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Results are presented from an assessment of the applicability of Taylor’s hypothesis for
approximating streamwise derivatives and obtaining dissipation estimates in turbulent flows. These
are based on fully resolved measurements of a conserved scalar fieldz(x,t) throughout a
four-dimensional spatio-temporal volume in a turbulent flow. The data allow simultaneous
evaluation of all three components of the true gradient vector field“z(x,t) and the time derivative
field (]/]t)z(x,t) at the small scales of a turbulent shear flow. Streamwise derivatives obtained
from Taylor’s frozen flow hypothesis yield a correlation of 0.74 with the true streamwise derivative
field at the present measurement location in the self-similar far field of an axisymmetric turbulent
jet. Direct assessments are also presented of approximations invoking Taylor’s hypothesis to
estimate energy dissipation rates in turbulent flows. The classical single-point time series
approximation yields a correlation of 0.56 with the true scalar energy dissipation rate, while a mixed
estimate that combines one spatial derivative and the time derivative gives a correlation of 0.72. A
general analytical formulation is presented for assessing various dissipation estimates, and for
determining the optimal dissipation estimate that maximizes the correlation with the true dissipation
rate. The resulting optimal mixed dissipation estimate yields a correlation of 0.82 at the point of
maximum turbulence intensity in a jet, and a value of 0.92 on the jet centerline. ©1997 American
Institute of Physics.@S1070-6631~97!01606-1#
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I. INTRODUCTION

Since its introduction more than 50 yrs ago, Taylo
hypothesis1 has been widely used in measurements of gra
ent quantities in turbulent flows. The approximation,
which the local instantaneous value of the time derivat
from a single-point measurement is used to estimate the
tial derivative in the streamwise direction, is routinely i
voked to obtain gradient quantities when the required mu
point spatial measurements are impractical or otherw
unavailable. Indeed this approximation is used even un
conditions well outside the range of validity originally env
sioned by Taylor. He recognized that, in the limit of lo
turbulence intensities, the motion of gradients relative to
local mean flow could be approximated as one of pure c
vection. Under this assumption fluctuations of the quantity
interest, sayz, are considered frozen over the time scale
the temporal derivative, giving

S ]z

]xD
TH

[2
1

U S ]z

]t D , ~1!

whereU is the local mean velocity along the streamwi
direction, denoted here byx. In Taylor’s studies of spectra in
decaying wind tunnel turbulence, the underlying requirem
for low turbulence intensity was well satisfied, and repla
ment of the spatial derivative by the time derivative w
justified.

Taylor’s original approximation has been invoked mo
liberally as a general means to estimate spatial derivative
turbulent shear flows. Direct measurement of spatial velo
gradients~e.g., Su and Dahm2,3! as well as other gradien
quantities in turbulent flows~e.g., Dahm, Southerland, an
Buch;4 Southerland and Dahm5,6! is considerably more in-
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volved than the determination of temporal derivatives fro
single-point time series measurements. Consequently, ow
to the importance of spatial gradient quantities in turbulen
dynamics, it has been common to use Taylor’s hypothesi
estimate spatial derivatives, even under conditions for wh
the approximation is not strictly valid. Even in multipoin
probe measurements of velocity gradients~e.g., Vuko-
slavcevic, Wallace, and Balint;7 Tsinober, Kit, and Dracos8!,
Taylor’s hypothesis is invoked to estimate derivatives alo
the mean streamwise direction. There have been nume
studies~e.g., Lin;9 Wygnanski and Fiedler;10 Antonia, Phan-
Thien, and Chambers;11 Zaman and Hussain;12 Brown, An-
tonia, and Rajagopalan13! demonstrating errors introduce
when making this approximation, and identifying alternati
criteria under which the approximation may be justified
shear flows.

Among the most widespread uses of Taylor’s hypothe
is in estimating dissipation rates in turbulent shear flo
~e.g., Heskestad;14 Sreenivasan, Antonia, and Danh;15 Anto-
nia, Phan-Thien, and Chambers;11 Brown, Antonia, and
Rajagopalan;13 Anselmet and Antonia;16 Andrews et al.,17

Dowling18!. For any dynamically passive, conserved sca
quantityz(x,t), the scalar gradient magnitude squared giv
the dissipation ratex(x,t)[2“z•“z(x,t) of the scalar en-
ergy 1

2 j2(x,t) per unit mass of fluid, where the diffusivity
has been absorbed in the normalization of the spatial coo
nates. The true dissipation is thus

x[S ]z

]xD
2

1S ]z

]yD
2

1S ]z

]zD
2

. ~2!

