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CHAPTER 0

INTRODUCTION

The notion of behavioral equivalence is a fundamental part of
the study of automata theory. Two superficially different definitions
of behavioral equivalence occur in the literature for deterministic
machines. One, discussed by Burks [1961], which we will write =1 calls
two machines behaviorally equivalent if they define the same function from
input strings to output strings, The other, part of Rabin-Scott [1959]
automata theory, which we will write =r calls two machines behaviorally
equivalent if they accept the same set of tapes. For any deterministic
machines D and D' with the same input alphabets and binary outputs, D = D?
holds if and only if D = D holds., However, for the generalizations of
N (Carlyle [1961]) and 2 (Rabin [1964]) to probabilistic machines A

and A', we observe that A = A' does not imply A 5 A,

T
This thesis is concerned with preperties of several behavioral equi-
valences between probabilistic machines. In order to gain insight into

the kinds of equivalences which will be studied, two models of probabil-

istic sequential machines will be presented later in this chapter,

0,1 THE CONCEPT OF PROBABILISTIC SEQUENTIAL MACHINE
By a probabilistic sequential machine is meant a system which

satisfies one of the following definitions:

Definition 0,1: A (Moore-type) probabilistic sequential machine A is

a systemA =<{n, I, S, I, A(0) : 0 e I, F, 0
where

n: a natural number, the number of states
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1: an n-dimensicnal stochastic vector, the initial distribution

S: sect of state vectors = {S1 = (1, Oy veey 0), oo, S, = (0y vouy O,

T: alyphabet set, lUsuallv ¥ = {0, 1, 2, ..., k-1}
A(c): o = % n xn switching matrix for innrut symbol c¢. A(c),  is

. Pqs s %m
the nrobabilitvy of a transition from state ¢ te state
n via symhol o, We frequently call A(c) a "symbol matrix".

F: output vector, a rn-dimensional column vector whose entries are
real numbers. Fi is the outrut frcm state Si‘

0: outrut functien D(Sj) = SjaF =",
Wnen clear from context, some of the rarts of the fermal definition

4 1.
i

rmay be omitted for the definition of a particular machine,

Definition 0,2: A (Mealy-type) probabilistic sequential machine,

A= a, 1,8, 5,A() toes, W, T
where n, I, S, I, A{(0) : 0 € ¥ arc as in Definition 0,1 and vhere

n
H

the ovtnut function satisfies

P(Si’gj) = wij Si e S, nj e f

It is an easy matzer to shov that Defiritien 0,1 and Definition 0,2
arc equivalent in the following sensc¢: Tor cvery ‘ocre-tyne probabil-
istic sequential machine tascre is @ Mealy-type secuentizl machine which
is indistinguishable ip an intuitive sensc and vice-versa, Consequently,
we will be concerned oulr with the rrovertics of “oore-tyre probabil-
istic secucntial machines vhich from uev on will he called "nrobacilistic
sequential machines" or just "machires',

There seem te he nanv systems lile nrobabilistic secuential machines
in fields of study not Zistorically asseociated with automata theory.
Brains and Svechinsky discuss a systcm likne Definiticn 0.1 in their
paper "atrix Structure in Simulation of Learning" [1962]. If one takes

the cartesian rroduct of machines of Definition 0,2, onc gets Markov

processes with rewards aad alternatives as studied in scquential decision

1}



theory as presented by Howard [1960], Matrix games as discussed by

Thrall [1957] can be considered as instances of Definition 0.1 in which

I and F are strategy vectors and game matrix A(x) is defined by a string x,
A simple correspondence shows that the noisy discrete channel of Shannon
[1948] is equivalent to the system of Definition 0.2, Someday probabil-
istic sequential machines may become a unifying concept, organizing and
providing results for diverse fields,

Probabilistic sequential machines were devised as slight generaliza-
tions of the notion of Rabin [1964] of probabilistic automata., If one
restricts I to elements of S and Fi =0orl fori=1, 2, ,.., n then
Definition 0,1 defines probabilistic automata. Following Rabin, we
describe how the transition matrices for sequences of inputs are generated

by the symbol matrices,

Remark 1: Let x = ilagoir, i, e, J=1, c60, Ts
Then A(x) = A(il)aoqA(ir) i.e., the switching matrix for a string x is

found by multiplying the matrices for the symbols of x together in order,

Remark 2: Sometimes the real numbers which are the outputs of a probabil=

istic sequential machine will be regarded as codes for symbolic outputs.

Remark 3: The expectation of output for input string x of machine A is

just EA(x) = IA(x)F, Tor any real number A, the set of tapes accepted

by A with cutpoint A, T(A,}) = {x € T*; EA(x) > A}

0.2 NOTATIONAL CONVENTIONS
In what follows it will bho comvegeient to use certain notational

conventions, With regard to subscripts, nntc that state Si is identified



i
with the vector (0, ..%, 1, 0, ..., 0). We use A(x); to mean the i-th

row of the matrix A(x}. U-ually A(x)i will mean the i-th power of

the matrix A(x). On rare . ccasions when clear in context, A(x)i may mean
the i-th column of A(x). 7The following notational identities are used
frequentlv:

S;Ac jeF = Alx); o F = (A(x)F)

When necessary, identifying superscripts will be added to basic
symbols, e.g. FB is the output vector of machine B,

If I' is an alphabet, all sequences of length r are denoted by rt,

Following the conventions of automata theory, given an alpahbet T,
r* denotes the set of all finite sequences (or strings or tapes as they
are often called) of symbols from I'' It will always be assumed that I'*

contains an identity string A so that Arx = X X € I'*

r

Furthermore, we will assume that the input alphabet set I contains
a symbol A such that A(A) = E(n) : the n-dimensional identity matrix.

We do not require that Ax = x although A(Ax) = A(x).

The length of a string x is the length of the sequence of symbols
which it denotes and wiil be written lg. (x)

Contrary to normal conventions we regard A as having length 1

lg.(A) =1
whereas in general lge(ﬂr) = 0,

Concatenation between strings will be indicated by juxtaposition.
Multiplication of matrices will be indicated by either juxtaposition or
other customary notation. Hence if x and y are strings

lg.(xy) = 1g.(x) + 1g.(y)
The exponential notation on strings will be used to indicate repetition

n times
ie. X' =0Tk so that 1g,(x") = nelg.(x). An abstract machine
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{a machine with no initial state speciiied) will be indicated by leaving
a blank in the definition of the machine e.;:

Mmoo ny oy by ALY s s 40, 0t>

0.3 MODELS OF PROBABILISTIC SEQUENTIAL MACHINES
Two models will be considered, one of which is probabilistic and
one of which is deterministic, although both fall within the axiomatic

framework of probabilistic sequential machines,

Example 0.1: Probabilistic internal operation: A slot-machine.

