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Results are presented from an assessment of the applicability of Taylor's hypothesis for
approximating streamwise derivatives and obtaining dissipation estimates in turbulent flows. These
are based on fully resolved measurements of a conserved scalarfield throughout a
four-dimensional spatio-temporal volume in a turbulent flow. The data allow simultaneous
evaluation of all three components of the true gradient vector Wel(k,t) and the time derivative

field (a/0t) {(x,t) at the small scales of a turbulent shear flow. Streamwise derivatives obtained
from Taylor’s frozen flow hypothesis yield a correlation of 0.74 with the true streamwise derivative
field at the present measurement location in the self-similar far field of an axisymmetric turbulent
jet. Direct assessments are also presented of approximations invoking Taylor's hypothesis to
estimate energy dissipation rates in turbulent flows. The classical single-point time series
approximation yields a correlation of 0.56 with the true scalar energy dissipation rate, while a mixed
estimate that combines one spatial derivative and the time derivative gives a correlation of 0.72. A
general analytical formulation is presented for assessing various dissipation estimates, and for
determining the optimal dissipation estimate that maximizes the correlation with the true dissipation
rate. The resulting optimal mixed dissipation estimate yields a correlation of 0.82 at the point of
maximum turbulence intensity in a jet, and a value of 0.92 on the jet centerlind.99F American
Institute of Physicg.S1070-663197)01606-1

I. INTRODUCTION volved than the determination of temporal derivatives from
. o ) single-point time series measurements. Consequently, owing
Since its introduction more than 50 yrs ago, Taylor's, the importance of spatial gradient quantities in turbulence
hypothesi$ has been widely used in measurements of grad'dynamics, it has been common to use Taylor's hypothesis to

ent quantities in turbulent flows. The approximation, inegtimate spatial derivatives, even under conditions for which
which the local instantaneous value of the time derlvatlve[he approximation is not strictly valid. Even in multipoint

from a single-point measurement is used to estimate the SPBtobe measurements of velocity gradier(esg., Vuko-

tial derivative in the streamwise direction, is routinely in- g5ycevic. Wallace. and BaliftTsinober. Kit. and Dracés,
voked to obtain gradient quantities when the required multi-r,y 155 hypothesis is invoked to estimate derivatives along
point spatial measurements are impractical or OtherwiSg,e mean streamwise direction. There have been numerous
unavailable. Indeed this approximation is used even u”deétudies(e.g. Lin® Wygnanski and Fiedlel® Antonia, Phan-
conditions well outside the range of validity originally envi- Thian and Chamberd: Zaman and Hussait? Brown. An-
sioned by Taylor. He recognized that, in the limit of low y4nia *and Rajagopald® demonstrating errors introduced

turbulence intensities, the motion of gradients relative to thg,an making this approximation, and identifying alternative
local mean flow could be approximated as one of pure CoNgritaria under which the approximation may be justified in
vection. Under this assumption fluctuations of the quantity ofgpa4r flows.

interest, say, are considered frozen over the time scale of

the temporal derivative, giving
L 1/(d¢
(a_x> “ulE) (1 nia, Phan-Thien, and Chambéfs;Brown, Antonia, and
H Rajagopalart® Anselmet and Antonid® Andrews et al,'’

where U is the local mean velocity along the streamwiseDowling'®). For any dynamically passive, conserved scalar
direction, denoted here by In Taylor's studies of spectra in quantity {(x,t), the scalar gradient magnitude squared gives
decaying wind tunnel turbulence, the underlying requirementhe dissipation ratg (x,t)=—V - V(x,t) of the scalar en-
for low turbulence intensity was well satisfied, and replace-ergy 3 £%(x,t) per unit mass of fluid, where the diffusivity
ment of the spatial derivative by the time derivative washas been absorbed in the normalization of the spatial coordi-

Among the most widespread uses of Taylor’'s hypothesis
is in estimating dissipation rates in turbulent shear flows
(e.g., Heskestatf Sreenivasan, Antonia, and DafthAnto-

justified. nates. The true dissipation is thus
Taylor’'s original approximation has been invoked more
liberally as a general means to estimate spatial derivatives in [ d{ 2 [a0\? [ag\?
turbulent shear flows. Direct measurement of spatial velocity X~ | gx ay + 9z )