However, the simultaneous spatial derivatives required
evaluatex(x,t) have only recently become accessible to e
210110.00 © 1997 American Institute of Physics
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perimental measurement, and for this reason various
proximations forx based on Taylor’s hypothesis are gen
ally used instead. The most common of these~e.g.,
Heskestad;14 Andrewset al.;17 Dowling18! uses Taylor’s hy-
pothesis in~1! to estimate the component of the gradie
vector]z/]x along the mean streamwise direction, and th
takes]z/]x5]z/]y5]z/]z, giving the approximation

xTH[3S 2
1

U

]z

]t D
2

. ~3!

In some cases, time series measurements at two clo
spaced points~e.g., Anselmet and Antonia16! allow direct
evaluation of one cross-stream spatial derivative compon
in which case a mixed spatio-temporal dissipation appro
mation can be formed by combining the one available spa
derivative and the time derivative, as, for example,

x2[S 2
1

U

]z

]t D
2

12S ]z

]yD
2

. ~4!

While it has long been accepted that estimates of
type in ~3! and~4! are only approximations to the true diss
pation in turbulent shear flows, laboratory measureme
necessary to assess the precise nature of the errors introd
have only recently become possible. The present results
vide an assessment of Taylor’s hypothesis in a turbu
shear flow using experimental data from four-dimensio
spatio-temporal measurements of a conserved scalar
z(x,t) ~Dahm, Southerland, and Buch;4 Southerland and
Dahm;5,6 Su and Dahm;2,3 Frederiksen, Dahm, an
Dowling19–21!, each comprised of over three billion da
points that extend simultaneously in all three spatial dim
sions as well as time, and that resolve the smallest spa
temporal gradients in the field. Particular emphasis is pla
on evaluating the accuracy with which approximations ba
on Taylor’s hypothesis in~1! can be used to estimate the tru
dissipation ratex in ~2! via xTH andx2 in ~3! and ~4!. An
analytical procedure for evaluating the relative merit of va
ous dissipation estimates is presented and used to obta
optimal two-point dissipation estimate that depends on
local turbulence intensity.

II. MEASUREMENT TECHNIQUE

The present results are from analyses of laser-indu
fluorescence data for Sc'2000 mixing of a dynamically pas
sive dye in the self-similar far field of an axisymmetric tu
bulent jet in water. The measurement technique was in
duced by Dahm, Southerland, and Buch,4 and is described in
detail by Southerland and Dahm.5,6 Briefly, the concentration
field z(x,t) of a laser fluorescent dye carried by the jet flu
was measured repeatedly in time within a small thr
dimensional spatial volume located 235 diam~1.15 m!
downstream of the jet exit and 13 cm off the jet centerlin
This radial location (r /x50.11) corresponds to the highe
turbulence intensity in the jet, and thus provides a string
test of Taylor’s hypothesis. A highly collimated laser bea
was swept in a raster fashion through this volume, and
resulting laser-induced fluorescence from dye-contain
fluid was imaged onto a high-speed, planar, 2563256 ele-
2102 Phys. Fluids, Vol. 9, No. 7, July 1997
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ment, photodiode array. The array output was serially
quired at eight-bits true digital depth and continuously wr
ten in real time to a 3.1 GB high-speed parallel-transfer d
bank capable of accommodating more than 50 000 s
2562 data planes. The resulting measured fluorescence in
sity field was subsequently converted to the true dye conc
tration. A typical two-dimensional data plane from a fou
dimensional measurement is shown in Fig. 1.