A simple model of a probabilistic scouential machine is s slot-
machine. The static nosition of the dials represents the nresent state
of the machine, Usually there are 20 different positions on the dial and
3 dials for a total of 8,000 states. The input consists of putting in
& coin and pulling a lever, causing the machine to travel transiently
through many states until it settles down in one state. An output is
associated with each state, Nothing (which is associated with 0) comes
out unless the dials all display the same object. In that casec, some
change tumbles out (which is associated with the corresponding real
number) usually dependent only on the kind -f object being displayed, i.e.,
the state of the machine, Such a machine whose output is controlled by

its states is known a3z a "Moore machine" [1956], Each state can be

Uy

associated with a number between 1 and 8,000, and the output for cuch
state can be tabulated in a column vector or 8,000 x 1 matrix, In the
formalism, this column vector will be called the 'output vector" and
designated by the symbol "F", The output for state i will be written as
”Fi"ﬁ

The enormous number of distinct ways the lever can be pulled arc pre-



vented from significantly influencing the outcome by spring loadinga

Hence a normal pull of the lever L produces only one kind of state transi-
tion law which could in principle be determined and tabulated in a "switch-
ing" matrix A(L}. The behavior of a slot machine A could be described
using a finite state markov chain with rewards and transition matrix A(L)
but for the fact that various nonstandard but repeatable inputs have been
developed by players of siuch machines, A more complete description
requires some finite number of additional transition laws associated with
the nonstandard inputs to the machine. We associate such inputs with
additional input symbols,

Consider how the dials of the machine might be found initially, If
the dials can be completely observed, the initial state Si is represented
by a vector I {or a 1 x 8,000 matrix) with a 1 in the i'th component and
zeroes elscwhere, On the other hand, the dials may not be completely
visible, we may wish to specify the average behavior of a large number of
machines run simultaneously, or we may wish to consider the average return
from playing one machine only when it is left by other players in one of
a set of preferred states. In any one of these cases, I can be a stochas~
tic vector (Ilﬁ sy 183000) where Ii is the probability of being in state
Si at time tye

In the general case, the next state probabilities starting with
an initial state vector I and an input string x arc given by I+A(x).
Hence the expected value of output of a machine A starting with initial
state distribution 1 and output vector F after a string x of inputs has
occurred is just

EA(X) = JoA(X)eT
which is a bilinear form in I and F with form matrix A(x), The variance

in output and other higher moments can be defined analogously,



Example 0.2: Deterministic internal structure: Chemical production cell.
Suppose a chemical tank A is divided into several isolated compart-
ments AIQ PN An by partitions which are interconnected by an electronical-
ly controlled system of pumps and valves., Suppose that there is a finite
set of controls £ = {0, 1, ..., K=1} and that for each control ¢ a fixed
fraction of the chemical in compartment Ai” ngo is pumped into compart-
ment Ajg For all controls ¢ in Z, the full influence on redistribution
of liquid in the tank can be described in a n x n matrix A(c) with ij
being A(c)ijo Furthermore, suppose that the liquid being pumped between
compartments is a catalyst which causes production of a desired end product
in each compartment with a different efficiercy, i.e., if the mass fraction
of catalyst in Ai is Pi and Fi is the efficiency of Ai” then the output
of end product is PiFio Note that it is assumed that the output of the
compartment depends linearly on the catalyst present,

The initial state I is an n component vector with the i’th component
1

Ii being the mass fraction of catalyst in compartment i. Note ) Ii = 1
i=1

since the tank is a closed system as far as the catalyst is concerned.
The distribution of mass fractions of catalyst over the compartments after

a sequence of controls x = i uuim is just

1«)
ToA(i))oouorAGL ) = ToA(X)

That is, (IoA(x))i is the mass fraction of catalyst in compartment i after

starting with initial d’stribution I of catalyst fractions over compart-

ments and the string of control inputs x = i QOoim

1
The total end product from the tank is the sum of the outputs from

n
cach compartment: EZ: (IoA(x))iFi which can be written I¢A(x)*F in matrix
i=1

notation. This expression has the same form as the expectation of output



for the probabilistic slot-machine, but there arec no overt probabilities
involved here., Tie mass fractions of catalyst play the same role as
the probabilities in the first example. However, the output will still be
written like an expectation as EA(x)L

The total end product accumulated, Tx’ for the string of controls x
from time t, to time ty+m is given by adding the output from each sut-
string, i.e.,

T, = Ep(i)) + EA(1112) o+ (i)



CHAPTER 1

DETERMINING WHETHER A PROBABILISTIC SEQUENTIAL MACHINE IS
EXPECTATION EQUIVALENT TO A FINITE DETERMINISTIC MACHINE

1.1 THE CONCEPT OF EXPECTATION EQUIVALENCE
Tn the two models discussed in the introduction, the expected
value of output, EA(x)i played an important role in the physical interpre-

tations. Let us repeat the definition of the expected value of output.

Definition 1.1: The expected value of output for an input string x

of a probabilistic sequential machine A is given by

EA(x) = [.A(x)-F for x in L*

Definition 1.2: Machines A and A’ are expectation equivalent, written

L T R L AT

= A RS
A E AT

EA(x} = Eﬁv(x) for all % in 0¥
B Ia

Recall from Example 0.2 that EA(x) was the actual output of
the chemical ¢ell and not an expectation. llence the basic concept of
expectation equivalence is analogous to the definition of behaiioral
equivalence 35 for Example 0.2, However for Example 0.1,
the slot-machine, expectation equivalence is not the generalizat.on of
this kind of behavioral equivalence, Instead, the concept of indis-
tinguishability discussed in Chapter 3 secms to be the appropriate

generalization.

Example 1,1, Machines A and A" which are expectation equivalent:

IA(X)F = TTAT(X)F" ¥x e L¥
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A= I, A70), A(L), F> and A' = <I, \'(0), A'(1), Fi»

AO) = [1 0 0 A1y = [3/5 1/5 1/5
12 1/4 1/4) {1/5 4/5 0
k1/4 0 3/4 \4/5 1/5 0
AT(0) = 1 0 0} A1) = 7710 0 3/10
g5/8 0 3/8 13/ 0 2/5 )
L0 2 12 9/10 0  1/10

;)
F=F =I5

These machines are expectation equivalent from any initial probability
distribution, I, over the states.

The previous example shows that two machines can have very
different switching matrices and still be expectation equivalent. Some
graph theoretic properties of the transition matrices which are important
to markov theory, such as the accessibility of a state, depend on
the location of the zeroes. This example shows that the location of
the zeroes is not the only relevant factor in the study of expectation
equivalence, Consideration of the interplay between the state transitions
and the real number outputs attached to states requires the use of

elementary linear algebra.

1.2 THE REDUCTION RELATION RE

In this section a congruence relation on input sequences, R_, will be

E
defined so that a quotient machine can be constructed. If the rank of

Ry happens to be finite, the constructed machine has a finite number of
states. States of the quotient machine will correspond to values of expec-

tation which occur for input strings. By attaching a deterministic output

device to each state of the constructed machine, an expectation equivalent
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deterministic machine is obtained,

If the rank of RE is finite, some class of the relation must contain
infinitely many strings. A necessary condition for RE to be finite in
rank is that it be non-trivial, i.e, at least two different strings are

contained in some class., This weak necessary condition requires the

symbol matrices to satisfy certain strong conditions.

