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The stability of a Stokesian fluid (Reiner-Rivlin fluid) in Couette motion is examined and shown to
depend on the Taylor number as well as a further dimensionless parameter which is proportional to
the coefficient of cross viscosity. The method of Chandrasekhar is used for small values of this param-
eter. It is found that for fluids with a positive coefficient of cross viscosity, the critical Taylor number
can be appreciably smaller than for the corresponding flow of a Newtonian fluid.

I. INTRODUCTION

ROBLEMS in the flow of non-Newtonian fluids

have in recent years received a growing amount
of attention, both theoretically and experimentally.
The mathematical description of such a fluid is
provided by the relation between the stress tensor
and the various kinematic and thermodynamic
variables, this relation being called the constitutive
equation. The choice as to which relation is best
suited to describe a particular fluid is not at all a
simple one, as certain non-Newtonian effects may
be shown theoretically to be common to a widely
varying assortment of constitutive equations,’ and
even experimental work can lead to conflicting
results.” A prime difficulty here has been the lack
of sufficient analytical solutions of distinective
enough natures with which experimental results
could be compared, for in the few flows hitherto
examined the departures from the results for
Newtonian fluids were in many cases difficult to
measure.

Accordingly, in an effort to contribute to the
understanding of some of these non-Newtonian
fluids, the present paper analyzes the stability of a
non-Newtonian fluid in Couette flow using a consti-
tutive equation first proposed by Reiner.® Such a
fluid has been shown by Reiner to exhibit normal
stress effects in Couette flow (see references 1 and
2), and by Ericksen* to behave peculiarly when
flowing through noncircular conduits, and thus some

! See, for instance, J. G. Oldroyd, Proc. Roy. Soc. (London)
A200, 523 (1950); F. H. Garner and A. H. Nissan, Nature
158, 634 (1946); K. Weissenberg, Proc. 1st Intern. Rheological
Congr. Amsterdam, I, 29, 46, 1948; ibid. II, 114; J. M.
Burgers, Proc. Acad. Sci. Amsterdam 51, 787 (1948); M.
Mooney, J. Colloid Sei. 6, 96 (1951), for various constitutive
equations, all of which deseribe fluids exhibiting the normal
?’ilée:;)effect described by K. Weissenberg, Nature 159, 310

2 See M. Reiner, Handbuch der Physik (Springer-Verlag,
Berlin, 1958), Vol. 6, p. 516, for a brief account of one such
controversy.

3 M. Reiner, Am. J. Math, 67, 350 (1945).

4J. L. Ericksen, Quart. Appl. Math. 14, 318 (1956).

of its characteristics are fairly well known. Rheo-
logically it lies close to the Newtonian fluid, in that
the constitutive equation may be derived math-
ematically by starting with the same assumptions
required of a Newtonian fluid excepting linearity.
Nevertheless, as will be seen, the extent of the
departure from the Newtonian case and from what
might physically be expected is very pronounced.

Prior to publishing this work, the author came
upon a previous paper by Jain® which treats the
same problem by a variational technique. The
conclusion which Jain draws is contrary to the
author’s own. Examination of Jain’s work (which
at best can give an upper bound on the critical
Taylor number) reveals several errors which would
aftect the numerical results. Further, Jain gives
only one point on the neutral stability curve and
does not exploit his results further. For these
reasons an additional treatment of the problem is
considered important.