Each measurement produces the scalar field at over t
billion individual points in space and time. To estimate t
resulting spatial and temporal resolution note that the lo
outer scaled(x)'0.44x and the mean centerline velocit
u(x)'7.2(J/r)1/2x21, with J the jet source momentum flu
andr the ambient fluid density. At the outer scale Reyno
number Red [(ud /n)'3700 and with the Schmidt number o
2075, the local strain-limited molecular diffusion leng
scale estimate islD'257mm and the local advection time
scale estimate istD[lD /u'113 ms. For comparison, th
in-plane spatial resolution wasD(x,y)'109mm. The
(1/e) laser beam thickness was measured as 380mm. Decon-
volution of the scalar field measurements among adjac
planes increases the effective spatial resolution in thez di-
rection to the interplane separation,Dz'120mm. These val-
ues show that both the characteristic scale of the pixel im
volume (Dx•Dy•Dz)1/3 and its maximum dimension (Dz)
are more than two times smaller thanlD . Similarly, the
temporal separation between successive data planes waDt
58.6 ms, and comparing with the diffusion scale advect
time of 113 ms verifies that the present measurements
solve essentially all of the fine scale structure of the lo
turbulent mixing process.

The separation in all three spatial dimensions betw
adjacent points within each spatial data volume is sma
than the local diffusion length scalelD in the scalar field.
This spatial resolution, together with the high signal qual
attained, allows accurate differentiation of the measured c
served scalar field in all three spatial dimensions and in tim
This makes it possible to determine the components of
true local instantaneous scalar gradient vector field“z(x,t)
throughout these four-dimensional data, without any nee
resort to various approximations based on Taylor’s hypo
esis, as is commonly required. This in turn permits the
termination of the true scalar energy dissipation rate fi
“z•“z(x,t). Similarly, the temporal separation between a
jacent data planes within each spatial data volume, and
tween the same data point in successive volumes in the f
four-dimensional data, is shorter than the local diffusi
scale advection timetD . As a result, it is possible to extrac
fully resolved time series data from both the conserved sc
field z(x,t) and scalar energy dissipation rate fie
“z•“z(x,t), again without invoking any of the variou
classical approximations. Moreover, note thatU•Dt'Dx, so
that an accurate assessment of Taylor’s hypothesis is ind
possible.

Finally, note that the imaged region in the turbulent sc
lar field in these experiments typically spans less than1

15 of
the local outer scaled, and is comparable to the local inne
scaleln of the flow. The structure of velocity and scala
fields in turbulent shear flows at scales near and belowln is
W. J. A. Dahm and K. B. Southerland
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generally believed to be statistically universal. This cont
tion appears to be true, even for the present moderate R
nolds number flows, as evidenced by the measured colla
of small-scale spectra at similar Reynolds numbers
Dowling,18 and by the DNS studies of Jime´nezet al.22 The
estimated Taylor scale Reynolds numbers for the pre
data are 38<Rel<52, well within the range of values ove
which the DNS results of Jime´nez et al. showed Reynolds
number-independent collapse on inner variables at the sm
est flow scales. As a result, even though the present mea
ments are from 2900<Red<5000 turbulent jets, the small
scale structure and dynamics reflected in them should thu
largely representative of the inner scales of all turbul
shear flows.

III. SPATIAL DERIVATIVES

For the same data plane shown in Fig. 1, Fig. 2 compa
the measured streamwise scalar field derivative va
(]z/]x), in the appropriate inner scale variables, with t
Taylor’s hypothesis estimate (]z/]x)TH in ~1! based on the
measured time derivative values (]z/]t). Note that the color
scales are identical in both cases. It can be clearly seen
while the streamwise derivative estimate in the jet based
Taylor’s hypothesis clearly captures the basic structure of
true streamwise derivative field, the approximation grea
overestimates large positive and negative values. This ca
seen as well in the curves in Fig. 3, which show on
dimensional intersections through fields of the type in Fig
Note that Fig. 3~a! is a spatial intersection along they direc-
tion, while Fig. 3~b! is a temporal intersection. The profile
chosen in Fig. 3 are quite representative of the entire d
space. The correlation between the two curves in Fig. 3~a! is
0.74, and in Fig. 3~b! is 0.73. For the entire data the corr
lation between (]z/]x) and (]z/]x)TH is found to be 0.74.
The correlation between the two planes in Fig. 2 is also 0
and thus representative of the entire data space. Notice

FIG. 1. Typical spatial data plane from the four-dimensional spa
temporal data spacez(x,t) used in the present study. Spatial and tempo
derivative results in this same plane are shown in Fig. 2, and compariso
various dissipation estimates with the true dissipation rate fi
x(x,t)[2D“z•“z(x,t) are shown in Fig. 4.
Phys. Fluids, Vol. 9, No. 7, July 1997
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as was suggested in Fig. 2, the extreme values are over
mated by the approximate derivative based on Taylor’s
pothesis. As noted by Wygnanski and Fiedler,10 the com-
paratively large turbulence intensity in the jet far fiel
relative to the wind tunnel measurements for which Taylo
hypothesis was originally proposed, leads to significant
rors in turbulence statistics when this hypothesis is used
estimate derivative quantities. Figures 2 and 3 give so
insights into the nature of these errors.