gradients(e.g., Su and Dahfr) as well as other gradient
quantities in turbulent flowse.g., Dahm, Southerland, and However, the simultaneous spatial derivatives required to
Buch? Southerland and Dahtf) is considerably more in- evaluatey(x,t) have only recently become accessible to ex-
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perimental measurement, and for this reason various apnent, photodiode array. The array output was serially ac-
proximations fory based on Taylor’s hypothesis are gener-quired at eight-bits true digital depth and continuously writ-
ally used instead. The most common of the&eg., tenin real time to a 3.1 GB high-speed parallel-transfer disk
Heskestad? Andrewset al,;'” Dowling'®) uses Taylor's hy- bank capable of accommodating more than 50 000 such
pothesis in(1) to estimate the component of the gradient256 data planes. The resulting measured fluorescence inten-
vectord{/dx along the mean streamwise direction, and thersity field was subsequently converted to the true dye concen-

takesallox=alldy=a{ldz, giving the approximation tration. A typical two-dimensional data plane from a four-
1 4¢\2 dimensional measurement is shown in Fig. 1
xm=3{ — 5 E) ®) Each measurement produces the scalar field at over three
billion individual points in space and time. To estimate the

In some cases, time series measurements at two closelgsulting spatial and temporal resolution note that the local
spaced pointde.g., Anselmet and Antoni§ allow direct outer scaled(x)~0.44x and the mean centerline velocity
evaluation of one cross-stream spatial derivative componenti(x)~7.2(/p)¥> 1, with J the jet source momentum flux
in which case a mixed spatio-temporal dissipation approxiandp the ambient fluid density. At the outer scale Reynolds
mation can be formed by combining the one available spatiahumber Rg=(ué/v)~3700 and with the Schmidt number of

derivative and the time derivative, as, for example, 2075, the local strain-limited molecular diffusion length
1 97\ 97\ scale esti.mate i.SsDw257 pm and the local advec'Fion time
XZE( _Uﬁ) +2 (9_) . (4) scale estimate isp=Ap/u~113 ms. For comparison, the

y in-plane spatial resolution was\(x,y)~109um. The

While it has long been accepted that estimates of thél/e) laser beam thickness was measured as3880Decon-
type in(3) and(4) are only approximations to the true dissi- volution of the scalar field measurements among adjacent
pation in turbulent shear flows, laboratory measurementplanes increases the effective spatial resolution inztiug-
necessary to assess the precise nature of the errors introdudegtion to the interplane separatiaxz~ 120 um. These val-
have only recently become possible. The present results proles show that both the characteristic scale of the pixel image
vide an assessment of Taylor's hypothesis in a turbulenvolume (Ax-Ay-Az)® and its maximum dimensionA@z)
shear flow using experimental data from four-dimensionakre more than two times smaller thaw,. Similarly, the
spatio-temporal measurements of a conserved scalar fiel¢mporal separation between successive data planedvas
Z(x,t) (Dahm, Southerland, and BuéhSoutherland and =8.6 ms, and comparing with the diffusion scale advection
Dahm>® Su and Dahnf® Frederiksen, Dahm, and time of 113 ms verifies that the present measurements re-
Dowling'®2Y, each comprised of over three billion data solve essentially all of the fine scale structure of the local
points that extend simultaneously in all three spatial dimenturbulent mixing process.
sions as well as time, and that resolve the smallest spatio- The separation in all three spatial dimensions between
temporal gradients in the field. Particular emphasis is placeddjacent points within each spatial data volume is smaller
on evaluating the accuracy with which approximations basethan the local diffusion length scabke, in the scalar field.
on Taylor’'s hypothesis ifil) can be used to estimate the true This spatial resolution, together with the high signal quality
dissipation ratey in (2) via yt4 and x» in (3) and (4). An  attained, allows accurate differentiation of the measured con-
analytical procedure for evaluating the relative merit of vari-served scalar field in all three spatial dimensions and in time.
ous dissipation estimates is presented and used to obtain ahis makes it possible to determine the components of the
optimal two-point dissipation estimate that depends on therue local instantaneous scalar gradient vector fleldx,t)
local turbulence intensity. throughout these four-dimensional data, without any need to
resort to various approximations based on Taylor’'s hypoth-
esis, as is commonly required. This in turn permits the de-
termination of the true scalar energy dissipation rate field