II. FORMULATION OF THE DYNAMIC EQUATIONS

The most general isotropic relation between
stresses and rates of deformation for a visco-inelastic
fluid has been shown to be given by

= (—p+ A) 8l + 240 & + 24@ &L &, (1)
where d; is the rate-of-deformation tensor defined by
di; = 3W:; + ;.0 2

and §; is the Kronecker delta.’® The subscript after
the comma indicates covariant differentiation with

5 M. K. Jain, J. Sci. and Engr. Research 1, 195 (1957).

6 C. Truesdell, J. Ratl. Mech, Anal. 1, 125 (1952), credits
Reiner (reference 3) with first stating this law. In deriving
Eq. (1) Reiner assumes the stress tensor to be a polynomial
in the rate of deformation tensor. The validity of this
assumption was first shown by R. S. Rivlin [Proc. Roy.
Soc. (London) A193, 260 (1948)], and later by J. Serrin,
J. Math. and Mech. 8, 459 (1959), who assume that the
stress components are arbitrary functions of the rate of
deformation tensor.
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respect to that coordinate. A fluid governed by Eq.
(1) has been variously called a Stokesian fluid or a
Reiner-Rivlin fluid. If the fluid is considered to be
incompressible so that the pressure is not connected
with any of the thermodynamic coordinates, and if
none of the boundary conditions involve the pres-
sure, A'” will always appear with the pressure and
may thus be absorbed in it with no loss of generality,
since what is called “pressure” in an incompressible
fluid is somewhat arbitrary. For a Newtonian fluid,
obviously AV =pu, A'® =0. It might also be noted
that this constitutive equation sometimes appears in
the literature in the disguised form

= (=p+ A®) & + 2i dt, &)
where
uh o= AVGL+ diAP /A @

is called the viscosity tensor. Truesdell” has sug-
gested on dimensional grounds that the ratio
AP /A® (for constant 4, A™®) be called the
natural time of the fluid.

Equation (1) together with the equations of
motion and continuity

e+ X' = p<@~ + vffvi) , 5

d: = vfi = 0,' (6)

constitute the field equations for the problem. Upon
substituting Eq. (1) into Eq. (5) and using Eqs.
(2) and (6), the result is obtained

1) —_
_gt$§§;+zaA dik+ A(i)vzvz

3zt

aA(2) " . —
+2 Y g dT A" + A®g,, AV

+2d% d%] + X' = p[%’—’; + v"vf,-] , @

where g'’ is the metric tensor and V? =g is
the generalized Laplacian.

In general, A" and A® can be functions of the
invariants of the rate of deformation tensor. Fre-
quently in the literature, A'” and A are taken as
constants. Under this assumption, 4 is called the
*eross viscosity.” The validity of this assumption is
debatable until more is understood about the
rheological properties of such a fluid, although
certainly it should be valid at least for small rates
of deformation. In the following analysis, A" and

7 C. Truesdell, reference 6.

363

A® will be considered constant, for even under this
restriction some light can be thrown on the behavior
of non-Newtonian fluids.

III. PRIMARY FLOW (STEADY COUETTE FLOW)

For steady Couette flow, o' = v* = 0,¢" = v*(z').
Therefore in terms of the contravariant components
in cylindrical polar coordinates,

d¥ = d" = ¥a'/9x"), ®

and all other components of d*/ are zero.
Equation (7) then becomes

d 19 a’\?
'—;’E;B‘ + 5 5_; {A<2)<x1 é—;-)f) } — —-pm1(1)2)2,

a 82 344.(1)62
32 (Am 5;7;‘1) + Tb‘% = 0, 9)

—a3p/or® — pg = 0.

If the inner cylinder of radius R, is rotating with an
angular velocity 2, and the outer cylinder of radius
R, is rotating with an angular velocity Q., Eq. (9)
along with the condition of no slip at the boundaries
yields®

= @4 - BR/ZY, (10)

ap/az’ = pz'(2)*{[4 — BR,/z")]
— BBAY/oRYR /), (1D)

where

_ D/ — (Rx/R2)2

A= wmRy 12
/e —1

i mmy )

It is seen that all of the stress components except
75 = — p are exactly the same as for the Newtonian
fluid. If A® is positive, the pressure is increased over
that in a Newtonian fluid, the increase being greatest
on the inner cylinder, giving rise to normal stress
effects. Thus, theoretically at least, it is possible to
determine A® from pressure measurements. In
practice, the cross-viscosity term in Eq. (11) can
be expected to be much smaller than the other
terms, and the error due to the cylinders being of
finite length would make any conclusions drawn on

8 Rivlin, Truesdell, and Serrin (references 6) among others
have previously presented the solution described in this
section,
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such an experiment questionable. A solution for the
stability problem exhibiting a different parameter
is thus much to be desired.