IV. DISSIPATION ESTIMATES

Figure 4 compares the true scalar energy dissipation
x in ~2! with the approximationxTH in ~3! based solely on
the time derivative in Fig. 2~b! and withx2 from ~4! based
on mixed space and time derivatives. Results are shown
in linear form, where magnitudes can be readily compar
as well as in logarithmic form, where differences in the r
sulting dissipation field structure at low values can be be
discerned. In each comparison, the color scales used fo
true dissipation and the two approximations considered
identical, allowing direct comparisons. Note that whilex,
xTH , and x2 all have the same fundamentally layer-lik

-
l
of
d

FIG. 2. Results showing typical comparison of the true streamwise der
tive field ]z/]x ~top! with its Taylor’s hypothesis approximation in terms o
the time derivative]z/]t field ~bottom!. The correlation between these tw
fields is 0.74.
2103W. J. A. Dahm and K. B. Southerland
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character, considerable differences are apparent in the
tailed structure of the dissipation fields. As would be e
pected from the exaggerated extreme values for the de
tive fields in Figs. 2 and 3, the peak dissipation rates
greatly over represented in both the dissipation approxi
tions in Fig. 4. Approximations similar toxTH have been
widely used in studies of the geometric scale similarity pro
erties of the dissipation field in turbulent flows~see the dis-
cussion in Frederiksen, Dahm, and Dowling19–21!. However,
the results in Fig. 4 suggest that the differences between
truex andxTH can be rather large.

One-dimensional spatial intersections through the t
dissipation fieldx and the two approximate dissipation field
xTH andx2 are shown in Figs. 5~a! and 5~b!. As was the case
in Figs. 3~a! and 3~b!, Fig. 5~a! is a spatial intersection alon
the y direction, and Fig. 5~b! is a temporal intersection
While the intermittent character of the dissipation field
evident in all three cases, note that there are large differe
apparent in the dissipation values. In some cases, even
dissipation support set is significantly different. In Fig. 5~a!
the correlations between the true dissipation and the e
matesxTH andx2 are 0.56 and 0.76, respectively, and in F
5~b! are 0.52 and 0.79. These are representative of the
and 0.72 correlation values obtained over the entire d
space. As noted above, these differences are importan
studies invoking Taylor’s hypothesis to examine possi
fractal and multifractal scaling from lower-dimensional a

FIG. 3. Typical one-dimensional spatial~top! and temporal~bottom! inter-
sections through the fully resolved four-dimensional data space, sho
comparisons of the true streamwise derivative field]z/]x(x,t) ~solid line!
with its Taylor’s hypothesis approximation based on the time deriva
field ]z/]t(x,t) ~dashed line!. The resulting correlation in~a! is 0.74, and in
~b! is 0.73. The correlation obtained over the entire four-dimensional s
tiotemporal data space is 0.74.
2104 Phys. Fluids, Vol. 9, No. 7, July 1997
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proximations of the true dissipation field~Frederiksen,
Dahm, and Dowling19–21!. It can also be seen in Figs. 4 an
5 that the dissipation estimatesxTH andx2 tend to overesti-
mate large dissipation rates. This is evident in Fig. 6, wh
the resulting distribution of dissipation values over the en
data space is shown forx, xTH , andx2 .

