
F X Fd X! ‘
1n o Fo + In m = 1ln o FL + 1n o (5.6)
for all s,m,s',m' = 1,2 provided
P+r=p"+tk', (5.7)
E +m=E_, +0’ (5.8)
o . C s : ds(t)
It is interesting to note that an examination of the quantity shows

that it is a relativistically invariant quantity. Therefore, 1if it
vanishes in one frame of reference, then it vanishes in any other Lorentz
frame, If we call S{t) the entropy per unit volume we may state that
the time rate of change of the entropy per unit volume is the same in all
lorentz frames,

One finds that the Equations (3) and (4) under the constraints

(), {5), (7) and {8) admit the solutions

P
F (p,s) = —L—n (s = 1,2)
= Be e WPu ’ ’
and
X(k,m) = " ,  (m=1,2)
= c, e~ uky 1,

where B, C7j &, are, so far, arbitrary constants independent of p .

In order to be interpretable as physical photon density,

X(ﬁ9m) must be non-negative for all values of g . This restricts «
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to be a time like vector., Therefore, one can always make a Lorentz trans-
formation so that time axis coincides with au . In this frame of refer-

ence, electron and photon densities are expressed as

1

0
F.(p,s) = s = 1,2
elPsS) T ( ,2)

X(_K_)m> 1,2)

£}
I

where B 1s a positive constant. Note that non-negativeness of X(ﬁ,m)
also implies that Cy > 1 . The common constant P is identified with
l/kT where T 1is the temperature of the system. There remains, however,
two more constants, namely, the constants B, and 07 to be determined.,
The only additional knowledge is the number of electrons per unit volume
in the system which determines the constant Be . It is seen that in this
hypothetical system which consists only of electrons and photons and which
interact only through electron-electron and electron-photon scattering
there is no way of determining the constant C7 . That means that equi-
librium photon distribution is not completely determined. However, this
is not the actual system under consideration. We shallnow show that in the
physical system which consists of electrons, positrons and photons this
arbitrariness is removed by the consideration of all interactions which
are described to the second order in the perturbation analysis,

Let us consider the effect of the two-quantum pair creation and
annihilation on the equilibrium distributions. The system now includes
electrons, positrons and photons, The additional condition to be satis-

fied by the equilibrium distributions is found to be



F Fp X0 X

1n + 1n = 1ln + 1n s (5.9)

p-Fg p-—Fp P+Xo p+X1

(Fp = Fp(_c_l_,r)) for all s,r,m; = 1,2 , provided

PH4a =rpotr o
Ep + Eq=‘(D’2 +'(D’l o
Equilibrium distributions are
Fo(p,s) - —pm— , (5 =1,2)
e\Bs®) = B, PR +1 ’ =5
F(gr) - ——p— , (r =1,2)

g,r = s \r =4,
P B eBEE +1

P
p

X(kym) =—F3F — , (m=1,2) (5.10)

- C eBzS -1 ’ ’

4
with

BB, = C2 (5.11)
eBp = Cy . :

Finally, from consideration of the pair creation and annihila-
tion in the field of an electron one finds that the equilibrium distribu-

tions must also satisfy the condition

F! F (1) F.(2) F
e e e D
In — = ln ———— + In ——— + 1n 5
p-F! p-F (1) p-F (2) p-F,
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for all s',sy,r = 1,2 provided that

The distributions (10) satisfy this condition only if
B, =B B . (5.12)

From Equations (11) and (12) and recalling that Cy > 1 one

finds 07 =1,

ponds to the fact that the chemical potential of the photon gas is equal

BeBp= 1l . In the thermodynamical language this corres-

to zero and that the sum of the chemical potentials of the electrons and
positrons vanish (see Reference 28, p.3%25). 1In the reference cited an
identical conclusion is drawn strictly from thermodynamical considerations,
First it was established that the chemical potential of the photon gas
should vanish because of the requirement that the free energy of the photon
gas should be minimum, for given temperature and volume, as a function of
the number of photons in the system. Then, considering the pair creation
(or annihilation) as a chemical reaction it was concluded that the sum
of the chemical potentials of the electrons and the positrons must be
equal to that of the photon gas. Here, strictly from a consideration of
the kinetic equations describing the system we have shown that the system
approaches to this equilibrium state irreversibly.

It is noted that Equations (11) and (12) together with the

knowledge of the net charge per unit volume in the system is sufficient
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to determine all the constants Cy’Be’B for a given temperature.

Y

net charge associated with the electron-positron field”® per cm5 is

then one can determine B (or B,) from the relation

o)
2 2
£ fnie -4 [onran -

or, equivalently,

If the

en ,

(5.13)

(5.14)

The implication of this result is important particularly for

very high temperature equilibrium systems (kT «,mcg or greater).

finds that$28) while the density of the electron-positron pairs is

One

negligibly small for non-relativistic systems, it already exceeds by a

great deal the usual densities of atomic electrons for kT mc? .