1V. THE STABILITY EQUATIONS

As in previous stability analyses, it is assumed
that the flow develops disturbances of infinitesimal
amplitude (so that the resulting equations may be
linearized), and that these disturbances are ro-
tationally symmetric. With ¢’’, u’, and p’ denoting,
respectively, the rate of deformation tensor, the
velocity vector, and the pressure for the disturb-
ance, Eq. (7) becomes, after linearization,

de*

iq Q_P: (52,4 oe
g o + AU 4 Jo2 Fy

A®BQ,R? {
@’
+ 6i(g2s V7 — 10z'¢"

+ 8V — 2" /2t + 6z'e” }
ou' i 92 1
= P{ Y s[4 — B(R,/2") Jxw
+ 29, a;;Au‘/x‘} , (14)
where
922 — (x’)z, — aul/axI’ 622 — ul/(xl)S,
e'? = L(ou’/axh), e = L(ou®/dx?), (15)
V= VW — U 6/’ +5 2 6u1 5,  (16)
. 9 &’
V= o +x ax1 togar D

The velocities can be assumed to be periodic in
z° and to have an exponential time factor. Introduce
the following quantities:

u' = R, Qu(r) sin \2’/R)) exp (cuf),
z'w’ = R, Qu(r) sin \2*/R)) exp (e 1),
w = R, Qqu{) cos (Z®/R,) exp (aQ,),
P’ = pQiRiq(r) sin (\2*/R,) exp (s 1),

r=2'/R,, S = A®/2oR},
d 1d 1
L drz+;d7'_;§’ g = (Rz —Rl)/Rl,
R = pQRY/AY, o= 0,/ — 1. (18)
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Then Eq. (14) becomes

—2A — B/r'w —dg/dr
2Au = 0
0 =My )
(L — N — eR)u
+ 1157 (L — N — eRw
(&t Ha—x = o)

QL — N)@/r)
+ 28BJ(1/7")(L — N)ul -

SEE
l()\/r )<d7‘ r vJ
The velocity in the z* direction can be found from

continuity to be given in terms of u by

M = (d/dr + 1/r)u.

(19)

(20)

Upon eliminating ¢ and w, the equations to be
solved become

(L — N — eR)(L — N)u
= 2RN*[(A — B/r)w + SB(L — N)(v/r")]
and

(L — N — oR = 2R[Au — (SB/r*)(L — N)u].

(21)

(22)

The boundary conditions are still no slip at the
cylinders, hence

u=p=du/dr=0 at r=1 and r=1+4 5. (23)
V. THE STABILITY PROBLEM FOR SMALL SPACING
When

R, — R, < 3(R. + R), (24)

Eqs. (21) and (22) may be simplified somewhat and
the resulting equations can then be solved in the
manner of the Taylor problem. By letting

g‘ = (7' - 1)/6: R = 62R7
D = d/dy = 8d/dr, S = 8/28°, (25)
k= B\, T = —4A(R",

Egs. (21) and (22) become, to the first order in 8,
(D* — K — oR)(D* — K)u
= [L + af + Sa(D* — ).
D — K — oR'Ww = —~Tk,

(26)
@7)
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if 8’ is of the order of one, or
(D* — & — oR)(D* — Ky = S'a(D’ — K, (28)
(D — K — oR'W

= —TE[l — 28'8(D° — k"u, (29)

if 8S’ is of the order of one.

Case 1: S’ of the Order of One

The set of Eqgs. (26) and (27) differ from the
Taylor problem by only one term. One would expect
then that the method of Chandrasekhar’ would be
well suited to the determination of the eigenvalues.