V. ANALYTICAL CORRELATIONS

For dissipation estimates likexTH andx2 in ~3! and~4!,
it is possible to obtain analytical results for their correlatio
with the true dissipationx in ~2! under the assumption o
isotropy in“z(x,t). The correlation then allows an optima
dissipation estimate to be determined. The formulat
makes use of the exact transport equation for the conse
scalar quantityz, namely

]z

]t
1u–“z2

1

Re Sc
¹2z50, ~5!

where all variables have been normalized, giving the dim
sionless diffusivity as the product Re Sc of the Schmidt nu
ber and the Reynolds number based on the normaliza
scales. The second term in~5! can be written in terms of the
scalar gradient vector magnitudeu“z(x,t)u and the projec-
tion ui(x,t)[u•ê

“z of the velocity vectoru(x,t) onto the
scalar gradient unit vectorê

“z(x,t), giving

u“z~x,t !u52
1

ui
S ]z

]t
2

1

Re Sc
¹2z D . ~6!

Recognizing the diffusion term in~6! to be negligible at
large Re Sc gives the gradient magnitude as

u“z~x,t !u52
1

ui
S ]z

]t D . ~7!

This should be compared with the classical Taylor’s hypo
esis for the streamwise derivative in~1!. The true dissipation
x is simply the gradient magnitude squared, and from~7! is

x5S 2
1

ui

]z

]t D
2

. ~8!

We first considerxTH in ~3! and note that

xTH53S ui

U D 2x. ~9!

If statistical independence ofu(x,t) and“z(x,t) is justified,
then the correlationR betweenx andxTH is simply

R[
xTH x

~xTH
2 !1/2~x2!1/2

5
~ui /U !2

@~ui /U !4#1/2
, ~10!

namely the ratio of the second and fourth moments
(ui /U). Sincex andxTH in ~9! are proportional via a statis
tically independent random factor, the absolute correlation
~10! and the conventional fluctuation correlation are equi

g

e

a-
W. J. A. Dahm and K. B. Southerland



ults

FIG. 4. Comparisons of the true dissipation rate fieldx in ~2! ~top! with the single-point Taylor series approximationxTH in ~3! ~middle! based solely on the
time derivative in Fig. 2~b! and with the two-point mixed approximationx2 in ~4! ~bottom! based on the time derivative and one spatial derivative. Res
are in a linear form~left! to allow comparisons of relatively high dissipation rates, and in logarithmic form~right! allowing comparisons of lower values.
nd
lent. Recognizing thatui[uuucosw, wherew is the spherical
angle betweenu and“z, and then taking“z to point with
equal probability in all directions@with the isotropic distri-

bution of spherical anglesb(q,w)5(1/4p)sinw#, gives
Phys. Fluids, Vol. 9, No. 7, July 1997
S ui

U D n5 1

n11

~u21v21w2!n/2

~ ū!n
, ~11!

for n even. Taking velocity fluctuations to be isotropic, a
2105W. J. A. Dahm and K. B. Southerland
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assuming Gaussian relations between fourth and second
tuation moments~e.g., Millionshchikov;23,24 Monin and
Yaglom25!, gives

S ui

U D 25 1

3 F113S u82

ū 2 D G , ~12a!

S ui

U D 45 1

5 F1110S u82

ū 2 D 115S u82

ū 2 D 2112S u8v8

ū 2 D 2G .
~12b!

Profiles measured by Wygnanski and Fiedler10 for the mean
velocity and turbulent stresses in the jet give the moment
~12a! and ~12b! at (r /x)50.11 as 0.71 and 1.41, with th
resulting correlationR in ~10! being 0.60. This can be com
pared to the measured value of 0.56 obtained in Sec. IV, w
the difference presumably due to departures from isotrop
“z ~see Southerland and Dahm5,6! and the Gaussian relation
in ~12!, and possibly from incomplete convergence of t
velocity fluctuation statistics in~12! over the duration of the
present scalar field measurements.

The same procedure can be applied forx2 in ~4!, for
which we note that

FIG. 5. Typical one-dimensional spatial~top! and temporal ~bottom!
intersections through the fully resolved four-dimensional data sp
showing comparisons of the true scalar dissipation rate fi
x(x,t)[2D“z•“z(x,t) in ~2! ~solid line! with the classical single-point
Taylor’s hypothesis approximationxTH in ~3! based on the time derivative
field ]z/]t(x,t) ~dashed line! and the mixed two-point approximationx2 in
~4! ~dotted line!. The correlation betweenx andxTH in ~a! is 0.56 and in~b!
is 0.52, and over the entire four-dimensional spatio-temporal data spa
0.56, which should be compared with the analytically predicted value
0.60 in Sec. IV under the assumption of isotropy. Similarly, the correla
betweenx andx2 is 0.76 in ~a! and 0.79 in~b!, and 0.72 over the entire
four-dimensional spatio-temporal data space, while the predicted valu
Sec. IV is 0.79.
2106 Phys. Fluids, Vol. 9, No. 7, July 1997
c-

in

th
in

x25F S ui

U D 212
~]z/]y!2

x Gx. ~13!