For

extreme relativistic temperatures, the density of the electron positron

pairs increases with (k‘l‘/ﬁc)5 .

Over all charge neutrality is assumed to be maintained by a uniform

background of ions.



VI. BOLTZMANN-VLASOV EQUATION FOR
A RELATIVISTIC PLASMA
In the derivation of the self-consistent field equations we

have ignored the correlations completely. In this way, we were able to
obtain the usual Vlasov's equation for a relativistic plasma with addi-
tional spin-dependent terms, ‘It is usually assumed that the Vlasov
equation, embodying in itself the self-consistent internal fields is an
appropriate starting point for the study of the collective behaviour of
plasmas. Starting with the Vlasov's equation [Equation (3.30) ], coupled
with the Maxwell's equations, the linear oscillations in a relativistic

(21-24) The

plasma has been.studied to some extent by severgl authors.
absence of the correlation terms in the Vlasov's equation reflects it-
self in the fact that this equation does not have any indication of how
the equilibrium is attained in the system and what the equilibrium dis-
tributions should be,

On the other hand, employing a field-theoretic formalism we
have also derived & set of Boltzmann type equations for a spatially
homogenous, “relativistic pldsma in the absence of external fields. We
have shown that, in the sense of certain approximations, these equations
imply unique equilibrium distributions for the constifuents of the
plasma.

A question now arises: what is the connection between the
correlation terms that we have ignored in the derivation of the Vlasov

equation and the collision terms of the Boltzmann equation? To acquire

some insight into this question let us return to Equation (3.6) where

-50 -
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the correlations have not yet been discarded. We have

X}J- fic H SX ap M (6.1)
+§-c--(3r‘f1)-1L [ ks e-2ipoz/h (o, N{¥(x- Z)7“ x+z) Au@h%')w(x+zz}® =

We have seen in Chapter III that if one uses the "self-consistent" field
approximation on the last term in Equation (l), then one is led to the
Vlasov equation. We wish to investigate here in what sense one may in-
corporate the collision terms with the Vlasov's equation. We introduce,
on physical grounds, a decomposition of the internal potentials into two
(10)

parts

i S c
A=A+ A (6.2)

where it is presumed that Ai is responsible for the "self-consistent"
fields and Aﬁ is responsible for the interactions which require a
"eollision" description. We shall employ the self-consistent field approxi-

mation in the same sense as before on all terms involving Aﬁ but noton

C

A .
7]
Introducing this decomposition into Equation (1) one finds
~ -
BUE L 224 A0 o W
19 2 =1 (6.3)
5%, o w5y et
where
_ ,€
A =a+ (@,AS@),
= - S fd z e-Eipoz/ﬁ o, ¥(x-z)7y c x+z)—A x=2) )¥(x+z) ).
I 7o H
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To avoid additional complications we ignore all the terms of

order % on the left hand side of Equation (1) so that

U eﬁ;ﬁw, (6.14)
V

Bx c 0x,,

From Equation (3.10), ignoring again the terms of order %, we find
nell, % (v, - £4,) *. (6.5)

Changing variables from {x,p} to {x,n} by the relation

P - %JQ = ¢ and inserting the relation (5) into Equation (L) one obtains

Df(x,x) = I, (6.6)
where
0 e o
D=gx —+—<~F =xn —
H Bxp c VHH o,

I=- ,%“i(rn)'”fd“z em2i(n + E"S])"Z/Jﬁ(<I>,N~{117(X-Z)7M

. (AC

u(x+z)-AS(x-z))w(X+z)}®)o

Integrating Equation (6) over the variable np and meking use of Equa-

tion (3.29) it follows that

{DeFe(X:E) + Dpr(X)'E)} =1, (6.7)
where
Dy = & fr, Dk S0, O
¢ g “F ax c IMTH ony my = EK/C;
2 d d
D = g_ —_— e F e
boE, {K“ ox e T }ﬁo = -E /c,

I =- %(nﬁ)'3fd3z o2i(mgd) z/n

- (0 ,N{\]f(Xezt)yu( AS (xtzt) -A (ant))\lf(x+z,t)} o)
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Let us now examine the term I more closely, We first note

that it may be expressed in the Schrodinger representation as

I - 2 () a3 < BHzed) 2/

g

(P(t)  W{¥(x-2)7, (A (xr2)-A ] (x-2) )u(xr2) }F(1)).