With

v= 2. A,sin mr¢, (30)

D, = (mm)’ + I, 31
Eq. (26) becomes
(D* — k& — oR)(D* — K)u
= 3 A,[l + af — S’ D,]sin mxy{, (32)
and thus, for neutral stability,
u= 2 (A./D{(l — S8’ D,, + af) sin mr¢
+ (dmma/D,) eos mx¢ + (B, + C,¢) sinh k¢
+ (Fn + Gaf) cosh k¢l (33)
This is substituted into Eq. (27) to obtain
> (A, D,/K’T) sin mr¢
= 3 (A/D){A — S'a D, + af) sin mrg
+ (dmma/D,) cos mw{
+ (B, + C..¢) sinh k¢
+ (F.. + G,.) cosh k. (34)

The B,, Cn, F., and @G, are determined from the
boundary conditions. They are found to be

T (71_2 + k2)3
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B, = mr (sinh® k — k)~ {(1 — D.Sa)
Ik + (—=1)™sinh k] + (4a/D,,)
-[eosh & — (—1)™][sinh & — (—1)"k]
4 (=1)"asinh k}, (35)
C, = mr (sinh® & — k)" {{1 — D,S)
Jeosh k& — (—=1)™)[sinh k& + (—1)"k]
+ (4ak sinh k/D,)[sinh & — (—1)"k]
+ a(—1)"(k cosh k£ — sinh k)}, (36)
F, = —4mma/D,, (37
G,, = mr (sinh® k — k)™
-{—sinh k(1 — D,S'a)[sinh k + (—1)"k]
— (4ak/D,)[cosh k — (—1D™]
Jsinh & — (—1)™K] — (—1)"kasinh k}.  (38)

Upon putting these into Eq. (34), multiplying by
sin nx¢, and integrating from zero to one, the result

0= > A,E,./D., n=12 -, (39
is obtained, where after much reduction,
E.. = a.(1 — D,a8)
— Omn D3/2ET + b0, (40)
Qn = % B + (2kmna®/ D;)
-(sinb® k — &) [(—=1)"sinh k& + k]
AU+ (D™ = (—D" cosh K], (@1)
b = 3 8w — 2mn[l — (—1)™"]
A(m* —n* + 8, 7 + 22" D, D
+ 2 D.\(m* — n® + 8,7
+ (=1)" 2kmn =° D;*[(—1)"sinh k
— kI7H[(~=1)" — cosh k]
+ 4k D;'sinh k[1 — (=1)™"]}. (42)

The eigenvalues are determined by setting the
determinant of the E,., to zero. Where the first
approximation holds, this yields

~ k’[1 — 8kr*(1 + cosh k)/(sinh k + k@ + B + «/2 — @ + )aS’]

Plots of the neutral stability curves are shown in
Figs. 1 through 5. For the ranges of the parameters

¢ 8, Chandrasekhar, Mathematika 1, 5 (1954).

(43)

shown on these figures, the first and second approxi-
mations agree to within 3%, if « > — 1.5, the
agreement improving as S’ increases.

The present case, S’ of the order of one, is the
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most interesting from a physical point of view, in
that it allows direct comparison with the ordinary
Newtonian fluid. The effect of the cross viscosity on
the stability of the flow is more remarkable than one
might expect. If the pressure gradient in the primary
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F1c. 1. Neutral stability curves for various values of e,
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Frc. 3. Neutral stability curves for various values of «,
with —aS’ = 0.02.
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flow [given by Eq. (11)] is written in terms of the
dimensionless parameters, it becomes for small
spacing

ap/ox’ = pR() {1 + af)® — 8a°88'}.

