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We present resulis of a numerical formalism developed to address the band structure and the
charge control problem in pseudomorphic n- and p-type modulation-doped field-effect
transistors (MODFETs), which are created by adding excess indium in the active channel
region. For n-type structures, the tight-bonding formalism is used to study the effect of strain
on the crystal electronic properties. A finite-difference technigue to solve the Schridinger
equation simultaneously with the Poisson equation is used to model the MODFET. The
enhanced performance in #-type pseudomorphic devices has been shown to be primarily due to
better charge confinement. Results are also presented as a function of channel strain. For p-
type structures, the Kohn-Luttinger formulation is used together with deformation potential
theory to describe the hole states. Significant reductions in the mass of the hole gas due to
biaxial compressive strain are demonstrated, suggesting dramatic potential improvement in the
operation characteristics of p-type pseudomorphic devices. As an application of the formalisim,

a comparison of pulse and uniform doping in the barrier region is carried out. The
improvement in carrier transfer efficiency and the potential reduction of gate leakage current

are discussed.

L INTRODUCTION

Strained channel or pseudomorphic modulation-doped
field-effect transistors (MODFETs) have been receiving a
lot of attention recently for application as high-speed/high-
frequency devices. These devices also offer well-controlled
systems for studying optical, electronic, and transport prop-
erties in strained systems. Studies of strained MODFETs are
motivated by a number of potential advantages, including
{1} the potential to avoid the D-X center related problems
which plague the cryvogenic performance of GaAs/
Al,,Ga,,As MODFET' by using the In Ga, ,As/
Aly s Gaogs As system,” (ii) higher band discontinuities
which could vield greater sheet charge densities and better
carrier confinement by adding excess In in the channel of
both the GaAs/AlGaAs and Ing 5; Gay o As/Ing o, Al 4g AS
systems, and (iii) lowering of carrier masses due to the add-
ed In in the case of n-type MODFETs and due to the band
decoupling caused by biaxial compressive strain in the case
of p-type MODFETSs. Many of these advantages appear to
have been realized, and the r-type strained devices have
shown improved performance which is related to higher mo-
bility and better carrier confinement. The p-type MODFET
has shown remarkably improved performance which ap-
pears to be related to the lower carrier mass due to the strain
in the channel. The need for superior hole transport proper-
ties exists for both p-type MODFETs (for complementary
logic) and for #pn heterojunction bipolar transistors. Jones
et ¢1.” have shown that hole masses can be reduced by biaxial
compressive strain. Hinckiey and Singh* have shown signifi-
cant improvemenis in the theoretical transport properties of
pseudomorphic p-type material. Drummond ef al.” and Lee
et al.® find improved device performance in strained p-type
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MODFETs.

To fully exploit the potential of strained MODFETS,
one needs to develop an accurate formalism to study the
channel material properties as well as the charge control
properties of both #- and p-type devices. Such a model would
require the self-consistent solution of the Schrddinger equa-
tion and the Poisson equation in the presence of strain. An
accurate model must be able to solve the Schrodinger equa-
tion with an arbitrarily shaped potential well, as well as be-
ing able to include the effects of different material param-
eters across boundaries. This precludes the use of variational
techniqgues or triangular well assumptions which are popu-
larly used in MODFET charge control studies. It is also
important to consider the mixing between light-hole (LH)
states and heavy-hole (HH) states explicitly when simulat-
ing the p-type MODFET since this interaction gualitatively
changes the properties of the hole gas. We have used a nu-
merical finite-difference eigenvalue sclution to handle the
Schrodinger equation for #- and p-iype systems.

We have applied our formalism not only to develop an
understanding of the carrier properties, masses, subband en-
ergies, and occupations, etc., of MODFETSs, but also to a
study of the effects of doping distribution in the barrier. The
enhanced transfer efficiency which is found in the case of
pulse doping is discussed. Also, advantages due to potential-
ly much lower gate leakage current are identified on the basis
of the band bending. Further, we find that if medeled accu-
rately, the shape of the conduction band yields 2 quantum
well in the barrier region which has its own confined elec-
tronic subband levels. Thus, the device has two gquantum
wells——ocne in the barrier and one below the heterointerface.

In the next section, we describe the modeling formalism
for the »- and p-type devices. Results of the formalism are
presented in Sec. Iif, and we conclude in Sec. IV,
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it MODELING FORMALISM

The general structure of the psendomorphic, or strained
channel, MODFET is shown in Fig. 1. Excess In is added in
the channel layer where the two-dimensional electron
(hole) gas is formed. The excess In creates a lattice mis-
match between the channel layer and the rest of the device.
The lattice mismatch, which results in a biaxial compressive
strain, alters the physical properties of the semiconductor
material. Before the pseudomorphic MODYET properties
can be understood, it is important to undersitand the band
structure of the strained region. Once the band structure and
other material properties of the pseudomorphic layer are
known, one can proceed with a simulation of the device, In
our simulation, we solve the Schrédinger equation seif-con-
sistently with the Poisson equation. In Fig. 2, we depict the
general flowchart of our approach to n- and p-type
MODFET simulation. We now briefly describe the compo-
nents of our formalism.