Definition 1,33 The reduction relation 5£ is given by

s

x Ry y iff Ey(x) = E,(y) § Ey(x2) = E,(y2) ¥z e T VI € §

If ©* contains A, a semigroup identity, the definition reduces to

. s N L , N
X RE y iff EA(xz) = EA(yz) ¥z ¢ £*, VI € S,

RE is a right congruence relation on I* because of the reflexivity,
transitivity and symmetry of "='" and the substitution property in its
definition.

It follows that strings x and y which are in the same class of
the relation RE will have equal expectations from any initial state of
the machine and will continue to have equal expectations for any finite
input continuation z, As far as expectation of output is concerned,

the behavior of the machine A is the same after either string x or

string y.
1.3 CONSTRUCTION OF THE QUOTIENT MACHINE

Definition 1.4: The equivalence class of x' of R, an equivalence relation,

is given by
R[x'] = {x : x R x'}
It is a well known result from Rabin and Scott [1959] that given

a right congruence relation R on I*, one can construct a quotient automaton
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with no output T(R)
T(R) = {a, S, M)
where
a = R[A]
S = {R[x] ¢ x ¢ I*}
M is a function from S x I into S such that

M(R[x],0) = R[x0] x € L*; c el

Definition 1,5: Let B I*, A congruence R refines B if

XRy=xeB iff y e B

Theorem 1,1 Rabin and Scott [1959]

Let B be a subset of t*, R is the behavior of a finite (determin-
istic) automaton A = {T(R),7%) over I where %X = {R[x] : x ¢ 8}
iff there exists a right congruence relation R of finite rank which

refines B,

Theorem 1,2

If the congruence relation RE has finite rank, then for any i there
is a finite deterministic automaton A' such that the tapes accepted by
A’ are T(A;)),

Proof: Let B = T(A,A) = {x EA(x) > A}. Note that RE refines B8
i.es x RE y == x € T(A,A) iff y € T(A,A). If RE has finite rank, by
definition RE[x] has a finite number of members. Using Theorem 1.1 we
construct

T(Ry) = <a, S, M) and
A" = {a, S, M,”X£> which accepts T(A,1)

Q. E. D,
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1,4 CONSTRUCTION OF AN EXPECTATION EQUIVALENT FINITE DETERMINISTIC MACHINE
The quotient machine construction will be used to obtain a sufficient

condition for the reduction of a probabilistic sequential machine into

an expectation equivalent finite deterministic machine whose output

function is either a constant C(s) for each state s or a random device

0R(s) with expectation E(0)(s)) = C(s).

Definition 1,6: rpA(x) is the response of A to input string X. If A is

deterministic, rpA(x) is the state of A after an input of x, If A is
probabilistic, rpA(x) is a random variable taking on values which are

states with distribution I<A(x).

Theorem 1,3
The reduction relation RE defined by a probabilistic machine A has
finite rank if and only if there exists a finite deterministic machine A’
with a deterministic output OAw such that OA,(rpA,(x)) = EA(x) Vx ¢ I*
Proof (sufficiency): By Theorem 1.1 let A’ = {a, S, M, {} where ¢
is the empty set. Note any congruence R refines ¢ vacuously., We attach

an output function O, , to elements of S,

AU
OAQ{S) = EA(x) s = RE[x]
For a deterministic machine, M is extended to M* which operates on
strings rather than symbols by
M*(s,0) = M(s,0) sgS ogel
M*(s,0x) = M*(M*(s,0),X) x e L”

We note that M*(a,x) = rpA“(x) so we need to show only that

TPAUCX) = RE[x]o Let x = ilizec¢im for ij € Z; =1, 2, o0, My

1Py, (X) = M*(A,X) = MY(M*(a,i)),1p0001)

= M*(M(a,il) ,izao cim)
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M IR IAT, 1)) pdgeend )
1% i i 1
M (RE[AII],IZeualm)

. c oy s s \
M (M(RE[II]’IZ)'13°°°1m)

o L]

RE[1112°°”1m] = RE[x]

L]

i

Hence the constructed sequential machine is A' = <a, S, M, 017 -
(necessity)
Given A' = <{a, S, M, OA°> such that
OAQCrpAv(x)) = EA(x) Vx ¢ L¥*
OAo(rpAq(xz)) = EA(xz) Vz ¢ L*
Let rpAg(x) = Sx X e L*
Define
Sx RO Sy iff x RE y
Let n' be the cardinality of S — finite,
rank R, = rank R

0 E

rank RO <n'

Hence rank RE is finite.

Qs E« D.

Corollary 1.3

The reduction relation RE defined by a probabilistic machine A has
finite rank <= there exists a finite deterministic machine A' such that
= ¢
A 2 A

Prqgi: The machine A’ of Theorem 1.3 meets the condition of

the corollary since
EAQ(X) = OAQ(rpA,(x))= EA(x) ¥x ¢ L*

Qb Eb DC

Instead of the deterministic function Opee @ random device Oi,(s) such
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that E(OiD(s)) = EA(x) could have been used in the construction.

1.5 THE PARTITION OF THE SET OF ACCESSIBLE STATE DISTRIBUTIONS INDUCED BY RE

Definition 1,7: V(A) = {IA(xX) : x € I*} — the set of all stochastic

vectors which can occur as distributions over the states of A, We some-

times call V(A) the '"state vectors accessible in A",

Definition 1.8: A set of vectors V ='{v19 Vs .-} is convex if for any

finite set of indices J, real numbers cj >0 j € J and

z:‘c. =1 = E: c

V.,
jed ? jeg 7

written V¥ = {v' ¢ v' = j{: C.V., }Z: c
jed 73 5&

€ V. The convex closure of a set of vectors V,

j =1, cj > 0 and vj e V}. It is

clear that V(A)C S*.

Theorem 1.4

s e

If R has finite rank r, there exists a partition TI = ("ﬂl9 cop ITr)

on V(A) and an integer valued function g(&,m) such that

IIiA(o)c: IT i=1, cop, T} 0€l

g(i,o)

Proof: Ry induces an equivalence on the set of stochastic vectors

accessible by the machine.

Since RE has finite rank, form a set of an arbitrary distinct rep-

resentative from each congruence class, say X,, ..., X_ where x. # X,
5 1° * Ty i j

i=1,2 ooy 15 ) <i,
Define IT, = \J {IA(x)}
I oxe RE[ij

We show that (ITID soep fIr) is a partition of V(A)

T
LetWﬁUHi
i=1

IA(x7) € W ==>IA(x") € V(A)
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IA(x') € V(A) == X' ¢ RF[xk] for some k =1, ..., r
= IA(x') ¢ ITk for some k = 1, ,.,, T

== IA(x') e W

Hence
n
W= U I1, = V(A)
i=1
We show

suppose that

) e T N 11

IA(y) ¢ I'Ii = y e RE[xi]===> y RE X,
IA(y) € IIj = ye RE[xj] = y Ry xj
Hence we get

y RE X, = X, RE y by symmetry
and transitivity of RE gives

X RE xj = X; ¢ RE[xj]

But x. ard xj are representatives and there is only one represen-

tative from each class

which is a contradiction.
Finally we show there exists an integer valued function g(i,o) such
that

I1.A c
i (o) ¢ IIg(igo) g€l
v, € ITi - vy = IA(wl) for some Wy o€ L*

le(U) = IA(wl)A(c) = IA(wlc) € IIj
for some j as has been shown above.
v, € ITi<:=$ v

5 = IA(wZ) for some W, € I*

va(c) = IA(wzc) € IIj
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since elements of Ry have the substitution property, i.e.

w, R, X. =5 wW.oR
i 1

1 Rg xio o€l

E
W, RE X; == W,0 RF x50 o€l
X, 0 is an element of a class with representative xj for some j and

depends only on X, and g, So there is a function g(%,m) such that

g(iso) = j gel

1,6 NECESSARY AND SUFFICIENT CONDITIONS THAT STRINGS BE IN THE SAME RE CLASS
The relation RE has occupied an important place in the development of
this theory. The structure of the matrices of strings which are in the

same RE class will now be studied,

Definition 1.9: A relation R is non-trivial if there exist x and y in

the domain of R with x # y such that x R y.