The present results are from analyses of laser-induce¥ ¢- V{(x,t). Similarly, the temporal separation between ad-
fluorescence data for 52000 mixing of a dynamically pas- jacent data planes within each spatial data volume, and be-
sive dye in the self-similar far field of an axisymmetric tur- tween the same data point in successive volumes in the fully
bulent jet in water. The measurement technique was introfour-dimensional data, is shorter than the local diffusion
duced by Dahm, Southerland, and Bddmd is described in  scale advection timep, . As a result, it is possible to extract
detail by Southerland and DahtiBriefly, the concentration  fully resolved time series data from both the conserved scalar
field (x,t) of a laser fluorescent dye carried by the jet fluid field ¢(x,t) and scalar energy dissipation rate field
was measured repeatedly in time within a small threeV{-V{(x,t), again without invoking any of the various
dimensional spatial volume located 235 diath.15 m classical approximations. Moreover, note thlatAt~ Ax, so
downstream of the jet exit and 13 cm off the jet centerlinethat an accurate assessment of Taylor's hypothesis is indeed
This radial location {/x=0.11) corresponds to the highest possible.
turbulence intensity in the jet, and thus provides a stringent  Finally, note that the imaged region in the turbulent sca-
test of Taylor's hypothesis. A highly collimated laser beamlar field in these experiments typically spans less thaof
was swept in a raster fashion through this volume, and théhe local outer scalé, and is comparable to the local inner
resulting laser-induced fluorescence from dye-containingcale\, of the flow. The structure of velocity and scalar
fluid was imaged onto a high-speed, planar, 2266 ele- fields in turbulent shear flows at scales near and belpus

Il. MEASUREMENT TECHNIQUE
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FIG. 1. Typical spatial data plane from the four-dimensional spatio- }‘ .
temporal data spacé&(x,t) used in the present study. Spatial and temporal / -~ -
derivative results in this same plane are shown in Fig. 2, and comparisons o -~ j
various dissipation estimates with the true dissipation rate field - | f
x(x,)=—DV{-V{(xt) are shown in Fig. 4. e E_:ﬁrf
Iflv e / T
/ . e
generally believed to be statistically universal. This conten- ' ==
tion appears to be true, even for the present moderate Rey /I’
nolds number flows, as evidenced by the measured collaps '
of small-scale spectra at similar Reynolds numbers by
Dowling,*® and by the DNS studies of Jimez et al?*> The ~
estimated Taylor scale Reynolds numbers for the presen ., J . L L .57

data are 3&Re <52, well within the range of values over 1'1 1
which the DNS results of Jinmez et al. showed Reynolds ' YAy
number-independent collapse on inner variables at the small- _ _ _ _ )
est flow scales. As a result. even though the present measurFé—G' 2. Results showing typical comparison of the true streamwise deriva-
f ’ 5 <’ bul . h I tive field 9¢/dx (top) with its Taylor's hypothesis approximation in terms of
ments are from 2968 Reﬁ\'SOOO turbu ?nt Jets, the small- the time derivative?{/t field (bottorm). The correlation between these two
scale structure and dynamics reflected in them should thus beids is 0.74.
largely representative of the inner scales of all turbulent

shear flows.
as was suggested in Fig. 2, the extreme values are overesti-

mated by the approximate derivative based on Taylor's hy-
pothesis. As noted by Wygnanski and Fiedféthe com-
For the same data plane shown in Fig. 1, Fig. 2 comparegaratively large turbulence intensity in the jet far field,
the measured streamwise scalar field derivative valuegelative to the wind tunnel measurements for which Taylor's
(9¢19x), in the appropriate inner scale variables, with thenypothesis was originally proposed, leads to significant er-
Taylor's hypothesis estimate){/9x)r in (1) based on the yors in turbulence statistics when this hypothesis is used to

measured time derivative valuesZ(dt). Note that the color  estimate derivative quantities. Figures 2 and 3 give some
scales are identical in both cases. It can be clearly seen tha#sights into the nature of these errors.

while the streamwise derivative estimate in the jet based on

Taylor's hyptheS|s qlearly ca}ptures the baS|c_ strupture of thfv_ DISSIPATION ESTIMATES

true streamwise derivative field, the approximation greatly

overestimates large positive and negative values. This can be Figure 4 compares the true scalar energy dissipation rate
seen as well in the curves in Fig. 3, which show one-y in (2) with the approximationyty in (3) based solely on
dimensional intersections through fields of the type in Fig. 2the time derivative in Fig. @) and with xy, from (4) based
Note that Fig. 8) is a spatial intersection along tlyedirec-  on mixed space and time derivatives. Results are shown both
tion, while Fig. 3b) is a temporal intersection. The profiles in linear form, where magnitudes can be readily compared,
chosen in Fig. 3 are quite representative of the entire datas well as in logarithmic form, where differences in the re-
space. The correlation between the two curves in Hi@.i8  sulting dissipation field structure at low values can be better
0.74, and in Fig. @) is 0.73. For the entire data the corre- discerned. In each comparison, the color scales used for the
lation between §¢/9x) and (@¢/9x)ty is found to be 0.74. true dissipation and the two approximations considered are
The correlation between the two planes in Fig. 2 is also 0.74identical, allowing direct comparisons. Note that whje

and thus representative of the entire data space. Notice thagry, and y, all have the same fundamentally layer-like

Ill. SPATIAL DERIVATIVES
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proximations of the true dissipation fieldFrederiksen,
! Dahm, and Dowling®=23. It can also be seen in Figs. 4 and
——— QA3 5 that the dissipation estimatggy and y», tend to overesti-
mate large dissipation rates. This is evident in Fig. 6, where
the resulting distribution of dissipation values over the entire

data space is shown far, x4, andys.