A. Material parameters of pseudomorphically strained
semiconductors.

A general charge control model for a semiconductor
device begins with the material band gap, the effective mass,
and other similar material properties. For unstrained bulk
semiconductors, these parameters are readily available from
many sources both theoretical and experimental. Since it is
known that strain will alter these basic material properties,
one must first establish values for these parameters in the
strained semiconductor. At present, there has been some ex-
perimenta! work on the band gaps’ and effective masses® in
some strained systems, however, full data are not yet avail-
able. For this reason, we have developed a model for the
electrounic band structure which incorporates strain.

We employ the tight-binding method (TBM) in order
to model the carrier masses in the strained n-type channel.
The band structure is developed first for the unstrained semi-
conductor material by carefully fitting the band gap, effec-
tive masses, and mntervalley separations to measured data.
The effects of spin-orbit interaction are included in the tight-
binding formalism.® The virtual crystal approximation is
employed to model alioys by averaging the tight-binding ma-
trix eiements. This yields a set of tight-binding matrix ele-
ments (and spin-orbit coupling parameters} which fairly ac-
curately describe the band structure toc about 1 eV away from
the band gap for both the clectron and hole states. After the
tight-binding parameter set for an unstrained semiconduc-
tor is developed, the effects of strain on the tight binding

a e 1
undoped spacer
doped region
AiGaAs or AllnAs
undoped spacer
strained channel
InGaAs
buffer(s)

semi-insulating substrate
GaAs or InP

FIG. 1. General structure of the pseudomorphic MODFET.
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band structure are considered. A scaled square law rule is
used to alter the tight-binding matrix elements with the
change in atomic separation. OQur formalism uses the follow-
ing relation:

E, v (ro+6r) ZE#vﬂ'(ro)/[i +a<2—5":+ 5}"’)} (1)
7o e

to describe the effect of strain on the tight binding param-
eters £, .. Here p and y' stand for atomic orbitals (s, p,, p,,
7, » at sites which in the absence of strain are separated by a
distance #,. &7 is the change in the atomic spacing and o is a
fitting factor used to match the calculated deformation po-
tentials for hydrostatic and biaxial deformation to measured
values. Different values for @ were used for first and second
nearest-neighbor interactions. This expression, when incor-
porated into the tight-binding formalism, allows one tc de-
scribe the energy band structure under arbitrary strain con-
ditions.

Using this formalisim, we can model the band structure
of the strained channel material if it is known how the chan-
nel material absorbs the strain of the lattice mismatch. We
employ the pseudomorphic approximation for strain incor-
poration in the channel material. According to this approxi-
mation, the lattice constant of the regions matched to the
substrate is unaffected. In the nonmatched region, the paral-
fel lattice constant is forced to take on the value of the lattice
constant of the substrate, while the perpendicular lattice
constant of the nonmatched material is then altered accord-
ing to the Poisson effect. This condition allows lattice coher-
ency to be maintained and a crystal to exist without lattice
dislocations. Such an approximation is expected to be vahid if
the strained layer thickness is below some critical thickness
which is determined by material parameters. Thus, the par-
allel and perpendicular lattice constants of the strained
channel become

aj =d,
= {1+ e)ag, (2)
ai = {1 —o'€)ag, (3)

where a, represents an unstrained material Iattice constant,
the superscript ¢ denotes the psendomorphically strained
channel material, the superscript s denotes the substrate ma-

wMODFET p-MODFET
Strained channel matecial preper-
ties (electron masses) via a tight
binding formalism

Deformation potential theory and
the Kohn Luttinger hamiltonian

4 4

Schrédinger equation for the ome
band electron states solved self con-
sistently with the Poisson equation

Four band Schrédinger equation for
hole states solved self consistently
with the Poisson equation

¥ 4

Subband levels, carrier density, and
subband occupation

Subband levels, hole masses, carrier
density, and band occupadtion.

FIG. 2. Flowchart depicting the modeling procedure for n- and p-type pseu-
domorphic MODFETS.
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terial, € is the amount of lattice mismatch and is defined by
Eq. (2), and o is the channel material Poisson ratioc.

This model was used to calculate the band structure of
In,Ga,_ ,As lattice matched to GaAs, and for
Inges, »Gager. As lattice matched to InP  where
0<x<0.20. In Table I we list the calculated band gaps for
both the lattice-matched and the pseudomoerphically
strained channel material of the listed compositions. In Ta-
ble L, the effective masses are listed. MNote that Table [f gives
values of the effective mass in the parallel and perpendicular
directions for the strained channel materials. For unstrained
materials, the equal-energy surfaces for the gamma valiey
are spherical in the materials which we are considering.
Strain, however, lowers the symmetry of the crystal and
changes the shape of the equienergy surfaces into an ellip-
soid. That is, the biaxially strained gamma valley must be
characterized by a parallel and a perpendicular effective
mass which will, in general, be different. It can be seen from
Table II that the perpendicular effective mass tends to satu-
rate as the indium composition {and the strain) increases.
The parallel effective mass, however, continues to decrease
with excess indinm, aithough it does remain above the un-
strained value.