Definition 1.10: The kernel of F = Kern. (F)

= {veR': veF = 0}

where R is the set of reals.

Theorem 1.5
A necess2ry and sufficient condition for x and y to be in the same
class of the reduction relation RE is:

X RE y == there exists a subspace U of Kern.(F) such that
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(1) UA(z) C Kern. (F) vz g L

Iul\
(ii) A(x) = A(y) + (g | withu, eU i=1, .0y

\"n/
n;

Proof:

srragmTy L

]

X RE y & IA(xz2)F = IA(y2)F VI e S Vze L*

hence

A(X)F = A(y)F
since
S“'{(la 09 V0P O)D 6 ¢ 6y (09 0006y 0, 1)} andAez*

By elementary linear algebra the solution of the above is a particular

solution and a kernel.

b
A(x) = A(y) + lg where h, e Kern.(F)  i=1, 2, ooy n
Ihy
multiplying by A(z)
h
1
AIA(Z) = A(Y)A(z) + |° | A(z) Vze I*
h
| n
|*‘1|
A(xz) = A(yz) + |* | A(2)
h
n

Multiplying by an arbitrary distribution I and output vector F

hl;

IA(xz)F = IA(yz)F + Io |+ |« A(z)F I e s*

h
n



But since x and y are in RF

IA(xz)F = IA{yz)F Vz ¢ L* I ¢ S*

Hence
st
Ifr i ;GA(Z)F = O -:—:-} hi A(Z) € KCI‘IL;(F), i b 1, 2, sedy n,
o
(Pnj
Let U = <{h19 504y hn}>
We get UA(z) C Kern, (F) Yz ¢ Z*
"
Let H= i° | where hi ¢ UC Kern.(F), 1=1, 2, 460, N,
;‘O
Iy |

A(x) = Aly) + H (1)

Multiplying by I on the left and F on the right gives

hl- F

L]

IA(X)F = IA(Y)F + T - ° I es*t
h e F
n
but hiF = 0 since hi € Kern,(F) i =1, «.o, n
IA(x)F = IA(y)F
using (1) again and the same argument gives

A(xz) = A(yz) + HA(z)

TA(xz)F = IA(yz)F + IHA(z)F

= IA(yz)F
| i
®
since HA(z) = i- | where u; € Kern,(F), i = 1, 2, .ss, N
K
|Yn |

Q. E. D,

Part (i) of Theorem 1.5 will be restricted to the finite class of

symbols rather than the unbounded class of strings,
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3;_heo rem _1 . 6£

Let U = U {A(x)imA(y)_i} :1=1, ..., n for x,y such that x RE y>

X & L¥
then
U-A(z) € Kern, (F) <= [H#V a subspace of R"
(i) UA(oLCV :Voet
(ii) VA(o) C V C Kern. (F) Yo e I]

UA(z) C Kern. (F)

&

Let V ueA(z); uelU, ze:3I*}d

VA{0o) = {uA(2)A{0); ucelU, 1z e I*}

4]

=V
Consider an arbitrary v ¢ V. There must be some set of indexes J and

constants c:.i such that:

1]

ve oy cjujA(zj) by definition of V,

jed
veF = [ Y c.u.A(z,)) . F
(ETJ 3 )’
= Z c,(u,A(z,)F
jed J7) )
But
ujA(zj)F = 0 by UA(z) C Kern. (F)
S0
veF = 0
Hence

V C Kern. (F)
UA(z) C V already shown

. UA(z) C Kern.(F)
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1.7 INVARIANT SUBSPACE CHARACTERIZATION OF RF

Definition 1.12. A subspace V is invariant under a set of linear trans-

S

formations {Ti ci=1,2, ... 0 m if
VTGV i=1, 20 ..,

Theorems 1.5 and 1.6 yield the following directly:

Theorem 1.7

Strings x and y are in the same class of R, if and only if there

E
exists a subspace V of Kern.(F) such that
(i) V is invariant under {A(0); Vo ¢ 1}
(1i1) A(x) = A(y)+H where Hi eV i=1, ,.,.n
1.8 NECESSARY AND SUFFICIENT CONDITIONS THAT RF BE NON=-TRIVIAL

A very weak necessary condition that RF have finite rank is that

it is at least non-trivial. Trom Theorem 1.7 it is immediate that:

Corollary 1.8

The reduction relation RE is non-trivial == there exists a subspace
V of Kern.,(F} such that
(i) V is invariant under {A{o); ¥o ¢ I}
(1i}) A(x) = A(y)+H where ”% eV + =1, ..., n
(111) X # v,
Hence we now know that given strings x and y in the same class of RE,

the differvence between the rows of the matrices A(x) and A(y) must be
elements of a subspace V which has special properties. Namely V must be

invariant under all symbol matrices and contained in the kernel of

the output vector.
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Theorem 1,9

A necessary condition that RE be nontrivial is that A(c) : Yo € £ be
reducible for the same change of basis, In other words, there exists
a subspace V and a linear transformation W of the state vectors S to

a basis for V such that

basis for V

o
. A1 0
W A(O)W =
o o
Ay A3
Where 0 denotes a submatrix of zeroes and Ag, Ag, and Ag are submatrices

which for all o in I have the same number of columns and rows,

Proof: By Theorem 1.7 and standard matrix theory [see Jacobson,
Lectures in Abstract Algebra, V. II: Linear Algebra, Van Nostrand,
New York, 1952, pp, 116-117].

Theorem 1.9 gives us a strong matrix reformulation of the statement

that RE be nontrivial,

Example 1.2, We construct an expectation equivalent finite deterministic
machine from a probabilistic sequential machine A illustrating Theorem 1,3,
Corollary 1.3 and Theorem 1.7,
A= L A, A, B
where
1= (8/10, 1/10, 1/10, 0, 0O, 0)

0
0
1/2
0
1/4
0

1/2

A(0) =

3/4

foNoNeRo oo
OO0 OOC
OO0

N =N = Ut O

0
0
/
0
/
0

OO OO = -



0 0 1/8 0 7/8 0
0 0 0 1 0 0
‘ _ 0 0 4/8 0 4/8 0
A(l) = 0 0 3/8 0 5/&8 0
0 0 2/8 0 6;5 0
1 0 0 0 0 0

The state diagram for A is shown in Figure 1.1,

~1/2(0), 7/8(1)

0 X 3/80() \1/2(0)., 1/2(1)
o /81 | /4(0)
(E)l} i 7/8(1) \ !
; 1/4(0), 3/4(1)
1 (:jlz///g///

Figure 1.1 State Diagram for the Machine of Example 1.2,
The following labeling conventions are used:

p(Ky ¢ p [0,1]; K & L means probability of transition of p
via symbol K.