Using the commutation relations of the field operators one can show that

I = (F(8), [20e,0), 5] F(2)) (6.8)
where

B = tefadx MU(x)7, A DV},
A = () fadz e PHETE Myt ea) y(xem)}

Let us fix our attention to a volume V about the space point

X. We define the coarse-grained distribution, Fé(x,g), by the relation

e 1
Fe(x)i) == | d3X Fe(X9£)°
Vo xeV

Assuming that Fe, Fp and FJH are slowly varying over the dimensions
of the volume YV, one obtains by integrating Equation (7) over the
volume V
{DeFe(x,2) + DpFp(x,-m)} = L L (F(t), [ [ a3x £(x,x),8F]. F(t)).
ih v xeV
(6.9)
The right hand side of Equation (9) gives the effect on trans-
port of the collisions which occur in the presence of the external and

the self-consistent fields. One notes that the self-consistent fields
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are not really known until the whole problem is solved. Also, without
an explicit knowledge of the external fields,the states of the particles
which participate in the collisions would not be available. Therefore,
we specialize here to a case where the external and the self-consistent
fields do not effect the collisions appreciably. In other words, we
assume that during the colllisions we may consider the particles to be
isolated from the rest of the system so that initial and final states
of the particles may be teken as the free-particle solutions of the Dirac
equetion. Thus, using the expansions given by (4 .28) with x, =0 (in
the Schrddinger representation) and ignoring here the term %JQ com-
pared to & for consistency,one finds that

[ a3 f(x,n) ® T Ne(ms) - I Np(-m,1), (6.10)

xeV g=1,2 r=1,2

where

No(z,8) = CH(x)Cs(x), Mplmr) = an(man(x).

It is noted that Né(g,s) is the operator for the number of electrons in

the volume V, with momentum g and spin s; and N, 1is similarly

P
for positrons. Inserting (10) into Equation (9) and identifying the con-

tributions to the electron and positron transport separately we have

DeFe(x,1) = r L(r(t), L3, Ne(x,s),H7)_ Fy(t)),  (6.11)

)

= 1
Dpr(x)-E) == h

J\i—‘

F AL L N(emr), il By(), (6.12)

)
where F,(t) 1s & state vector in the Schrodinger representation which

approximately describes the system in volume V during the time of the
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collision.* 1In the sense of these approximations, the state vector

|F,(t) > satisfies the equation

. O
if ~y | Py (t)> = Hy|Fy(t)>,

where HV is the total Hamiltonian in V in the absence of the ex-
ternal and the self-consistent fields. Noting that N, N? commute

with the Hamiltonian of the free-fields we may re-write Equations (11)

and (12) as
= OFe (x,s,t)
D , = e FAR g s .
Feloom) = & == (6.13)
= OFp (-m,r,t)
where
1
Fe(E’S’t) = #Fv(t)’ Ne(E’s)Fv(t)) ’

Fp(mr,t) = HFy(t), Np(x,x)Fy(t)) -

Equation (14) may also be written as

- OF, (x,r,t)
1 _ - n,r, .
Dpr(X, ) r;Z,E S?R ) (6.15)

where Dé differs from De only by a change in the sign of e, as
would be expected.
Explicit forms of the collision integrals arising from the

right hand sides of Equations (13) and (15) have been given in Chapter IV.

¥
The assumption which is being made here is that the state vector |F(t)>

may be factorized as |F(t)> = |Fy(t)>|Fo(t)>, where V and O refer
to the volume V and to the outside of volume V, respectively, and
states are normalized separately to unity. Since Ng, Np represent
only the particles in V, |Fy(t)> may be omitted here.
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These equations will be called Boltzmann-Vlasov equations since they
include both the self consistent fields of the Vlasov equation and
the collision integrals of the Boltzmann equation. They are coupled
due to the collision terms describing creation and annihilation pro-
cesses.,

In this section, we have given a systematic (although quite
intuitive) derivation of a set of Boltzmann-Vlasov equations for elec-
trons and positrons in a relativistic plasma taking pair creation and
annihilation into account. Also, by this "unified" derivation we have
shown the connection between the two problems considered separately in
Chapters III and IV, namely the derivations of the Vlasov and the
Boltzmann equations. Lastly, we have tried to indicate qualitatively
the restrictions on the validity of the Boltzmann-Vlasov equations by
indicating the assumptions needed to be made in such a derivation.

We wish to make a few more comments on the validity of a
Boltzmann-Vlasov description of a plasma, not necessarily a relativistic
plasma. If one considers the Vlasov equations (where all correlations
are ignored)’as the "lowest order" in an approximate description of a
plasma, then the collision terms appear as corrections to the Vlasov
equation. Objection, however, may be made to the validity of this
description, especially for dilute plasmas. The point is that the colli-
sion terms describing the interactions between the charged particles are
of binary character and in a dilute plasma these encounters would be
quite rare, therefore, less important compared to the simultaneous in-
teractions of many particles due to the infinite extension of the Coulomb

interactions. Recently, this problem has been discussed successfully
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for the non-relativistic systems interacting via the Coulomb forces by both