The tight-binding band-strocture formalism which we
have developed will model the valence-band structure as
well as the conduction-band structure. However, a listing of
the masses of the hole bands would not serve the same pur-
pose as the list of the electron effective masses did. This is
because of the fact that the top of the valence band is doubly
degenerate. The top two valence bands, termed the light hole
and heavy hole, couple strongly. This coupling, to a large
extent, determines the masses of the two states and can be
responsible for making the hole bands very nonparabolic.
Both strain and the quantum confinement produced in a
MODFET will alter the relative positions of the light-and
heavy-hcle bands. Thus, both strain and confinement can
effect the coupling and dramatically alter the hole effective
masses. Because of this, one cannot determine the hole effec-
tive masses until after the valence-band profile is deter-

TABLE I, Effective masses in the perpendicular and parallel directions &k
pseudomorphically strained channel materials on GaAs and InP substrate

In,Ga,. ,As Ingss + +Gogar. AS

- % * * ® "
X Minstrained Mjunsteained P istrained  Panstreaines Fijsirainet P isirained

.00 0.066 0.066 0.066 0.043 0.045 0.043
0.05 0.064 0.065 0.064 0.044 0.044 0.045
.10 0.062 0.064 0.063 0.042 0.043 0.045
G.15 0.060 0.063 0.063 0.040 0.041 0.044
0.20 0.058 0.062 0.062 0.037 0.03% 0.044
0.25 0.056 0.061 0.061 0.035 0.037 0.044
.30 0.054 0.060 0.061 0.033 0.035 0.043
0.35 0.052 0.058 0.060 0.031 0.033 0.043
0.4C 0.030 0.057 0.060 0.028 0030  0.043
0.45 0048 0.055 0.060 0.026 0.027 0.042
0.50 0.047 0.054 0.060 e e o
0.55 0.045 0.052 0.060

0.60 0.043 0.050 0.060

€.65 0.041 0.048 0.060

mined. Since the valence band is dependent upon the hole
masses, one is foreed to solve for the hole band structure self-
consistently with the charge controf model instead of a priori
as is possible in the electron case.

While it would be possible to insert the full tight-binding
Hamiltonian into the charge control model as an eguation to
be solved self-consistently with the Poisson equation, this
would create an unmanageably large matrix. Since we were
only interested in the topmost hole bands, it is possible to use
a reduced basis set. Such a reduced basis is used in the 4 X4
Kohn~Luttinger Hamiltonian and is valid for systems such
as InGaAs which have large spin-orbit splittings. This Ham-
iitonian can accurately describe the top of the valence bands
and is much smaller than the sp® tight-binding Hamiltonian.
Thus, we incorporate the Kohn-Luttinger Hamiitonian into
our charge control model for p-type MODFETs. This will be
described in detail below.

TABLE 1. Band gaps of pseudomorphically strained channel materials on GaAs and InP substrates derived using tight-binding formalism. The measured
band gaps of alloys are usuaily somewhat lower than the numbers given here because of atomic clustering.

In,Ga, . As g5, Oogar . AS
Eew E.p Critical E.., By Critical
X Unstrained Strained thickness Unstrained Strained thickness

0.00 1.454 1.454 o 0.87¢6 0.876 )
0.05 1.395 1.416 775 0.822 0.834 843
0.1¢ 1.344 1.377 336 0.768 0.791 366
0.15 1.289 1.33% 203 3.714 0.745 222
0.20 1.235 1.299 141 0.660 0.697 154
0.25 1.18¢ 1.259 10§ 0.606 0.647 115
0.30 1.125 1.218 83.0 0.552 0.595 91.0
0.35 1L.g78 1.176 670 0.499 0.539 74.0
0.40 1.016 1.132 56.0 0.445 0.4380 62.0
0.45 0.962 1.086 470 0.392 0418 52.0
.50 0.908 1.038 41.0
0.55 0.854 0.988 36.0

0.60 0.800 0.935 31.0

0.65 0.746 0.879 28.0
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B. The charge control model

Our model solves for the potential profile in a
MODFET by seif-consistently solving the Schridinger
equation and the Poisson equation. The Schridinger equa-
tion will yield one of the charge terms in the Poisson equa-
tion which, in turn, determines the potential profiie which is
fed back into the Schrédinger equation. An iterative process
brings both eguations into convergence simultaneously.

The one-dimensional Poisson equation can be writien as

—a—iEc (z) = It

9z €(z)
where E_ is the conduction-band profile in the device, pisthe
charge density, and € is the permittivity which can be
changed in different regions of the device to account for dif-
ferent material parameters across interfaces. The charge
density p(z) is the sum of the doping charge, the free charge,
and the quantum-confined charge. This can be written as

(4)

P(Z) = Q(Nz"(z) - fo(z) - nfroc: (Z) +Pfrec (Z)

”En;‘ﬁ?(z)éﬁf(z)); (5)
where N* and NV ¥ are the effective doping levels, n,,, and
Pree are the free-carrier concentrations, and the sum is over J
two-dimensionally confined subbands whose normalized en-
velope functions are ¢, and in which the occupation is #; {or
p; for the hole case). The solution of the Poisson equation is
performed by a vectorized Newton’s method.

The effective doping levels are the concentration of ion-
ized dopants. It is important to determine the percentage of
the dopants which are ionized when, for example, the con-
duction band dips down close to the Fermi level. When this
happens, the donor levels begin to fill. A filled, or unionized,
donor site is charge neutral and does not contribute a free
efectron. Writing

,’;:Nd(l—{nd)), (6)

where N, is the total real concentration of donor atoms and
{n,) is the average occupation of a donor level. The effective
donor concentration can be written as'®

i

S e g
Here, £, is the donor level which is usuaily at a fixed energy
below the conduction band.