% ¢ F_ ¢ Output of F_ occurs when the machine is in state g.

Py (Kp) PLKD, P, (Ky)
O<;\~_f:%0 ¢ is replaced by 0 wrmsmmmmsmmmue ()
P (K))

It will now be demonstrated that for machine A

00RO
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A(00) = /0 1 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0
0 0 1/2 0 1/; 0 . 0 0 1/2 0 1/2 0
0 0 0 0 0 1 0 0 0 0 0 1
0 0 3/4 0 1/4 0 0 0 3/4 0 1/4 0
0 0 0 0 0 1 0 0 0 0 0 1
= 0 1 0 0 0 0
0 1 0 0 0 0
0 0 5/8 0 3/8 0
0 0 0 0 0 1
0 0 9/16 0 7/16 0
\oc o o o o 1
which gives
(A(00) = ACO))F= fO 0 0 0 0 O 10
0 0 0 0 0 0 5
0 0 +1/8 0 -1/8 0] , 1
0 0 0 0 0 0 2 = (0,0,0,0,0,0)
0 0 -3/16 0 3/16 0 1
0 0 0 0 0 0 2

Hence A(00)F = A(O)F or IA(00)F = IA(O)F for all I,
Furthermore, for all P e [0,1]
(0, 0, P, 0, 1-P, 0)A(0) = (0O, O, P, O, 1-P, 0)
(0, 0, P, 0, 1-P, 0)A(1) = (O, O, P, O, 1-P, 0)
that is
w= <{(, 0, P, 0, 1P, 0}
is invariant under the symbol matrices A(0) and A(1l).

ve= <{(0, 0,P,0, P, 0)>)C W and VA(0) =V

VA(1) = V
By Theorem 1,7 we know OOREO but let us verify this fact,
For z ¢ L*
0 0 0 0 0 0
0 0 0 0 0 0
0 0 +1/8 0 =1/8 0
(AC00) - A(OA(z) =C |, 0 0 0 0 0 =D
0 0 =-3/16 0 3/16 0
0 0 0 0 0 0
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where Cz is a constant depending on the string z

and
(A(00) = A(0})A(z)F = DF = 0
consequently Vz ¢ ¥ VI ¢ §*
IAC00)A(2)F = IA(0)A(2z)F
or

EA(OOZ) = EA(Oz), which shows 00R.O.

E
By the same method one can show that

10 RE 1 011 RE 11 01011 RE 11 111 RE 11 01010 RE 0

so all strings are in the classes

R, (M), Rg[0], R[], Rg[11], Rg[01], Rg[010], Ry[ol01]

which means that R, has finite rank.

E
Following Theorem 1,3, we compute the expectations and construct
the expectation equivalent deterministic machine A'. Note that

the values of expectation depend on the initial state I.

Ey(A) = IA(MF = IF = 8.6
EA(O) = (0, 9/10, 1/20, 0, 1/20, O)F = 4.6
E\(1) = (0, 0, 3/20, 2/20, 15/20, 0)F = 1.1

E,(01) = (0, 0, 3/80, 72/80, 5/80, 0}F = 1.9

i

£, (10)
E;A(llj

E (010) = 1.9
,(010) = 1

(0, 0, 3/20, 0, 15/20, 2/2C)F = 1.1 = E, (1) (since 10R;1)

¥

(0, 0, 9/40, 0, 31/40, O)F = 1,0

E,(0101) = 9.1
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The expectation equivalent deterministic machine of Corollary 1.3 is

shown in Figure 1.2,

Figure 1.2 A' = EVRE for Example 1.1

We note that A' has 7 states while A has just 6 states, The determin-

istic cycle 0101 appears in both machines,



CHAPTER 2
DETERMINING WHETHER A PROBABILISTIC SEQUENTIAL MACHINE IS
N-MOMENT EQUIVALENT TO AN INPUT=STATE CALCULABLE MACHINE
2,0 INTRODUCTION
In this chapter the concept of expectation equivalence is generalized
to N-moment equivalence, A congruence relation RN is defined which
partitions the set of input strings into classes. All members of
a particular class produce the same expectation and first N-1 central
moments for the machine defining RNd If RN has finite rank, a finite
quotient machine can be constructed which is deterministic with each state
corresponding to a congruence class. Each state can be connected to
a random device having the same expectation and N-1 moments as the class
represented by the state, giving a deterministic machine with random
outputs. The constructed input-state calculable machine is N-moment equi-
valent to the probabilistic machine.
After the first theorem concerning a necessary and sufficient condi-
tion that two strings be in the same RN class, a simple substitution gives
generalizations of some results of Chapter 1, Hence the generalizations

are presented in this chapter without proofs.

2,1 DISTRIBUTION EQUIVALENCE: 3
The random variable structure of probabilistic sequential machines

will be investigated in this section,

Definition 2,1: OX(X) : the output random variable of the machine A

after a string x has occurred as input, Using Definition 1.6 we note

that

0,(x) = 0(rp,(x))

27
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Definition 2.2: A and A? are distribution equivalent, written A e A,
if for JR = {j : (IA(x)ij # 0} therc is a 1-1 map h between JA' and JA
such that
TA0 3
IA(x)h(j) = I'A (x)j j e JA, X € L*
F,,.. = F! i e J
hG) T3 7 A

Distritution equivalence corresponds to the conventional definition of
equivalence for discrete random variables except for random variables
Fi # Fj for i # j.

Referring back to Example 0.2, two chemical cells are distribution
equivalent if (1) We neglect those partitioned areas which have either zero
efficiency or a zero fraction of the catalyst. (2) Of the remaining
partitioned areas there is a correspondence between the partitioned areas
of one cell and the other such that corresponding areas have the same
fraction of catalyst regardless of the sequence of controls entering

the cells. (3) Corresponding partioncd areas have the same efficiencies,
2,2 MOMENTS OF THE OUTPUT RANDOM VARIABLE

Definition 2.,3; Let

g K3
1) F. ¢ R 131329668511

call
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Then the i’th central moment gi_OR(x) is

A e “ i .
() = E[OT () - hA(x))l] i=2, 3, ..