Hence the contribution of the non-Newtonian
effects to the stresses in the primary flow for, say,
— 1, 8 = 0.1, is of the order of 8, a negligible
quantity. The corresponding critical Taylor number
is, however, found to be reduced by a factor of 7
over the Newtonian case. This large effect on the
stability parameters thus cannot be explained by
the cross-viscosity effect on the primary flow, but
must be due instead to the added components of
disturbance stress which can arise in the flow. This
is shown by Iigs. (33), (35), (386), and (38), where
it is seen that the magnitudes of each of the terms
in the expression for the radial velocity is increased
over the Newtonian case when «S’ is negative.

To see what the relative magnitudes of the two

(44)

o =

[} 5
Txl0?

Fia. 4. Neutral stability curves for various values of a,
with —aS8’ = 0.05
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Fic. 5. Neutral stability curves for various values of a,
with —a8’ = 0.10.
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viscosities would have to be, it is a simple matter
to show that

A®/AY = 48/S'R'Q,. (45)

The cross viscosity then can be much smaller than
the Newtonian viscosity, and the departures from
Newtonian flow will still be significant.

Equations (26) and (27), with neglect of the linear
term in {, can be used to obtain Eq. (31) in Jain’s
paper, with the result that @ = — S'aT. Jain’s
result for @ = 0.01 then implies a very small value
of 8, hence a fluid with a very small cross viscosity.
TFurther, there is an error in sign in his Eq. (52), and
no less than four errors in his Eq. (53). These errors,
along with the fact that a variational approach can
at best give an upper bound, are the probable reason
for the disagreement between Jain's conclusion and
the present author’s.

Case 2: S’8 of the Order of One .

The set of equations, Eqs. (28) and (29), turns
out to be the most amenable to solution. In fact,
for the case of neutral stability (¢ = 0), they may
be solved exactly in finite form. By solving Eq.
(29) for (D* — k*v and putting this into Eq. (28),
one obtains an equation in u,

[(D* — k)® — 2(8)BaTk(D* — k)

+ STk lu = 0. (46)
For convenience the following substitutions will be
used:

n={— %y a = S’aT’Cz; b= 2S,B’
n; =k + L{ab — [(ab)’ — 4a]?},

ny = k* + L{ab + [(ab)® — 4a]P}. (47)
Then
u = A sinh n,n + B sinh 7,9
+C cosh nyn + D cosh nyn, (48)
and
u=du/dyg =0 at = i, (49)

On applying the boundary conditions, a set of four
homogeneous equationsin 4, B, C, and D is obtained.
For a nontrivial solution to exist, the determinant
of the coeflicients must equal zero. After some
simplification this yields

0 = [n. sinh (4n,) cosh (3n,)
— n, sinh (3n,) cosh (%nl)]
*[n. cosh (3n,) sinh (57,)

— n; cosh (3n,) sinh (3n,)]. (50)

FLUID IN

COUETTE FLOW
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T8'¢-a)
Fra. 6. Neutral stability curves for 8’8 of the order of 1,

This may be interpreted as

(2/n,) tanh (3n;) = (2/n,) tanh (3n,)  (51)
for anti-symmetric disturbances, and
37, tanh (3n;) = $n, tanh (3n,) (52)

for symmetric disturbances.

If », and n, are both real, the only possibility of
satisfying either of these is n, = n,, or @ = 4/b°
However, by comparison with what occurs in a
Newtonian fluid, it can be expected that e will be
large and also, if « is negative, ¢ will be negative
also. Hence n, will be imaginary. Equations (51)

and (52) then become, with m? = — n?,
3ne tanh (3n;) = —3m, tan (3m,), (53)
(2/n,) tanh (3n,) = (2/m,) tan (Fm,). (54

For a given b and k, Eq. (53) yields a lower value of
o than Eq. (54), hence it can be expected that
symmetrical disturbances are most likely to occur.
Curves of k vs — a8’ T are plotted for various values
of 8’8 in Fig. 6. The ecritical value of the Taylor
number is found to be

Toeitiear = '—.3/20‘(681)2 (55)

at infinitely large k. Since 85’ has been assumed to
be of the order of one, this implies a critical Taylor
number of the order of 8 < 1. This result agrees
qualitatively with the results for case 1, in the sense
that a tendency for the neutral stability curves to
flatten out and yield low critical Taylor numbers at
large values of % is verified. The occurence of in-
stability at large & physically means that the con-
vection cells which form are very short and flat in
shape. Such results do not occur in Newtonian
fluids, and more would have to be known about the.
rheological properties of the fluids under consider-
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ation to decide whether these results are of physical
significance.