In the caiculation of the charge density, one must solve
the Schrédinger equation to determine the two-dimensional-
Iy confined charge profile, and cne must also determine the
free-charge concentrations, In the absence of a potential well
which confines carriers in the z direction, the free-charge
density at any point in a device would be given by the materi-
al effective density of states multiplied by a half-order Fermi
integral of the Fermi energy minus the conduction-band en-
ergy or

E.—~E
2 C(Z)>ﬁ (8)

Pfrec (Z) = JVL'FI/Z( ET

It can be very important to use Fermi statistics instead of
Boltzmann statistics, which have been used by many authors
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in the past, to determine the carrier concentrations. This is
because in heavily doped cases, the bands are near degener-
ate or degenerate, and Boltzmann statistics will overestimate
the carrier concentrations. We have calculated and tabulat-
ed the half-order Fermi integral and used a look-up table in
our model io facilitate the use of Fermi statistics. Equation
{8) assumes that we are dealing with a three-dimensional
system in which the density of states is proportional to the
square root of energy above the conduction-band edge. The
introduction of a potential well alters this picture. Inside of a
potential well, the confinement of carriers into two-dimen-
sional subbands changes the form of the density of states.
Above the subband energy level, the density of states in a
two-dimensional subband is constant with energy. However,
above the confiring potential, which we term E, for the bar-
rier energy, there will again be three-dimensional states. In-
stead of the conduction band defining the lower bound on
the states as in a bulk semiconductor and as written in Eq.
(8), now the barrier potential defines the lower bound on the
freelike states. Thus, we write the freelike state density as

E,—E b)
kr /-’
In a system with a flat conduction band except for a single
guantum well, the value for the barrier energy would be ob-
vious. With the potential profile of a MODFET, the choice is
less clear; however, we generally used the top of the conduc-
tion-band discontinuity as the barrier energy. The new den-
sity-of-states profile is shown schematically in Fig. 3. Here,
we show two confined subbands and free states at an energy
above the confining potential,

In order to determine the two-dimensionally confined
charge profile, one must solve the Schrédinger equation for
the subband envelope functions and their occupations. For
the n-type MODFET, this implies modeling subbands in the
valence band. In this case, the one-band Schridinger equa-
tion can be used. The Schrédinger equation must, in general,
be written in three dimensions, and the effective mass will be,
in general, a tensor. In the electron case, the z-dependent
portion of the Schrddinger equation is strictly separable
from the in-plane portion of the eguation which gives us
extended Bloch-like states. The one-dimensional {z-depen-
dent) Schrodinger equation can be written using the perpen-
dicular poriion of the effective mass tensor as follows:

(2 v\, ) = e, )
— e z) 16, (z) = E, ¢,(2).
{ 2m¥(z) 92° )"

n{z) :NCF,/Z( (%)

(10)

B §(E) @ Z=z

mﬁﬂ@ﬂﬂ}
AR

subband 1 staiess
L

%
\\\\\\\\ subband O statesy

i I
E
B B E,

4
%o Ep

FIG. 3. Conduction-band profile and density of states at a point inside of the
confining well. The free-electron states do not appear until above the confin-
ing potential.
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In past studies, many authors have either made a trian-
gular well approximation'’ or used the variational technigque
to fit the envelope functions.'” However, these techniques
fail in several key areas. First, a large amount of charge may
penetrate into the barrier. Indeed, some of the higher-energy
subbands are actually localized spatially inside of the barrier
regionn. The triangular well approximation completely ig-
nores the effect of the confined charge extending into the
barrier. The shape of the potential profile in the barrier can
vary dramatically for different doping profiles. This causes
the wave functions to take on many diverse forms, especially
in the barrier portion of the device. Because the wave fune-
tions can take on many different forms, picking generalized
equations becomes very difficult, if not impossible, and thus
the variational method becomes extremely difficult to use. In
addition to this, it can be quite important to include the effect
of different effective masses in different material layers in the
formalism. Neither the variational technigue nor the trian-
gular well approximation is capable of dealing with effective
mass variations. Because of these constraints, we have used a
numerical finite-difference technigue to solve the Schré-
dinger equation. This technique is capable of correctly sclv-
ing for the wave functions in an arbitrarily shaped potential
profile and also of modeling different effective masses in dif-
ferent material layers.

Once the Schridinger equation has been solved for the
envelope functions and the subband energy levels, it is
straightforward to calculate the subband occupations. Since
the subband density of states is constant with energy, the
occupation comes from a first-order Fermi integral which is
analytically integrable. In the electron case, we can write the
cccupation as

mﬁ‘

n = — len{l —i—exp(

E%:Ezi)] (n

kT

The ouly complication in evaluating this eguation is to
choaose the proper value for the effective mass. If the wave
function extends into regions of different effective mass, then
the value used in Eq. (11) must be weighted by the probabili-
ty function over the masses in the different layers. In genersal,
the subband density-of-states effective mass will be different
for each subband.

The last parameter which is of importance is the band
offsets at the hetercjunctions. Qur model simply incorpo-
rates measured values for these parameters. For the
AlGaAs-GaAs heterointerface, most people agree that the
conduction-band offset is approximately 70% of the band-
gap difference."® For the AllnAs-InGaAs heterointerface
lattice matched to InP, the conduction-band offset is closer
to 75%."* When modeling the discontinuity for pseadomor-
phically strained heterointerfaces, we assume that the per-
cent of the discontinuity in the conduction band remains the
same as it is in the jattice-matched hetercinterface. The abso-
iute value of the discontinuity then changes with the change
in the band gaps of the materials, which we calcuiate with
the tight-binding method as mentioned above.