1
BN

Theorem 2.1
i, .- ,
A= et et hE oF 12,8, ..
1 i\"‘: O I\ A

Proof: By the binominal theorem

i .
AV - I ) - k * : l”k k i
SIS L[g;g (+1)70, )7, (0 ()]

To compute the expectation of the discrete random variable O:{(x)lmk

note that it has the same distribution as OZ(x) but takes on values

ik ek ,
!1 » 9060y Tn Forl#k
Dy - 5 CGDEAEO 0 NE 0F + (D ol
1= K50 A A
=k ik, ok iod
=7 UG e ETHE, W ¢ (D
Ja k A A
k=0
0. E, D,

2,3 SPECIAL PROPERTIES OF RABIN PROBABILISTIC AUTOMATA

Definition 2.4; A Rabin probabilistic automaton [1964] is a probabilistic

sequential machine such that I € S and Fi = 0 or Fi =1 i=1,2, ,,, N,
Rabin probabilistic automata have rather special features as far as

the random variable of the output is concerned.

Corollary 2.1: For a Rabin probabilistic automaton A
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A Sk kel T
S EVIEED I 8 S I ) N R CF VI Y R S P &
& KF, ‘

Proof: Fi = 0 or 1 hence

emexs

isk. L o
(% 2 F for i # k

and the result from Theorem 2.1,

Corollary 2.2: If EA{X) = EA(y) for some Rabin probabilistic automaton

A, then all central moments for x and y are equal alsc, i.e.

u?(x) a u?(y) for i=2, 3, ...

Note: for i = 2 we get the variances of the outputs are equal.

Corollary 2,3: If two Rabin probabilistic automaton A and A’ are expecta-

tion equivalent then

Z*

[0

"‘14:“;) = 7&};\(3\} i o= 2;/ 39 ¢ oo VX

2.4 THE CONCEPT OF N-MOMENT EQUIVALENCE: EN
Even if two machines are expectation equivalent, the statistics of

their behavior may be so different that for many purposes we would not

want to consider the machines behaviorally equivalent. Returning to

Example 0.1, two slot-machines can be expectation equivalent, meaning

that the average payof is the same for both, but one can be much more

desirable than the other for a player of limited resources. For a player

with limited resources might have a far longer average time until '"gambler's

ruin' on one machine thon the other. lence in order to associate

machines in the same c¢lass whose statistics of behavior are somewhat alike,

the notion of N-moment equivalence will be introduced.

Definition 2,55 Probabilistic sequential machines A and A’ are N-moment

N TSR
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equivalent, written A = A?Lf
% e i

Eﬁ{x) = EAc(x]
Ao AL . . .
ujgx) w ui(x) i=2, ,.,, N fer all x in I*

Example 2.1. Probabilistic sequential machines A and A' such that A 2y A

L LA

for any initial distribution I, i.e.
By (x) = By (x)
and

u?(x) = ugfx) VX ¢ L* i=2,3 ... Yl ¢ S*

A(0) = 1 0 0 A(l) = |3/5 1/5 1/5
1/2 1/4 1/4 1/5 4/5 0
1/4 0 3/4 4/5 1/5 0
AP (0) = 0 0 1 AP(l)y = (4/5 1/5 O
1/4 3/4 0 4/5 1/5
0 0 1 4/5 1/5 0
For both machines
[Fy
F = ‘ F2 for Flg Fz arbitrary real numbers.
| Fy

2.5 THE RELATIONSHIP BETWEEN.‘:‘n AND N

Theorem 2.2

R AT ST T, SR T

For probabilistic sequential machines A and A’

A %D!\9:=$ A fN A' for all finite N

Proof: Distribution equivalence means there exists an h such that

W O]

"n@y ¢ Ui
(A (5 = 'A(R); ¥x ez

when
FAf : :
(IFA (x))i!i #0



32

Hence

n
(A, 49y ® > (I'A* (x));F,

i=1

M

[
[
[

or

E,(x) = E4,(x)

which is expectation equivalence, For any finite N
N vy N
Py = ()
The fact that
A A!
uN(X) = iy (%)
comes from inspection of Theorem 2.1. Symbolically, we have shown

A o Al => A N A’ for any N. How close one can come to a converse to

Theorem 2.2 depends on the form of the entries of F,

Lemma 2.1 (Gantmacher [1959])

Given a sequence S Sl’ «eo Of real numbers S, if one determines positive

Ob
numbers

ry > 0, T, > 0, 250y L 0

o0 ! .
>V Vie1r eees V2 0

such that the following equations hold

m -
S = Z r°vf‘) (p=20,1, 2, ...) (*)
P =1 JJ

s

then the solution to (*) is unique. We can apply the lemma to get

the following partial converse.

Theorem 2.3
1f machines A and A' meet the following requirements (Letting

h(i) = i W. L. Ga)
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(i) (IA())GF, = 0 iff (I'A'(X));FL =0 i=1,2, .., m

(i1} All states in a given machine have distinct output symbols,

(iii) E,(x) = E, (%) Vx ¢ L*
A Al
1
e = ) i=2,3, ..,

Then A and A' are distribution equivalent.
Proof: We use Lemma 2,1,

Since the central moments and expected values of output are equal

for any string, the moments of O;(x) and O;,(x) about zero are equal for

any string.

n
#

Zi[(IA(x))i such that Fi # 0]

n
#

L= B = By, ()

“
o
f

!
b + By 0f = ) ) + By, (07

We discard those components whose contribution to the moment is zero and
relabel the non-zero components by the index j. Let
J= {i: IA(x)iFi # 0}
Because of assumption (i) we also have
T = {3 = TOA? of ]
J={1i: I'A (x)iri £ 0}
Hence

s =y (A),FDT P=o0, 1,2, ...
ng 3 J

< P
=, (AT P =0, 1,02, ..

jeJ
By the lemma the solution is unique.

(TA(XBBj = (I“A°CX))j jeld
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Therefore A and A' are distribution equivalent,

Example 2.2

The condition (ii) of Theorem 2.3 is necessary as shown by

the following:

0
IA(X) = (aS, 03, 52) F=F's= (l
1
AT (x) = (.5, .4, 1)
E,(x) = IA(X)F = .5
Ey,(x) = T'A'(X)F' = ,5

Since A and A' are Rabin automata, by Corollary 2,3
A A? :
ui(x) = Uy (x) i=2,3, .4
However, A and A’ have different distributions over states for the string x,

2,6 THE N-MOMENT REDUCTION RELATION

Definition 2,5: The N-moment reduction relation RN: xRNy if for all I in S

EA(xz) = EA(yz) and u?(xz) = u?(yz) Vzei*, i=2,3,.,.,,N

The relation RN is a congruence relation and RE = RN for N = 1,

2.7 INPUT=-STATE CALCULABLE MACHINES

A probabilistic sequential machine has randomness associated with
its switching, or state transitions, and a deterministic output function
0, For some problems it is convenient to view a randomly behaving machine
as having deterministic switching but a random output device, We study

now connections between these two viewpoints,

Definition 2,6: (Carlyle [1965]) A machine A is input-state calculable
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if knowing the state at time t and input at time t, the state at time
t+1 can be calculated by a deterministic function.

A3 Cariyle has pointed out, the class of finite input-state calculable

machines conzists of exactly those machines which have finite determin-

istic

e

witching and random outputs.