(26) 2

Balescu(25) and Guernsey Using e“n, where n 1is the density of elec-
trons, as a parameter of smallness and summing explicity the contributions
to all orders in this parameter, Balescu was able to derive an equation ap-
propriate to the description of a plasma which has also been obtained in-

depently by Guernsey. It was shown that(26)

this equation could be cast
into an equation of the Fokker-Planck typeg* An equation of this type may
also be derived from the Boltzmann integral for charged particles by con-
sidering the collisionsof small momentum transfer and by introducing an ap-
propriate cut-off procedure to avoid divergences., This equation is usually
referred to as Landau Equation(27)° The difference between the two Fokker-
Planck type equations is reflected in the coefficients. Whereas the coef-
ficlents a3, bjk in the Landau equation are the first and second moments
of the momentum change in a binary collision, the coefficients in the
Fokker-Planck equation given by Guernsey do not have such simple interpreta-
tion and are of more general validity. In the latter case, the coefficients
reflect the non-locality of the interactions. In thisconnection,the work by
Lenard(28) should also be mentioned. Starting with an integral equation
proposed by Bogoliubov to determine the time development of the velocity dis=~
tribution for a spatially uniform plasma, he has shown that the time derivative

of the velocity distribution can be expressed, exactly, in terms of the dis-

tribution itself, The resulting equation is again of the Fokker-Planck type.

*
By Fokker=-Planck equation we mean here an equation of the form

F _ d 10
- 9 (aF) +1_9  (b.F),

where coefficients aj, bjk themselves may depend on F .
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He has further shown that by means of an excellent approximation it could
be reduced to that derived by'Landau° This indicates that binary collision
description although restricted in general terms does contain sufficient
information for many purposes.

Finally, we note that our Equation (4.39) which describes the
electron-electron collisions for relativistic systems could also be reduced
into a Fokker-Planck form. Since the retarded interactions as well as the
Coulomb interactions are accounted for in the transition probability appear-
ing in this equation,we expect that the resulting Fokker-Planck equation
(when specialized to non-degenerate systems) should correspond to that
derived by Klimontovich(6) through the study of the pair-correlation func-

tion for a relativistic plasma,



VII. CONCLUSIONS

In the present study, we have formulated transport equations
appropriate to high temperature plasmas based upon second-quantized
Dirac theory of electrons. For the study of the statistical aspects of
the problem we have introduced an invariant phase space distribution,

11) yhich is suitable

in analogy with the Wigner distribution function,(
to the study of spin 1/2 particles described by the Dirac equation. In
Chapter III, we have derived a coupled set of equations between this
function and the spin distributions which reduces to the covariant form
of the Vlasov equation as # - O. 1In Chapter IV, we have derived a
Boltzmann equation for electrons in a system consisting of electrons,
positrons and photons which to our knowledge has not previously been
given, We have used the S-Matrix formalism and restricted ourselves to
the lowest non-vanishing order in the perturbation expansion. Employing
the results of this chapter, in Chapter V we have discussed the equilib-
rium properties of this system. An H-theorem was proved and the equilib-
rium solutions were displayed. The results are in agreement with those
obtained strictly from thermodynamical considerations,(28) This question
also does not seem to have been examined previously from the point of
view of the quantum electrodynamics. We have obtained here the kinetic
equations describing the system and its approach to equilibrium based
upon a field theoretic formalism and have shown that these equilibrium
distributions are attained irreversibly. The kinetic equations for rela-
tivistic systems based upon a classical formalism had necessarily ignored

such processes as pair creation and annihilation which,as we have shown

=59_
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in Chapter V,is necessary to consider for a complete description of
the system.

The interesting feature of this result was that for very
high temperature systems (kT mc2) the density of the electron-
positron pairs in the system is very large compared to the usual densi-
ties of the atomic electrons in the system. This, for instance, would
have a profound effect upon the propagation of the electromagnetic
waves in such systems. In the study of the plasma oscillations in
relativistic systems, reference is made sometimes(23’2u) to extreme-
relativistic limits without a consideration of the electron-positron
pairs which would be present in such systems. Therefore, caution would
be necessary in interpreting these results from the point of view of
actual physical systems at extreme relativistic temperatures. Finally,
in Chapter VI, we have sketched the derivation of a Boltzmann~Vlasov
equation for an electron-positron system taking pair creation and anni-
hilation into account.

We would like to point out that in the present study we have
restricted ourselves with a lowest order description of the system in
that the "dressing" of particles or photons by the collective effects
of the medium were not taken into account. It has, however, been shown
in the study of the photon transport in non-relativistic systems(19)
that the consideration of the first order collective effects in a
plasmg leads one to a modified black-body spectrum effected by the
plasma oscillations. Therefore, a refinement on the present study

from this point of view is suggestive. In Appendix E we present a
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quantum dispersion relation for transverse oscillations in a relativistic
plasma. In the non-relativistic limit, this reduces to that given by

Botm and Pines(29) with an additionsl term due to spin.