The formalism for modeling the p-type MODFET is
conceptually similar, but much more complicated numeri-
cally. The complication arises out of the fact that we cannot
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make an effective-mass approximation for the hole band:
but must instead represent the hole bands with a matri
Hamiltonian capable of describing the full hole band stuc
ture in the presence of strain and quantum confinement. W
use & Kohn-Luttinger Hamiltonian for this purpose. Thus
in place of Eq. (10), we write

Hhh < b O a, (k', ,Z) a, (k“ ,Z)

c* Hy 9] — b iib, (k,2) b, (ky,z)

b* 0 Hy c ke, (kp,2) “ie, (ky,2)

0 —b% *  Hy Wd, (kz) d,(k,z)
{12}

where the elements of the Kohn Luttinger Hamiltonian are
given by

ﬁ?
Hy = ~ 2

2z
((ki +E2) (0 + 1) — (7 — 20) 3%)

g
+ F{z) + %5511;

ﬁz
Hy = — 2

2
((k;zc + ki)(?l — Y2} — V1 + 272) 3%)

fity

+ V(2) — b4,

2
e= Y r k2~ kY —2ivkk ],
2mg

V37

My

a
b= — K, — Ik, Y5 —. (13
( y ¢k ,)?382 {(13)

Here 7,, 7,, and y, are the Luttinger parameters for the
given material and may change as a function of z across ma-
terial heterojunctions. We use the values of the Luttinger
parameters given by Lawaetz.!® The shear-strain-induced
band splitting 8, is given by

55}1 = —-Zb[(cm—é-zcm)/culé‘, (14)
where ¢;; and ¢, are the elastic parameters of the channel
material, €is the strain defined by Eq. (2), and bis a material
deformation potential. The wave funciions are then given by

a, (ky 2l @330
B, (kys2)edbsn 12 (15)
€. (KysZY @m0 '

d, (K2} bz 30

q)” (k“ ,Z) =

where the terms like ¢, 5, are the pure angular momentum
states from the solution to the hydrogen-atom problem with
spin-orbit interactions inclhuded.

As with Eq. (10) for the #-type MODFET, Eq. (12} is
sclved for the p-type MODTET 1o determine the subband
energy levels and envelope functions. A big complication
comes from the fact that the resulting hole bands are very
nonparabolic. Because of this, Eq. (12) must be solved all
throughout k; space. Another consequence of the bands be-
ing nonparabolic is that the density of states will not be a
constant function of energy. Hence, we must get the density
of states numerically. We can write g,,, the density of states
in subband », as
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i d4,(E)
47° dE
where 4, (E) is the area in k, space contained by subband #
at energy E. This expression must then be numerically mul-
tiplied by the Fermi distribution function and integrated

over energy to obtain the subband occupations.

g. (£} ) : (16}

it RESULTS

The evaluation of our formalism for either n- or p-type
devices accurately yields the conduction- and valence-band
profiles, the charge-density profile, and the energies and oc-
cupations of the two-dimensional subbands. This informa-
tion can be obtained for any given layer structure. It is quite
useful to have this sort of information available when design-
ing optimized MODFET structures.

Quite generally, the type of results which we obtain
from our model for #-type MODFETSs are shown in Fig. 4.
This simulation was done for 300-K device operation. The
figure shows the conduction- and valence-band potential
profiles in a typical InAlAs-InGaAs n-type pseudomorphic
MODFET and the charge distribution in the same device.
From the two humps in the shape of the quantum confined
charge profile shown in the figure, it can be seen that there
are subband states spatially localized in the barrier as well as
in the channel. The effect of the strain on this device was 1o
create a larger conduction-band discontinuity between the
barrier and channel, and to create a deeper potential well in

1.5%
1.0¢
E,
=
—-{3.5¢

0 200 400 600 800
Z[A]

1020

1018

1016 L

1014

1012

Charge density profile [1/cm?]

300 400 600 800
ZiA]

FIG. 4. Conduction- and valence-band profiles of a typical pseudomorphic

n-type MODFET built on an InP substrate and the (1) doping, (2) free,

and (3) quantum-confined charge-density profiles in the device.

10K
10 0
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which the electrons are contained. This tends to improve
both the spatial and energetic confinement of the sub-
bands.'®

The effects of varying strain in the channel of an n-type
MODFET are shown in Fig. 5. This figure shows the sheet
charge for a series of n-type MODFETs grown on an InP
substrate. The lefi-most point on the curves is for a lattice-
matched MODFET with an In, ., Gag .; As channel. Ineach
device, the well width was chosen to be just under the critical
thickness for its channel composition. As can be seen, in-
creasing the strain yields a steady increase in the total sheet
charge concentration. This is due to the increased band dis-
continuity between the barrier and welil. The other informa-
tion which is apparent from the figure is the greatly in-
creased confinement. In the unstrained MODFET, only
around 65% of the sheet charge is in the ground state. As we
go to very large strains, almost all of the charge is localized in
the lowest-energy subband. This improvement in confine-
ment is due to the ground state falling into a deep quantom
well created by a thin layer of highly strained material. Since
the well becomes narrower and deeper with increased indi-
um composition of the channel, the energy separation
between the ground and first excited states becomes larger
and larger. This has significant implications for mobility be-
cause of the decreased scattering and the lower effective
mass of particles in the ground state. Theoretical work by
Mori and Ando’” has shown that the mobility in the ground
state of a gnantum well will be several times less than that of
even the first excited state. We feel that much of the observed
improvement in the characteristics of pseudomorphic r-type
MODFETSs may be due to better confinement of the carriers
and, hence, higher mobility.