Recognizing that (]z/]y)5uDzucosw, with w now the
spherical angle between“z andêy , and again assuming isot
ropy in “z so that the distribution of spherical angles
b(q,w)5(1/4p)sinw, gives the correlationR as

R5
@~ui /U !212 cos2 w#

@~ui /U !414~ui /U !2cos2 w14 cos4 w#1/2
. ~14!

Noting that thenth moment of cosw is 1/(n11) for n even,
and using the moment values in~12! with the velocity fluc-
tuation values from Wygnanski and Fiedler10 at the present
(r /x)50.11 location gives the correlationR in ~14! as 0.79.
This can be compared with the measured correlation 0
obtained in Sec. IV, with the difference again attributed
the factors mentioned above. In any case, the correlationx
with x2 is considerably higher than withxTH .

It is not surprising that the estimatexTH based solely on
Taylor’s hypothesis is worse thanx2 , which includes at leas
one measured component (]z/]y)2 of the truex. However,
the same procedure for ax estimate based purely o
3(]z/]y)2 gives a correlation of only 0.74. Thus the max
mal correlation is achieved for a mixed dissipation estim
of the form

x*[aS 2
1

U

]z

]t D
2

1bS ]z

]yD
2

, ~15!

for which

R5
@a~ui /U !21b/3#

@a2~ui /U !41 2
3ab~ui /U !21b2/5#1/2

. ~16!

If the mean estimated dissipation is required to match
true meanx then

e,
d

is
f
n

in

FIG. 6. Probability densities of the true dissipation ratex ~solid line!, to-
gether with its single-point Taylor’s hypothesis approximationxTH in ~3!
~dashed line! and the mixed two-point approximationx2 in ~4! ~dotted line!.
The approximations inherently overestimate the peak dissipation va
thoughx2 represents a significant improvement overxTH . In Sec. IV we
provide a general analytical formulation for constructing the optimal mix
two-point dissipation approximation.
W. J. A. Dahm and K. B. Southerland
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3~ui /U !2
. ~17!

The maximum correlation then results for

b5
15@~ui /U !42~ui /U !2

2

#

5~ui /U !42~ui /U !2
2 , ~18!

where the moments are given in~12!. Again taking velocity
fluctuation values in~12! from the measured turbulent je
profiles of Wygnanski and Fie´dler10 gives the optimal
(a,b) values at the (r /x)50.11 location of the present mea
surements asa50.51 andb51.90, and gives the correlatio
R50.82. This differs only slightly from the value 0.79 ob
tained above forx2 . However, this procedure is quite ge
eral and can be used to obtain the optimal two-point diss
tion estimate at other locations in the jet and in other flow
For example, on the jet centerline the optimal values
a50.97 and b51.80, with the resulting correlationR
50.92.

A similar approach may allow analogous results to
obtained for various estimates of the kinetic energy diss
tion rate or other constructs obtained from the velocity g
dient tensor components, and to obtain optimal estimates
these for any given measurement configuration or any gi
flow.

VI. CONCLUSIONS

Fully resolved, four-dimensional, spatiotemporal labo
tory data have provided an assessment of the errors m
when Taylor’s hypothesis is invoked to estimate spatial
rivatives in a turbulent shear flow. The correlation of t
streamwise gradient with its Taylor hypothesis estimate
found to be 0.74 at the present measurement location in
self-similar farfield of an axisymmetric turbulent jet. The s
multaneous availability of accurate derivative information
all three spatial dimensions as well as time allows dir
assessment of various approximations for the dissipation
field based on implementations of Taylor’s hypothes
These show correlations with the true dissipation rate field
only 0.56 forxTH in ~3! and 0.72 forx2 in ~4!. A general
procedure introduced in Sec. VI, based on isotropy in
scalar and velocity fluctuations, allows the optimal dissip
tion estimate to be obtained for any given measurement c
figuration or any given flow.
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