APPENDIX A

INVARIANCE OF f(x,p) UNDER LORENTZ TRANSFORMATIONS
Recall the definition
=L -2ip.z/Hh —
£(x,p) = ()™ [ abe B 2/M (o MIT (xez)yy(xrz)}e),  (A-1)

where we have indicated the summation over the spinor indices explicitly.
We wish to prove that under the simultaneous Lorentz transfor-

mations on x and p, namely,

X 5x' =1Ix, p -p' = ILp, (A=2)
the following statement holds true

£'(x'p') = £(x,p) , (A-3)
where f'(x',p') is given by

£r(xt,p) = () h [ ate @B EM (n WT (xrg) g (xtea) o),

(A-k)

where &' denotes the transformed state=vector,

Proof:

We first note that the transformed state vector may be written
as¥

o' =U(L)o, (A=5)

* See, for instance, Reference 13, p. 651.

62
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where U(L) is a unitary transformation such that

U(L) vo(x) UTH(L) = S35(L) ya(Ix), (A-6)

U(L) Fy(x) UHL) = Fu(1x) Sg(1x), (4-7)

where ﬁaB(L) is the spinor representation of the homogenous Lorentz
group.
Following statements follow from above and from each other and

need no further comment.

Yo(x'-2) Volx'+2) = Yo(Ix-2) VoLiez)
= Y L(x-1712)) Yo (L(x-1712))
Vo(L(x-L72)) 8,5(L) 853(L) ¥, (L(x+L72))

u(L) $é(x-L'lz) u=L(1n)u(L) WB(X+L_lZ) u~L(L)

i

u(L) Eé(x-L°lz) wB(x+L“lz) ul(n). (A-8)

From Equations (5) and (8) one finds

£1(x',p') = (a)-Y [ atz o-2ilp-z/h

(@,N{WB(X—L_lZ) 1[;[3()(+L'lz)}d>)o
(A-9)

We note that Ip-z = peL-lz, Then, we perform a change of

variables from 2z T = L'lz and note that the Jacobian of this trans-

formation is unity owing to the fact that Det(L) = 1. It follows that

-2ip.7/h

£1(x',p') = ()™ [ atr e (2,8¥g(x=7) yglxr)}a).  (A-10)

From a comparison of Equations (10) and (1), Equation (3) follows. Q.E.D.



APPENDIX B
DETAILS OF THE DERIVATION OF THE
SELF-CONSISTENT FIELD EQUATIONS
It is convenient for the present purpose to obtain from the
Equations (2 .3) a set of equations by multiplying the first one from

the left and the second one from the right by the Dirac Matrices

s 1 . .
I} Vu = lyu’ Ouv = -éz['}'u,)’v]_, Sp. = 1757'“, T = 175 N

The reason for the selection of these particular matrices is that they
form a complete set in the algebra of the Dirac Matrices. To suppress

the notation we define

d i 5 i
D = - i€ A (x D = —_— + ——1e A (x .
H ox, *te ul ) a ox, e ul )

After simple manipulations one obtains the following set of equations:

-
{7uDu + M} ¥y =0,
Pl

v {7“Du -M =0,
- -

{Dv - iGMVDu + M 7v} ¥y =0,
_ -
v {Dy + io,yD, - M 7 =0,

- - -

{sg,uDs + 1(7,Dy = 7,Dy) + M cuv} v =0,
_ - « «— (B_l)
v {sG’WDd +1(y,Dy = 7D,) - M ouv} =0,

- -

{T Dy + 75OHVD“ + M Sv} ¥ =0,
_ «— «—
s {-T Dy, + 75UWDu - M sv} = 0,

6l



~65-

-
{sDy + M 7} ¥ =0,

_ L
¥ {s D, + M1} =0,

where M = mc/h, Sg,uy = %[70’GHV]+’ Vo= (x), ¥ o=¥(x).

We now take any pair of the Equations (1), let x —x + z in
the first one and X —-x = z 1in the second one, then multiply the first
one from the left by ﬁ(x—z) and the second one from the right by
V¥(x+z). By adding or subtracting the resulting equations and introducing

further the notation.