Based on the resuits of Fig. 5 and Table I, our calcula-
tions would suggest that pseudomorphic n-MODFET per-
formance would improve monotonically with increased in-
dium content. However, it must be realized that there may
be additional effects arising from the quality of strained layer
interfaces which need to be understood to fully realize this
potential, While lattice-matched heterajunctions can now be
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FIG. 5. Total sheet charge and charge in the ground and first two excited
states as a function of indium composition in a a-type pseudomorphic
MODFET. The left-most points on the curve correspond to a
Ing 53 Gay 47 As channel which is lattice matched to the substrate. Note that
as the strain increases, the total sheet charge increases as well as does the
confinement in the ground-state subband. The strained well width for each
point was chosen to be just under the critical thickness for the well composi-
tion as listed in Table 1.
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grown with one-monolayer interface fluctuations, it is not
clear if highly strained interfaces will be of similar quality.

Figure 6 shows the valence-band profile for a lattice-
matched and a pseudomorphic p-type AlGaAs-GalnAs-
GaAs MODFET and their associated hole subband disper-
sions. The pseudomorphic MODFET simulated had 12%
indium in the channel. The dashed lines in the conduction
band on the pseudomorphic case come from the splitting of
the light- and heavy-hole bands caused by the shear compo-
nent of the biaxial strain in the pseudomorphic layer. This
splitting raises the é,,,,,, state above the ¢,,,,,, state in
energy. The magnitude of the splitting is given by Eq. (14).
In the in-plane directions, the ¢,,,,,, state is significantly
lighter than the &, ,,,,, state. Thus, the in-plane effective
mass, which is the important mass for transport paraliel to
the layers, can be much lower then the normal hole effective
masses. This shows up in Fig. 6 as a very high curvature in
the energy-momentum subbands. At room femperature, our
simulation gave the average in-plane effective mass of the
hole bands as 0.36m, for the lattice-matched p-type
MODFET and 0.32m, for the pseudomorphic p-type MOD-
FET. At lower temperatures, this effect is even more pro-
nounced. This is because the low-temperature distribution
function pushes the holes to the tops of the subbands. In the
lattice-matched case, the tops of the subbands have about the
same mass as the rest of the bands, and thus the mass does
not significantly change. In the strained p-type MODFET,
the tops of the bands are very light. At 77 K, the effective
mass of the hole gas is 0.58m,, for lattice-matched MODFET
and 0.15m,, for the pseudomorphic MODFET.

With the addition of even greater amounts of indium
into the channel of the MODFET, the larger strains bring
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FIG. 6. Valence-band profile of (a) a lattice-matched and (b) a pseudo-
morphic p-type MODFET and the in-plane dispersion curves of the hole
subbands. The dashed lines in the valence band indicate the effective va-
lence-band profile for the light and the heavy holes which have been split by
strain. Note the high curvature of the subbands, indicating a low effective
mass in the pseudomorphic MODFET.
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about larger band splittings which cause the masses to b
come even lighter. Masses approaching that of the elecire
effective mass can be achieved. Figure 7 shows the calculate
room-temperature effective hole masses for a series of pset
domorphic p-type MODFETs with different channel com
positions. Asin Fig, 5, the well width in each of these device
was chosen be just under the critical thickness for the giver
channel composition. As can be seen from the figure, the
hole mass for an unstrained MODFET is even higher thar
the hole mass in a bulk crystal, which is around 0.34m,,. This
is due to the coupling of the bands in the guantum confine-
mment. Thus, we can see the very significant decrease in effec-
tive mass which is brought about by the decoupling of the
light- and the heavy-hole states due 10 the strain in the sys-
tem. As is shown in the figure, the hole effective mass can be
reduced by more than a factor of 4. Significantly, much of
this decrease can be achieved with the modest strains present
in Ing,, Ga, g0 As, which is not as difficult to grow as more
highly strained materials. The masses given here are in-plane
density-of-states effective masses averaged over the entire
hole gas. A more detailed description of the effect of strain
on the masses in each of the subbands has recently been pub-
lished by the authors.'®

