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We give a new method to prove results of the following type. Let: (\7° + k*)u =0in
D = {x|x|>R }, k?>0. (1) If ueL *(Dy), then u=0 in Dy. (2) If |x|"u(x)}—0 as |x|— oo,

X4+ X3 <exy Pp>0,m=1,2,3,.., |x|(u/d|x|/ — iku)

PACS numbers: 02.30.Jr

1. INTRODUCTION

Some of the above results were proved by a different
method in Refs. 1 and 2, but the new method of the proof'is of
interest in our opinion. We start with the following theorem.

Theorem 1: Let

(V24 k% u=0 inDg, k2>0. (1)
and
uel *(Dy). 2)

Then u=01n Dy.
Proof. From (1) and (2) it follows that (see Appendix)

Vuel 3(Dy) (3)
and

.
e = [ o7 tes 28— S bt} g
S+ oN ON

=f (g_él_ __uag—)dt,
Sk oN N
(4)

where N is the unit normal to the sphere Sy = {x:|x| =R }
directed outside of Dy,

g (xpk) = exp( + ik |x — y|)
v mjx —y|
Ix —y| = {7 = 2rlpleosy + )2, r=Ix|.  (5)

Now the main idea can be explained. We analytically contin-
ue functions (4) on the complex plane z = r exp(i) (see also
Refs. 3-5). From (4) it follows that (w=x[x|™)

explikz
el g

_ expl — tkz)
. flzo), (6)

ufx) = ulr,w) = uiz.w) = (zw)

where f|(z,0) and f,(z,w) are analytic in z for |z| > R and
bounded near infinity. Thus

flew) = 3ok j=12 7

But in this case (6) implies that f; = f,=0. Indeed, if z = iy,
Y= + oo then ([exp(ikz))/z)f(z,») in (6) goes to zero expon-
entially, while ([exp( — ikz)]/z)f,(z,w) goes to infinity expon-
entially unless /,==0. Thus u(z,0)=0, u(r,w)=0in D,.

Let us show how the idea works in a different problem.
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— Othen u=0in Dy.

[x] >oe

2. RATE OF DECREASE OF SOLUTIONS TO
HELMHOLTZ EQUATION

Theorem 2: Let (1) hold,  satisfies the radiation condi-
tion and
|x|"u(x)—>0 as x—o0, p<clxsl P
c=const>0, 0<p, m=123,., (8)

where p = (x? + x3)"/%, then 4=0in Dy.

Proof: Since u satisfies (1) and the radiation condition,
we can use the first equality in (4) and the third equality in (6).
If p = 0 the condition (8) says that u(x) decreases faster than
any negative power of (x| at infinity in the cylinder p<c.
From this and (6} it follows that f,=0 for » directed along
the axis x,. By shifting the origin a little, we conclude that
f1 = 0 along any ray in the cylinder p<c. Thus =0 in this
cylinder and by unique continuation theorem for solutions
of homogeneous elliptic equations #=0 in Dy. If p> 0 our
argument is a little more complicated. In this case let us write
the equation p = ¢|x,| ~ 7 in the spherical coordinates:
r?* lcos?6-sind = c. For large r the angle @ is near 0, and
8 = 6 (r) is an analytic bounded function of cr ~ ' ~” for large
r. Let us prove that u = 0 in the body r” * 'cos”6sinf<c.
From this and the unique continuation theorem we con-
clude that u=0in D,. Let us take in (4) x = (r,8,(r)), where
8, (r) is constructed as & (r) but instead of c we use 0 < b <c.
For simplicity we shall write & () instead of 6,(r) in what
follows. Then @ = w(r) and w(#} is an analytic and bounded
function of the argument br = ' ~ 7 for large r. From this it
follows that f;(r,«(r)) will be analytic and bounded near infin-
ity on an appropriate Riemann surface (which by the way
will be finite-sheeted for rational p. Since we can always find
a rational number p, > p such that the body »' *?cos” 8
sinf = b contains the body ' " #'cos”'8sind = b, we can
consider only finite-sheeted Riemannian surfaces). If f,(z) de-
creases faster than any negative power of z on such a surface,
/f1=0.Thus u(x) = Oonany curve 7* * 'cos’@sinf = b<cand
we conclude that =0 in D, .

3. GENERALIZATIONS

(1) We can consider general elliptic equations with con-
stant coefficients in R",

(2) It is possible to consider the case when u(x) is a solu-
tion of (1) in a domain with infinite boundary.
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1. APPENDIX
Lemma 1: From (1) and (2) inclusion (3) follows. Let

g(r)=j,:dr ’z—fsl Ju (r, w) I? dw,

g (r) increases monotonically and g{oo} < 0,

gn=r| |ure)?do>0g" =2r| |4 do
s, s,

+ 2r2J" gulr, ) u(r,w) dw.
s or

Here we assume without any loss of generality that « is a real
valued function [since the coefficients of Eq. {1) are real). If
g"{r,)>0asr,— 0, then

du

—udS, >0 as z,— . (A1)
s, Or -

But from (1) it follows that

qulzdx=k2f lul? dx

fRilx‘Srn R<IxI< ry

du du
-+ —d5 f —dS, .
fs, “ dr " + Sk uaN R
! (A2]
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From (A1}, (A2), and (2) we get (3). If g"(r} does not go to zero
whatever sequence 7, — o we choose, then |g”{>e> 0 for
all 7> R, >R. If g" >¢, then g'(r)— + oo. This is impossible
because of (2]. If g” < — ¢, then g'(r}— — . Again this is
impossible because of (2). This completes the proof.
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