1 + < 1 _)+
+ o - i R - D~
Ty = 5 {o} + Du} ’ Hu 2iM {Du Du} ’
where
—
> « d .
D“' = 5;; - 1€ A_“(X-}-Z)’ Du = S—X—' + 1€ A“(X_Z),

one obtalns

ﬂ VHHEW = 0,

¥ v+ 1} v =0,

v {H; + Guvnﬁ} ¥ =0,

I
(@]
-

v {m; - owl'[: -t v

— R + o -
n {1 So,uv g * (VHHV - VVHM)} ¥ =0,

T[4 - + +
v {1 Sg,uv g - (V“Hv - VVHM) + qu} v =0,
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Vvo{r o3 - 175own;} ¥ =0,

¥ {T H{j + 175%1/]1; + sv} v =0,

v {SHHK + T} v =0,

<|

SHH'II ¥ =0,

where ¥ o= y(x-2), ¢ = y(x+z) .
We glve a generic definition of phase=-space distributions

assoclated with the Dirac matrices by

D(x,p) = <D > = (x0)™ [ a'z B0 /B0, 1{F(x2) D y(xs2)} 0),
(B-3)
where D stands for any one of the matrices I, Vs Opys Sy Or T.
Thus, we introduce the notation
<1I>-=f£(x,p), < vy > --v;l(x,p), <oy > = O-lp,v(xyp):

< Eu > o= S“(x,p), < T > :T(X,p)ﬂ

We now obtain two reletions which are useful in deriving the

transport equations from Equations (2). Let us consider the quantities

@(x,0) = ()™ [ gtz e 2/N (0, M{§(x-2) D T y(xa)} @), (B-4)

Recalling the definitions of Hi and meking use of the Equation ( 3.5)

one obtalins after straightforward menipulations that



A 9 e . . /A g g)
1 53}_{;*—3%811'1(55;55)
Q_(X,P) = 1 { - — } £ (X,p)
1Y - - Ae c (é a a )
W b €%\ X 3p
(B-5)
- g {1 ()™ T et B R, e D8 es2)

T Ai(x-z) J(x+z)} ©).

Employing the "self-consistent field" approximation in the sense

that

(0,1 ¥(x-2)Da (2 ) y(x42}0) = (2,47 (xx2)0) (&, {¥(x-2)D¥(x42)} 0),

one gets from Equation (5)

A 0 e B d d
) L et eGSR
Q_(X)p) = me . 5 g g }b (X,p), (B"6)
P, - E-A“ cos(§ S5 Fp)
where

Au(x) - AE + (o, Ai 0) .

Ignoring the terms of O(‘hE) and changing variables from

{x,p} to {X,n} by the relation p = -i—ﬂ =t we obtain from Equation

(6)

h, 0 e d

—( + =Fyy ) (B-7)
e @ T ST

me Pu

where F,, = éﬁ—“ - -a-e‘i and L (x,n) is defined by the relation
HoTox,  oxy

D (x,x) a*xa*x =D (x,p) atxatp .
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We now multiply Equations (2) by (ﬂﬁ)—he21p~z/h and integrate
over z and take the expectation with respect to ©®. Using Equation (7)

and the relstions

So,uv = % €popv ’

: _ 1 —
Y75%v = 57 Suvpo®oo = %p0

which may be verified, we obtain the following set of equations:

U =0, (B-8)

n“ﬁL + mcf = 0, (B-9)
E

1Oy =- 350 F, (B-10)

ncll, = nf o+ Z—l T 0y (B-11)

ih A

“JUZ - “vlz = ‘§‘€uvpoTcSp’ (B-12)
s A o A

mC(Ev = -1 € ypc%Tet 5 {Tvzz - Tutz} s (B-13)

B At
J’fvfz:"" 5 THCEV =0, (B-1L)
meS,, = U+n + a 'i' T (B=l5)
v~ TV 2 VR

1 oA - )

2 fs, + T-o, (B-16)

ﬂHSH = 0, (B-17)

where we have omitted the arguments (x,n), and defined

A a e
T =9 4+ &F
M BXH c

d

Vi om,
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It is observed that Equations (8) - (17) are not all independent.

have written them all because they make a convenient reference.

Transport Equation for f(x,n)

From Equations (8) and (11) one obtains

A H A 4
1, T + 5 TVTuczh =

Noting that @y, = -0, and that
A A OFy, O
[(T.,7 ] = € Zwvu ~ ,
VTRT- e ox, O

it follows that

0, T f + 15 5§E— sgg- =

p

This 1s the same as Equation (3 .18) in the main context.

We

(B-18)

(B-19)

A subsidiary condition to Equation (19) is obtained by using Equa-

tions (9), (10), (11) and noting that [py, Ty)_

(7Pc® + mgcu)f - % ehce FthEv = 0.

Transport Equation for §,(x,x)

From Equations (14) and (16) one finds

H H UI§+ = 0.

Also, it follows from Equation (13) that

+
mc()&v =5, - 7,5,

e

(B=-20)

(B-21)

(B-22)
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Combining Equations (21) and (22) one obtains
x TS, = §.F S, (B-23)

which is the transport equation for Su(x,ﬂ). Subsidiary condition to
Equation (23) is obtained by combining the Equations (15), (17) and (22)
as

(2@ + mec?) s, = 0. (B-24)

It should be noted that we have ignored the terms of order # 1in equa-
tions for the spin density since the spin dependent terms in Equations

(19) and (20) appear already multiplied by 4% .