0.4

02

I : L . V. ANALYTICAL CORRELATIONS

-0.4 *
o0 o y/A, v " For dissipation estimates likery and y, in (3) and(4),
it is possible to obtain analytical results for their correlations
030 with the true dissipatiory in (2) under the assumption of
020 | —— ayex ‘ isotropy inV{(x,t). The correlation then allows an optimal

R (L dissipation estimate to be determined. The formulation
makes use of the exact transport equation for the conserved
scalar quantity, namely

al v
U Ve Rese

V2(=0, ®

where all variables have been normalized, giving the dimen-
L ' ' ' sionless diffusivity as the product Re Sc of the Schmidt num-
ber and the Reynolds number based on the normalization
FIG. 3. Typical one-dimensional spatidgbp) and temporalbotton) inter- scales. The_ second term (8) (.:an be written In terms OT the
sections through the fully resolved four-dimensional data space, showin&calar gradient vector magnltu¢§'§(x,t)| and the projec-

comparisons of the true streamwise derivative figfdx(x,t) (solid line  tion uy(x,t)=u- évg of the velocity vectoru(x,t) onto the

with its Taylor's hypothesis approximation based on the time derivativescalar gradient unit vectc&vg(x,t), giving
field 9¢/at(x,t) (dashed ling The resulting correlation ife) is 0.74, and in

(b) is 0.73. The correlation obtained over the entire four-dimensional spa-

tiotemporal data space is 0.74. |V§(X,t)| =—

st Re Sc

%’ 1 Vzg). (6)

Uy

_ ) ) Recognizing the diffusion term ii6) to be negligible at
character, considerable differences are apparent in the dgyge Re Sc gives the gradient magnitude as

tailed structure of the dissipation fields. As would be ex-
pected from the exaggerated extreme values for the deriva- 1
tive fields in Figs. 2 and 3, the peak dissipation rates are |V&(xt)[=~ -
greatly over represented in both the dissipation approxima- :
tions in Fig. 4. Approximations similar tory have been This should be compared with the classical Taylor's hypoth-
widely used in studies of the geometric scale similarity prop-esis for the streamwise derivative(ih). The true dissipation
erties of the dissipation field in turbulent flowsee the dis-  y is simply the gradient magnitude squared, and fi@mnis
cussion in Frederiksen, Dahm, and Dowfifity. However,
the results in Fig. 4 suggest that the differences between the 19\?
true y and y74 can be rather large. Cuy at

One-dimensional spatial intersections through the true
dissipation fieldy and the two approximate dissipation fields ~ We first consideryry in (3) and note that
XT1h @ndy, are shown in Figs.(®) and §b). As was the case
in Figs. 3a) and 3b), Fig. 5a) is a spatial intersection along XTH:‘?’(
the y direction, and Fig. &) is a temporal intersection.
While the intermittent character of the dissipation field is o C
evident in all three cases, note that there are large differencé‘i;St"’mSt'caI mdependence o(x,1) a”dVéf(X’F) is justified,
apparent in the dissipation values. In some cases, even tﬁl&en the correlatiomR betweeny and yry is simply
dissipation support set is significantly different. In Figa)5 —
the correlations between the true dissipation and the esti- p_ XTHX _ (u/V)
matesyty andy, are 0.56 and 0.76, respectively, and in Fig. (X$H)1/2(X2)1/2 [(u, /U)4]1’21
5(b) are 0.52 and 0.79. These are representative of the 0.56
and 0.72 correlation values obtained over the entire dataamely the ratio of the second and fourth moments of
space. As noted above, these differences are important f¢u,/U). Sincey and yty in (9) are proportional via a statis-
studies invoking Taylor's hypothesis to examine possibldically independent random factor, the absolute correlation in
fractal and multifractal scaling from lower-dimensional ap- (10) and the conventional fluctuation correlation are equiva-

()

ag)
E .