Some attention has been given recently to the concept of
delta-doped MODFET structures.” Delta doping entails
placing a very high concentration of donor atoms in a very
narrow layer close to the heterojunction as opposed to dis-
tributing the donors over a thicker layer between the heter-
ointerface and gate. Using growth-interruption techniques,
this concept has been taken to its extreme by placing all of
the donors into a single monolayer. Since a large variety of
structures of this type have been proposed, we decided to
examine the advantages and disadvantages of the concept of
delta doping. In order to assess the effects of the doping
distribution, we performed a series of simulations on a typi-
cal n-type pseudomorphic device structure. We varied the
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FIG. 7. Averaged hole gas effective mass as a function of indium compaosi-
tion in the channel. The zero indium device is lattice matched to the GaAs
substrate and has very heavy hole bands because of the coupling between the
light- and heavy-hole states. The addition of strain greatly reduces the effec-
tive mass in the hole bands. Also shown is the sheet charge density of each
device. As the well becomes deeper as a result of the increased strain, the
sheet charge increases. The strained well width for each peint was chosen to
be just under the critical thickness for the well composition as listed in
Table 1.
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doping distribution within the barrier of the device; how-
ever, a 50-A undoped spacer layer between the hetercinter-
face and donors was maintained. In our simulations, we var-
ied the width of the doped region from spike directly up
against the undoped spacer layer all the way up to a uniform
doping between the gate and spacer. Initially, we varied the
doping concentration in order to keep the sheet-doping dose,
or the donor concentration per cubic centimeter multiplied
by the thickness of the doped layer, a constant. Keeping the
doping dose constant facilitated a study of the doping trans-
fer efficiency, or the percentage of the donated electrons
which transfer into the channel, as a function of the doping
profile.

In performing these simuiations, we found that if was
very important to inciude the effect of donor ionization and
to provide an accurate value for the donor energy level. This
is because, in the cases where the doping region was thin, the
doping concentration gets very high. If the approximation is
made that all donors are ionized, which many authors have
made in previous studies, this high doping concentration will
cause the conduction band to pass significantly below the
Fermi energy.*’ In this case, we can be certain that many of
the donors will not be ionized. The effect of including donor
ionization in the model is to prevent the conduction band
from becoming degenerate. This implies, in general, that the
calculated sheet charge will be lower than it would have been
if it was assumed that all of the donors were ionized. In the

- ]

E, {“\h

——— 2 | |

| /k
Sl LN

iy

assqsg‘;- AL e
¢;¢3:Lw‘m__,ﬁms@s_/fk_‘_m_
I /A V.

A NND-Y V2V AV/A N

!

|

i \‘
¢g¢6‘L_-wM/MX[‘_\NMM.\A-____,

!

3 ¢7;_._ NV VAV AV AVA VAV AN
qsgassi_ AV, N

|
# ¢9!~‘-~A/\
’

A

{
> n,»¢:¢l_ w_,_:::;_jj. I

FIG. 8. Conduction-band profile, squared magnitudes of the first ten wave
functions, and the quantum-confined charge profile in a delta-doped
MODFET.
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simulations presented here, we assume that the
In, 5, Al 45 As is sificon doped with a donor binding energy
of é meV.

Figure 8 shows the conduction-band profile, the
squared magnitudes of the first ten subband wave functions,
and the quantum-confined charge profile in a pseudomor-
phic MODFET where all of the dopants are in a 10-A-thick
layer immediately on top of the spacer. Figure 9 shows the
same information for a device where the same dose of donors
are spread out over the entire region between the gate and
spacer. Several interesting features of the two figures become
evident. By examining the wave functions, one can see that
some of the energy levels of the system are spatially localized
within the barrier. This is more pronounced in the spread-
doping case {Fig. 9), because the “potential well” in the
barrier is further from the potential well in the channel.
Thus, the third excited state of the system, ¢, in Fig. 9, re-
sembles a groundlike state spatially confined inside the bar-
rier. In actuality, there are three humps to this curve as it is
the excited state of the system; however, two of them are too
small to be seen on the scale shown. Overall, the total charge
in the barrier is significantly higher in the delia~-doped case
than in the spread-doped case. For the devices which we
simulated and picture in Figs. 8 and 9, there is more than 3
times as much charge in the barrier in the delta-doped case
then in the spread-doped case. In MODFET design, it is best
to avoid charge in the barrier because of the lower carrier
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FIG. 9. Conduction-band profile, squared magnitudes of the first ten wave
funciions, and the guantum-confined charge profile in a spread-doped
MODFET.
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velocity in the barrier material and, therefore, the inferior
MODFET transconductance. While these carriers could be
depleted oui of the barrier by lowering the gate voltage, this
would lower the sheet charge concentration. The simula-
tions show that in order to get the same large sheet charge
concenirations in the channel which the delta-doped
MODFET is capable of, the spread-doped MODFET needs
to have significant charge in the barrier as well.

As mentioned before, the doping dose was kept constant
as the widih of the doped region was varied as in Figs. 8 and
9. However, the sheet charge in the delta-doped case is high-
er than in the spread-doped case. This implies that thereisa
greater transfer efficiency of donated electrons from the do-
nors into the channel. This trend is demonstrated in Fig. 15,
which shows the sheet charge in the channel as a function of
the doping width. The figure shows that there is a steady
increase in the transfer efficiency as the donors are brought
closer and closer to the channel. Also shown in the figure is
what the curve would lock like if all of the donors were ion-
ized. As can be seen, this would overestimate the channel
charge significantly in the delta-doped case.