APPENDIX C

GAUGE INVARIANCE OF f(x,x)

We show here that f(x,x) is invariant under gauge transforma-

tion to order (B°). By definition,

fx,n) = (:r‘fl)'LF S gty e=2i(m + %Jg)°z/h(®,$(x-z)w(x+z) ¢). (c-1)
change dummy variable z — 1 Dby the relation 2z = fitr so that

£(x,m) = xot [ abe e 2L+ 5T (g Tom)y(ximr) ). (c-2)

gauge transformations of the second kind is defined by

: A
AH -—)A-u = Ap_ + Kp‘
¢ o' =y etlen/he (c-3)
— - - ieAfnc
VooVt =e

where A satisfies the equation [JA = 0. Under these transformations,

-21 S4d),
flx,n) - ' (x,n) = ot J akr e 21 + gf)-r

(0,v' (x-hr)y' (x+07) 0).
(C=k)

Inserting the relations (C-3) into (C-4) one finds that

e1Q(0, V(x-ar)y(x+ar) 0), (C-5)

where

= A(x+hT) = A(x-fit)) - 21 % T gﬁp . (c=6)

Expanding A 1in the expression for Q into Taylor series about x it is
casily seen that Q is of O(B%).

~T1l-



APPENDIX D

oF
CONTRIBUTIONS TO (559) OF COMPTON SCATTERING AND PAIR PRODUCTION

1. Electron=Photon Scattering (Compton Scattering)

The part of 8(2) which describes this process is given by

(2) .
5,70 =8, + 5,

where

1 = (52 J1 abaaed{ (Fod D0 (Pt v g,

Sp = (%5)2 I duxlduxeN{‘Tf(')7vA$+)M7HAL(f)W(+))x1}’
and

Vo) ¥x) = - B splnmry)

5 N igx/h

sele) = i J' S (=)
Defining

et l<nl 88, 1n >,

one can show that

2 4
CoS. 2.32 VT m-c C.8.,
S8 = (LgePc) LY —ECS 5, k' - p - nk|aC |2
n—m vF P, Kk b 0By 1By P P | |
sis m;m -7

+ {1-ne(p}s ) Hmy (kim') by (k,m)ne(p,s) < m|..,ne(pjs')  (D-1)

+ l’.o,ne(B,S) - l,oo;po’ny(g;m') + l’oc’ny(E’m) - l,nea> 9

-T72-
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where ny(gjm) denotes the number of photons of momentum k and

polarization m in the state |n>, and

=
i

= AC+S:(pjs'shk'm'|p,s;hk,m)

) 1) Gy 4 (-2

00 e ¢ e} )

+

A®*S* has the following symmetry property
AS-Se(pys'shk m'[p,s;hk,m) = -A*(p,s;hk,m|p}s'sHkim').

Note that in Equation (1) and thereafter sums over photon polarizations

m, m' are restricted to 1,2. This is because the terms with m, m' = 3, 4
do not give any contribution due to the fact that initial and final states
in > and Im > do not contain(l8) any photons with polarizations 3 and k.
The rest of the derivation is quite similar to that of the M&ller scatter-
ing. Therefore, we shall be more brief here.

One finds |Corresponding to Equation ( 4.35)]

ofe (p,S,t) 2 \2 VT mgcu
—— = lme C Z —_—— B
3t ( ) VR pist Kk b o'o EE p'+ik ' -p-hk
m,m -
2
« |A% % (p's';hk'm'|p,s;hk,m) | (D=3)

o {{1-veHi+ve, b veaved - {1-vegH{iever} ve,vee
7ty 7y iy

where

£, (k,m,t) E% 2 Pp(t)n,(k,m) .
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Transition to the continuum variables is achieved by defining, in addi=-

tion to (4.36) and (4.37),

Y g (km,t) = X(e,m,t)ad
ked3k

where g =%k, and noting that

V

Z l - d3K'. °
ked3k  (2n)3

One obtains, in the continuum variables,

2 . 2.k
OFe (pss,t) _ (e%e)” 57 L [ adp'adkrade =S 5(p'+k'-p-k)
Jt simlm AR 20
. B(E'ﬁﬂ'-Eqﬁ)iAc’S°(g}s';E;m’lg,sgﬁ,m)]e (D-k)

{{e-FeHox} Fix' - {o-Fe}{orx'} Fox}

where o =%w, p = (2:{ﬁ)“3.
If we assume isotropic distributions in spins and polarizations,
that is,
FG(BJS:t) = Fe(Byt) ’ (s=1,2)