®

2

Uy
X. 9

U

(10
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FIG. 4. Comparisons of the true dissipation rate figldh (2) (top) with the single-point Taylor series approximatigf, in (3) (middle based solely on the
time derivative in Fig. &) and with the two-point mixed approximatiop, in (4) (bottorm) based on the time derivative and one spatial derivative. Results
are in a linear form(left) to allow comparisons of relatively high dissipation rates, and in logarithmic foight) allowing comparisons of lower values.

lent. Recognizing that,=|u|cos¢, whereg is the spherical fu\" 1 (uZ+oZ+w?)"2

angle betweem and V¢, and then takingv{ to point with (U) =071 wn . 11
equal probability in all directiongwith the isotropic distri-

bution of spherical angleg(d,¢) = (1/4)sin ¢], gives for n even. Taking velocity fluctuations to be isotropic, and
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FIG. 6. Probability densities of the true dissipation rgtésolid line), to-
gether with its single-point Taylor's hypothesis approximatjer, in (3)
(dashed ling and the mixed two-point approximatig in (4) (dotted line.
The approximations inherently overestimate the peak dissipation values,
. s though x, represents a significant improvement oygt;. In Sec. IV we
F . provide a general analytical formulation for constructing the optimal mixed

oo bttt L L L. ) two-point dissipation approximation.
00 01 02 03 04 05 06 07 08 09
t'()“v/u)_]
2 2
FIG. 5. Typi imensi i Uy (9¢lay)
. 5. Typical one-dimensional spatidtop) and temporal(bottom xX2=||—~| +2——|x. (13
intersections through the fully resolved four-dimensional data space, U X

showing comparisons of the true scalar dissipation rate field .. .
X(t)=—DVZ-VE(x,1) in (2) (solid line) with the classical single-point  R€COgNIzing that d¢/dy)=|Al|cose, with ¢ now the
Taylor's hypothesis approximatiogr, in (3) based on the time derivative Spherical angle betwee¥il ande, , and again assuming isot-
field 9¢/t(x,t) (dashed ling and the mixed two-point approximatio in ropy in V¢ so that the distribution of spherical angles is

(4) (dotted ling. The correlation betweegpand y1 in (a) is 0.56 and inb) '3(13#’) — (1/477)sin ®, gives the correlatiolR as
is 0.52, and over the entire four-dimensional spatio-temporal data space Is
0.56, which should be compared with the analytically predicted value of

0.60 in Sec. IV under the assumption of isotropy. Similarly, the correlation

[(UH/U)2+2 CO§ (P]

' . ; ; = . (19
betweeny and x, is 0.76 in(a) and 0.79 in(b), and 0.72 over the entire 4 2 1/2
four-dimensional spatio-temporal data space, while the predicted value in [(u” /0) +4(u” /0) cos’ etd cos’ cp]
Sec. IV is 0.79. Noting that thenth moment of cosp is 1/(n+ 1) for n even,

and using the moment values (b2) with the velocity fluc-

tuation values from Wygnanski and Fiedféat the present
assuming Gaussian relations between fourth and second flug-/x)=0.11 location gives the correlatid® in (14) as 0.79.

tuation Smoments(e.g., Millionshchikov3*?* Monin and  This can be compared with the measured correlation 0.72
Yaglont), gives obtained in Sec. IV, with the difference again attributed to

T2 -2 the factors mentioned above. In any case, the correlatign of
uy 1 u . : . : .

(_) =—11+3 ﬁ_> , (129  with x, is considerably higher than witr,.
U 3 u It is not surprising that the estimajg based solely on
TREEE] 02 0’2\ 2 u'v'\? Taylor’'s hypothesis is worse thar, which includes at least
(Ul) =z 1+10 I +15 i +12 =z one measured component/(Jy)? of the truey. However,

(12 the same procedure for g estimate based purely on

3(9¢ldy)? gives a correlation of only 0.74. Thus the maxi-
Profiles measured by Wygnanski and Fietfléor the mean  mal correlation is achieved for a mixed dissipation estimate
velocity and turbulent stresses in the jet give the moments ipf the form

(129 and (12b) at (r/x)=0.11 as 0.71 and 1.41, with the 2 2

resulting correlatiorR in (10) being 0.60. This can be com- X*Ea( — i ‘?_5) + ((9_5) ' (15)

pared to the measured value of 0.56 obtained in Sec. 1V, with U at ay

the difference presumably due to departures from isotropy gy, which

V¢ (see Southerland and DaPfirand the Gaussian relations

in (12), and possibly from incomplete convergence of the [a(u,/U)2+Db/3]

velocity fluctuatilon statistics i(12) over the duration of the - [a2(u, /U + %ab(uH/U)2+b2/5]1/2'

present scalar field measurements.
The same procedure can be applied forin (4), for  If the mean estimated dissipation is required to match the

which we note that true meany then

(16)
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