Because the conduction band in the delta-doped
MODFET will be lower near the heterojunction, the delta-
doped MODFET can achieve a greater maximum sheet
charge than the spread-doped MODFET. The sheet charge
density, however, is limited by the donor-binding level. Once
the conduction band falls to within the donor-binding level
of the Fermi energy, the donor states will start to fill, and
past that point, increasing the doping will not increase the
sheet charge further. The increase in transfer efficiency,
demonstrated in Fig. 10, will also be affected by donor ioni-
zation, and thus the improvement demonstrated in Fig. 10
will only be observed at low or moderate doping doses.
When a spread-doped MODFET is over doped, the conduc-
tion band from the gate all the way to the spacer will lower
towards the Fermi energy, and there will be an extremely
large barrier charge. In this case, the barrier charge actsas a
parasitic MESFET in which the carriers will have low mo-
bility as a result of the high scattering rate in the presence of
the donors and the high effective mass in the barrier region
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FIG. 10. Two-dimensional sheet charge in a MODFET as a function of the
width of the doped region for a constant doping dose. Shown is a curve
calculated assurning that the donor binding energy is 6 meV and another
curve calculated assuming that all donors are ionized. As can be seen, the
assumption that all donors are jonized overestimates the charge density in
the device.
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which contains aluminuwm. When a delta-doped MODFE
is overdoped, the effect on the zero-bias bands is less obvion
since the conduction band at the doping spike was alreac
close to degenerate, and the donor ionization effect will pri
vent the conduction band from getting much closer to th
Fermi energy than the donor-binding energy. Howeves
overdoping 2 delta-doped MODFET will have an advers
effect on the transconductance and may adversely affect the
high-frequency characteristics because of the time constan
associated with the denor states.

We next examined the effect of doping distribution on
transconductance or the gate’s control over the channel
charge. We examined the effect of gate voltage in two sys-
tems. The first had a doping width of 350 A and a doping
concentration of 1.148 X 10" cm ™%, or a doping dose of
4.0% 10'* cm % This device had a zero-bias channel sheet
charge density of 1.5 X 10'%em ™2 In order to compare the
transconductance, we simulated a delta-doped structure
with a lower doping dose in order that the sheet charge con-
centration at zero gate bias be the same. The delta-doped
device we simulated had a doped region width of 10 A and a
doping density of 1.37X1C" cm™? or a doping dose of
1.37x 10 em 7~ Figure 11 shows the sheet charge density
in the channel of each of the devices as a function of gate bias.
As can be seen, the spread-doped device and the low-dose
delta-doped devices have very similar characteristics except
near cutoff. Here, the delta-doped device exhibits inferior
performance as the channel does not turn off as hard off as it
does in the spread-doped device. The lack of a hard pinch off
is due to the fact that the conduction band passes below the
Fermi energy and thus a significant portion of the donors in
the delta-doped MODFET are not ionized when the gate is
biased at O V. As the gate voltage is decreased and the con-
duction band is pulled up, more of the donors ionize. When
the gate voliage gets low encugh for all of the donors to
ionize, the channel does pinch off completely.

The delia-doped MODFET has a possible additional
advantage in lower gate leakage. This can take on great im-
portance since gate current can plague the performance of
MODFETs, especially p-type devices.® A spread-doped
MODFET which is doped high enough to produce a high
sheet charge, on the order of 3 X 10" /cm?, will have a very
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FIG. 11. Sheet charge density as a function of gate voltage for a delta-doped
and a spread-doped MODFET. The doping dose for the delta-doped
MODFET is lower so that the sheet charge at zero bias for the two devices is
the same. The two curves are similar except near cutoff.
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high siope to the conduction band directly beneath the
Schottky barrier. The conduction band of such a device is
shown in Fig. 4. Because of the steep descent of the conduc-
tion band, carriers will be more likely to tunnel into the bar-
rier from the gate. Additionally, gate current may be enabled
by the donors in the spread-doped device which provide an
alternate route for gate conduction as a result of hopping
through deep levels associated with donors in the barrier.
Although it would be very difficuli to estimate the magni-
tudes of these effects, it is clear that the deita-doped
MODFET will exhibit superior performance.

I¥. CONCLUSION

We have developed an accurate formalism for the simu-
lation of n- and p-type lattice-matched and pseudomorphic
MODFETs. Our model is versatile enough to handle a var-
iety of different structures and situations including spread
and delta doping, overdoping, and pseudomorphic effects.
Our model predicts that pseudomorphic n-type MODFETs
will have increased sheet charge densities and improved car-
rier confinement over lattice-matched n-type MODFETs
because of a higher conduction-band offset and a deeper po-
tential well. For pseudomorphic p-type MODFETs, cur
model predicts significantly lower hole effective masses than
in lattice-matched p-type MODFETSs because of the decou-
pling of the light- and heavy-hole subbands. We have used
our model to investigate the differences between spread-
doped and delta-doped MODFETs. We find that thereis a
greater transfer efficiency in the delta-doped MODFET
than in the spread-doped MODFET, and the maximum
sheet charge obtainable is higher in a delta-doped
MODFET. We also find that for devices doped 5o as to have
the same channel carrier concentration, the transconduc-
tance properties are similar except in cutoff where the delta-
doped MODFET shows inferior performance. The delta-
doped MODFET may significantly help to solve the gate
jeakage problems due to reduced tunneling and fewer gap
states available for conduction. We also find that because of
similar static, zero-bias conduction-band profiles, the over
doping of a delta-doped MODFET may be difficult to detect
by dc measurements like Hall characterization and velocity
field profiling. However, because of the donor time constant
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we feel that is possible that such overdoped delta-doped
MODFETs may exhibit inferior bigh-frequency perfor-
mance. It is clear that pulse doping can provide another vari-
able for optimizing device performance, and the formalism
presented can be a useful tool for this optimization.
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