Definition 2.7: A random output depending on the state Si with parameters

of r,,

10 v Ty will be written

S. :lr

$ trvesy T
1 1 * AQ

2.8 CHARACTERIZATION OF INPUT-STATE CALCULABLE MACHINES EQUIVALENT BY

N TO PROBABILISTIC SEQUENTIAL MACHINES

We obtain a generalization of Theorem 1.3,

Theorem 2.4

L T T R SRR B A

Let RN be the N-moment reduction relation defined by a probabilistic
sequential machine A.
Rank [RN[ = r finite & there exists an input-state calculable
machine A' such that A N Al

Proof: Using the quotient construction of Theorem 1.1, obtzin
an A" = Z*/RN where
At = <RN[£] ¢ RN[x]s M[RN[X], o]

and M is analogous to the function M in Theorem i.3. Elements in the same
congruence class of RN have expectations and the first N-1 central moments
equal. Hence the machine A" can have random devices attached to the states
(which are RN[x]) such that the first N-1 central moments and expectation
of each device is the same as the congruence class represented by the state.

The resulting machine A' has deterministic switching and random output

functions and is equivalent by =y to the probabilistic machine defining RNa
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The details of the proof parallel the proof of Theorem 1.3,

2.9 A NECESSARY AND SUFFICIENT CONDITION FOR THE N<MOMENT REDUCTION
RELATION TO HOLD

In the previous section we have seen the importance of the N.-moment
reduction relation RN in characterizing those probabilistic sequential
machines for which there is an input-state calculable machine equivalent
by . Let us now obtain invariant subspace conditions for strings to be

in the same class. analogous to those of the theorems of Chapter 1.

Theorem 2.5

A R e A N

x Ry y &= Ax) = Aly) *ie')

\hry

o o

N .
where <{h1* ey hn}><: {\ Kern. (")
' i=]
: ;
and <ﬁhly SN hn}> A(z) “9231 Kern. (F7) Yz ¢ I*
Proof: Suppuse that Ry holds for x and y
EA(X) = BA(y)

S INX)F = IA(V)F vl & 5

Irll
ESA(xY = A(y) +| | r,eKern (F) j=1.2 oy
r ’
n
A 2 2
uy(x) = TA) (F) - E, (%)
A, el . 2
walyd = IAGI(FT) - E, (¥)

R
IA(X3(ET) = IA(y) (F9) ¥l = S

B
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A(x) = A(y) + § rj € Kerne(Fz) j =1, 2, oy n

r
tn

. A . . . i
For any i, ui(x) can be written as a recursive function of IA(x)(F")
and smaller powers of F, i.e.,

A = e ) - N
=1

i i=k k i i
2 NENOTGINOREN IR NG

Hence by induction we assume

A ) = A k=1, 2, vuo, ic1; VI €S 1)
Hence
W = A () - 8
A i
we(y) = IA(y)(F7) + B
B = v ) () = AW () ¥Iest jsi (2

r,
L

u?(x) = u?(y)¢=:» A(X) = A(y) + E where Tj € Kernc(Vl) j =1, 2, croyn

which completes the induction,
The rest of the proof is analogous to Theorem 1.5,

Q. E. D,

N .
. and M Kernb(Fl) for Kern.(F), the

If we substitute R, for R
N B e

proofs of Theorems 1.4, 1.6, 1.8, and 1.9 go through exactly as before

and we state the dual theorems which are obtained,

Theorem 1.4D

If RN has finite rank r there exists a partition m = (nl, orayp nr)
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on V(A) and an integer valued function g(i,m) such that wiA(c) e

g(i,o)
i=1,2, ..., 71 o€ L.
Theoren 1,6D
et U= (L A - A i=1,2, ooy 0 and x Ry y»> then
Xel*
for any z € I*
‘ i
UA(z) [ﬁ\ Kern. (F”) and there exists V 2 subspace of R"
i=1
such that for any = € ¢
(i) Ur{g)cC V
N i
(ii) VA(e) ¢ V.C () Kern.(F")
i=1
Theorem 1,8D
R.. is non-trivia’ <==3 (3V) a subspac: of R" such that
N, ;
(i) v< { | Kern, (I)
i=1
(ii) V is invariant under A(o) Yo € F
(iii) A(x) = A(y) + H where Hi Y
scne Hi #0
Theorem 1.9D
Ry is non-trivia® ==} there exists a sub .2 ¥ such that the symbol

N

matrices A(c) : o € I be reducible for the same change of basis for V
i.e. there exists a lincar transformation W from the state basis S to
a basis for V such that

basis for V

,/';ﬂ..‘.s
A 0
1
-1 ,
W "A{o)W =
o .C
A2 Ag




where O denotes a block of all zeroes the sane size for all symbols 1 and
N .
P 1

V< ) Kern,(F7)
i=l

Yxample 2.3.

We extend Example 1.2 to illustrate Theorems 2.4, 2.5 and 1.8D.

N
<{(0> 0y, p, 0, =p, 0)}) £ m Kern, 5"

n=1

for any finite N,

Nots that in thig case that the classes of RF are also the classes

of RNf Hence we can replace the output from any state of the machine in
Figure 1.2 with a random device possessing the same {irst N central moments

as the probabilistic sequential machine. Let us compute the var.rnces.

2
Dy = (3/10, 1710, 1/10, 0. 0, 0) /100 - (8.6)°

s O

0
5
1
4
1
4

= 8§ 84

Likewise, we get

A .
vp (0} = 1.44
,( 1y = 09

A
4,001} = .09

v, (10) =09,
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u‘;(u) = (0, 0, 9/40, 0, 31/40, 0) [100\ - (1.0)°
25
1
4
1
4
= 0.0
¥5(010) = (0, 0, 21/320, 0, 11/320, 72/80) [100\ - 3.6.
25
1
4
]
4
= 0.0
w5 (0101) = (72/80, 0, 53/1280, 0, 75/1280, 0) [100\ - (9.1)°
25
1
4
1
4

= 7,29
A machine A' which has the same expectation and variance for each
string and deterministic switching will be constructed using random out-

put devices symbolized by

S' ¢ e,V

attached to states S' which supply random numbers with mean e aud
variance V.

The machine A', shown in Figure 2.1, is the machine of Example 1.2
with the outputs connected to random devices such as the above rather

than deterministic outputs,



4]

1 \\\\\\\\\\\\\ O |
4 1.1, 09
1

K:j is the initial state of A’

Figure 2.1 Input-state calculable machine A' which has the same

e M e e e

expectation and variance for all strings as probabilistic machine

A of Example 1.2,



CHAPTER 3
THE NOTION OF INDISTINGUISHABILITY AS A CRITERION
OF BEHAVIORAL EQUIVALENCE

Suppose probabilisitic sequential machines A and A' are behaviorally
equivalent in an intuitive sense., Taking into consideration how machines
are built and repaired, one would expect them to be interchangeable as
submachines of any larger machine. Indistinguishability of two machines
in any machine into which they can be plugged is a strong criterion,
the ramifications of which will be investigated, The following example
of Arnold [1964] illustrates how the notion of distribution equivalence,
;D’ fails to meet the interchangeability requirement.