VI. CONCLUSIONS

For a fluid with a positive coefficient of cross
viscosity, it is seen that the effect of the non-
Newtonian terms is definitely destabilizing, the rate
of change in the critical Taylor number being
greatest in the range 0 < «S’ < — 0.1. This de-
stabilization effect is due primarily to the additional
cross-viscosity terms which augment the disturbance
stresses when a8’ < 0. While the calculations have

WILLIAM P. GRAEBEL

not heen carried out for S’ > 0, the tendency for
stabilization is clearly indicated. It may even be
conjectured that there is some positive value of
a8’ for which the flow would be completely stable.
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Turbulent Flow in a Circular Pipe with Porous Wall
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(Received October 11, 1960)

A theoretical investigation of an isothermal turbulent flow in a porous wall pipe with fluid injection
or suction at the wall has been made. An exact solution of the Reynolds equations, reduced to ordinary
nonlinear differential equations with appropriate boundary conditions, is obtained. The axial velocity
distribution is expressed as functions of velocity through the porous wall, the axial pressure gradient
and the mixing length proportionality constant K., Experimental data are used in conjunction with
the solution to calculate the values of K over a range of injection-to-main-stream velocity ratio.
Good agreement is obtained between the present velocity profiles and such data.

INTRODUCTION

URFACES in the neighborhood of high-temper-
ature gases can be appreciably reduced if a
poor conductive barrier can be maintained between
the surface and the hot gases. One successful means
of accomplishing this purpose is that of mass
transfer cooling. Such process can be realized by
the use of porous surface through which the coolant
is forced into the high-temperature stream. The
effect of fluid injection at the wall on the flow dis-
tribution must be known before the prediction of
heat transfer of such a flow can be made.

The effect of fluid injection at the wall on iso-
thermal and nonisothermal laminar flow of a fluid
in a porous wall pipe has been investigated by Yuan
and Finkelstein."> Although the above investi-
gations yield considerable basic knowledge on the
laminar pipe flow, they do not apply the flow in the

18. W. Yuan and A, B. Finkelstein, Trans. Am. Soc.
Mech. Engrs. 78, 719 (1956).

2 8. W. Yuan and A. B. Finkelstein, Jet Propulsion 28,
178 (1958).

turbulent state which occurs in most engineering
problems. For this reason, further exploratory study
of the effect of coolant injection through a porous
wall pipe in the velocity and temperature distri-
butions of a fully developed turbulent pipe flow was
made.’ In the above approximate solution, the
axial velocity distribution obtained is independent
of the distance in the flow direction. Hence, this
solution is valid only for a pipe with a small length-
to-diameter ratio. Similar problems in laminar and
turbulent flow of a fluid in channels with porous
walls have also been investigated by Berman* and
Yuan.**

In the present study the Reymolds equations in
cylindrical coordinates have been reduced to
ordinary differential equations for the case in which
the flow through the porous wall varies as an ex-
ponential function of z/R. A perturbation method

38. W. Yuan and L. Galowin, Proc. 9th Intern. Congr.
Appl. Mech. II, 331 (1957).

* A, 8. Berman, J. Appl. Phys. 24, 1232 (1953).

58. W. Yuan, J. %fpl' Phys. 27, 267 (1956).

¢8. W. Yuan, J. Math. and Phys. 38, 166 (1959).