X(E:m:t) X(E)t); (m.—.l,2)

i
NiE -

then

mect

J 2 2
oFe (p,t) = (e°c) %— / d3p'd3n'd3n,&FE;iE7ﬁg'5(B'+ﬁ'“B_ﬁ)

ot

.- 5(E'ws'-E-w) - B+ (pik'|p,k) (D-5)

« {{20-Fe Haowx} Fix' - {20-FeH{20-x"} Fex} ,
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2. Two-Quantum Pair-Creation and Annihilation

The parts of 8(2) which describe these processes which are

the inverse of each other are given by

(2 — (0 17 ahesaegn [T g (W,

e .2 - 2 (=
= (&) 1T atmaten {0 yal ) (el () 1

where

X <) = - 5 N ein-(xz-xl)/‘h
Y(xp)u(x1) = zg;ayg [ d% T Tme

A similar analysis as before yields

2.4
OFe (pssst) =L (e20)22 ¢ [ adqade,ade —ECS—
ot 2 T,mo,m] 2" g EgBp

© 8(sptsy - 94-p)B(op+ T -Ep-Eg) [A[°
(D=6)

° {{p=Fé(£,S,t)}{p-Fb(g,r,t)} X (ko mp,t) X (ky,m,t)
- {p+x(£2:m29t)}{Q*‘X(_K;‘]_:mlyt)} Fe(gﬁsxt)Fp(Bﬁsyt)} )

where

lAlg s |AP-8- 2 _ | AP Co 2,
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and

AP-8- - AP°a°(52,m2551:m1|2:532:r>

- 778 (g) f4m2) () (g:;%j:{gg #0m) (1)

4 flm (nl) e é(ma)(ﬁg)} u(s)(p) |

-Kg) ime

«Co e \e
AP+ Ot = APCe(p,5;9,T|kp Mok ,my )

L8 {4y L plm)
) 467 ) e T ()

+ pm1)( #m2) (6, )} u(T+2)(g)

K1) ———
($-f1) -ime
The symmetry relation between AP*®* and AP*®* which

has been used in deriving the Equation (6) is noted as

A*po e

AP+ S (Exsiﬂ)r‘ Eg:mg:'ﬁl:ml) == (_R_gymg,:ﬁlymll B,S;g,r) .



APPENDIX E
A QUANTUM DISPERSION RELATION FOR TRANSVERSE
OSCILLATIONS IN A RELATIVISTIC PLASMA

In the previous analysis we have assumed that photons propagate with
the velocity c between successive events so that w = c]EI. It is known
that<30> the energy-momentum relation for photons traveling in a medium differs
from this relation due to the collective effects of the medium. We wish to
present here a quantum dispersion relation which determines w as a function
of k appropriate to a fully ionized relativistic plasma in the absence of
any external fields.

We use here a procedure developed by Mead(Bi) in the study of the
quantum theory of the refractive index. The details of the calculations is
of little interest since it only involves a straightforward perturbation
calculation to second-order. We find that the modified energy-momentum rela-
tion for transverse photons (i.e., m=1, 2) is determined by the dispersion

relation

Pr iy = of B [ P2 p (p) (8-1)

" 26" (1) p)2 - (praz + 12e?)  2(e™(w)p)? - (prap + ncd)

- = ]
2,2 202)

hkp'qz + (prq3 + m=c<) hkptqp - (prgp + m

2™ p)? + - 12 2™ ) + oy - aB) |y
hkm.qll_ = (P% - m202) hk,‘q; + (p.ql _ m2c2)

lnrNe2

where €<m>(k) (k 5 iop/c) , w% = v ’

Hl
i

(5/151 5 0) km

=77~
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and

b
I
Il
o
1=

= =(pHik), @3

]
it

L = (phk) , gy = -(p-fk)

and where Fq(p) is normalized to unity.
In the non-relativistic limit the relation (1) reduces to
o2
(m),v)x2 + (BEZ
(o) + ()

2 2 5 5 ;
Wy = C |E‘ + {l + [ a’v fe(Y_) } | -
@p (ks v=up)2 - (2_11%%)2

It is observed that this relation differs from that given by
Bolm and Pines(30) with the appearance of an additional term, (1x°/2m)°,
in the nominator of the integrand. This additional term arises due to the

inclusion of the spins of the electrons in the analysis.*

* After the work presented here was completed,we found that in a recent
article by P. Burt and H. D. Wahlquist 29) spin and exchange corrections
to the plasma dispersion relations have been calculated by a different
procedure. They have employed a quantum Vliasov éguation based upon the
non-relativistic Pauli equation in order to include the spin effects.
Their result for the transverse dispersion relation including spin cor-
rection agrees with our Equation (E-2). Exchange corrections do not
appear in our dispersion relation given by (E-1).  In order to include
the exchange effects in the transverse dispersion relation we must go
to the fourth order in the perturbation analysis. In fact, the eXﬁhang
correction given in the aforementioned paper is proportional to Wp~ €
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