3.1 EXAMPLE OF TWO DISTRIBUTION EQUIVALENT MACHINES WHICH ARE NOT INTER-
CHANGEABLE AS COMPONENTS OF A MACHINE

>
I

L= <1 A0), A, ) D

>
H

5= I, Ay(0), A1), FyD

where 12 = 115 D '1

0 1/2 1/2 0 0

0 0 0 1 0
A(0) = A1) = |0 0 0 0 1

0 0 0 0 1

0 0 0 0 1

0

Fyo= (1) I, = (1, 0, 0, 0, 0)

1

0

0 1/2 1/2 0 0

0 0 0 1/2 1/2
A (0) = A, (1) = |0 0o 0 1/2 172

0 0 0 0 1

0 0 0 0 1

42
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Machines A, and Az happen to be independent of the input i.e, are

1
Markov provesses since A1(0) = Al(l) and AZ(O) = Az(l)e

TABLE 3.1
COMPARISON OF MACHINES Al AND A2
X EAl(x) IlAl(x) EAZ(X) IzAz(x)
o (,0,0,0,0) o (1, 0,0, 0,0)
0orl /2 (0, 1/2, 1/2, 0, 0) 1/2 (0, 1/2, 1/2, 0, 0)

00, 01, 10 or 11 172 (0, 0, 0, 1/2, 1/2) 1/2 (0, 0, 0, 1/2, 1/2)

all x: %g(x) 23 0 (0, 0, 0, 0, 0) o (0, 0, 0, 0, 0)

Table 3.1 establishes that A1 2 A,. Later a machine will be shown

which behaves differently with A1 as a submachine than it does with A,

as a submachine even though the state behaviors of A, and A, are Markov

1

processes.

Definition 3,1: A —> B denotes the machine obtained from plugging

the output of A into the input of B, subject to the provision that

the input symbols of B include the output symbols of A,

Definition 3.2: The set of tapes accepted by machine A with cutpoint )

written T(A,A): T(A,A) = {x : EA(x) > A}

Definition 3.,3: A and A' are tape equivalent machines, written A = Af

if for some specified M and A,

T(ADAIJ = T(Avﬁ)‘z)
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Definition 3.,4: A and A’ are tape indistinguishable for a class of

machines if
T(A~C, 4} = T(A'+C,2)
for all » and C ¢ Ci
The ciass C could be something more special than finite deterministic

or probabilistic automata, e.g. the class of definite automata,

Theorem 3.1

If probabilistic sequential machines A and A’ are distribution equi-
valent they are not necessarily tape-indistinguishable for the class of
finite deterministic automata,

Proof: (by example): Let C be a finite deterministic machine which
accepts 01, 10 with probability 1 and all other tapes with probability 0.

We tabulate the expzctations of Al » C and A2 » C in Table 3.2,

TABLE 3.2

EXPECTATION OF A1 + C AND A2 + C

FOR STRINGS x OF LENGTH 2.

y P?liy/x) Ey »c( P?ZCY/X)‘ E, ¢
1 1 2 2

00 0 0 1/4 0

01 1/2 1/2 1/4 1/4

10 1/2 1/2 1/4 1/4

11 0 0 1/4 0

Hence T(A1+C9A) # T(A2+C$k) for any » ¢ (1/2, 1/4). The reason for this
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difference is that the conditional probabil:ties of outrut random
variables differ for A] and Azq For example,

Prob. {o; (01)
1

u

1}

i
<

£

1 given 0: (1) =
™
While

prob. {0% (01) = 1} = 1/2 given 0} (1)
Ay Ay

113

i
(el

1]

For probabilistic sequential machines A and A'Yy if for all finite
deterministic machines C and any cutpoint ¢
T(A>C,2) = T(A'»C,))
= A =R Al
Proof: Suppose EA(x) # EA,(x) for some tape x of length k., Without
loss of generality pick EA(x) > EA,(x)D Since the rationals are dense in
the reals, let Ao be a rational such that EA(x) > lc > EA,(x)D Let C be
a deterministic machine which beginning at time k computes the number
ikmxc where ik is the input at time k, Since Ac is rational C needs only
a finite number of states, C accepts the string x iff ik*kc > 0, which
can be done in a finite number of steps.
X € T(B+C,Ac) iff EBQC(X) 2 AC
but since C is deterministic
X € T(B+C5Ac1 iff EB(x) 2 Ay

hence let B = A and B = A

X € T(A+C9xc) and x ¢ T(A'*C,Ac)

T(A*CCAC) # T(AV+C9AC)
By logical equivalence we have shown for the class C of finite
deterministic machines

(M) Q) [T(AC,2) = TA'C,0)] = () [E,(x) = E,,(x)]
0. E. D,



By the example presented in Theorem 3.1 we know the converse is not true,

3.2 A MORE SATISFACTORY TECHNICAL NOTION OF INDISTINGUISHABILITY

The example at the beginning of this section shows that machine
equivalences such as =, equivalence and even distribution equivalence, =ps
break down under composition of machines.

To obtain a more satisfactory definition of behavioral equivalence,
the conditional probability structure of probabilistic sequential machines
must be explored. A stronger concept oF equivalence, called indistin-
guishability, based upon equality for the two machines of the probabili-
ries of all possible output strings given all possible input strings will
be formulated; following the development of Carlyle [1961].

In what follows it is assumed that I contains a string of onc symbol

A so that A(A) = E(n)ythe n-dimensional matrix identity.

Definition 3.5: The conditional probability for a sequence of outputs

Y = ¥Ypeee¥y given a sequence of inputs x = Gleeel starting from an

initial distribution II = (Hl, Hz, SN Hn) of a machine A will be written
A
PLO/X)

or if the machine involved is clear from context, just Pn(y/x). Table 3.2
shows how machines A1 and A2 differ with respect to Definition 3.5,

The symbols of the output alphabet are real numbers which occur as
components of the output column vector F, i.e. the output alphabet Y can

be written

n
Y = \J (F,}

i=1
As usual, the set of all finite sequences of symbols from Y will be

denoted by Y* .
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Definition 3 6: The probability of a sequence of transitions S; #8; +isa98,
A RS .

with output sequence y because of input sequence x will be written

Y s
ls:l s hy (J/x?
: ;

Definition 3.7: The conditional probability transition matrix A(yi/c) is

formed from A(c) by zeroing out all columns except those corresponding to
states with output Yie More formally,

Let

in = {j 3 Fy = y;b vy e¥

and let Qyi be the matrix with [Qyi]j § =1 for j e Jy and [Qy =0
R .
. i
otherwise, Then A(yi/o) = A(o)le y; € Y, o € £, Note that

i
Ik,

[A(yk/o)]iﬁj is just pSi+Sj(yk/c)°

Remark 3.6: Let y ¢ Y*, x € L¥, y; € Y, o ¢ I such that 2g(y) = 2g(x).
Then
Alyy;/x0) = A(y/x)A(y;/0)
By definition [A(yyi/x°)]zbm is PSR*Sm(yyi/xo)
For any state Sk

P (yy;/x0) = Pg o (y/x)P (y;/0)
S£+Sm i Sﬁ Sk Sk—>Sm i

Since transitions to different states Sk are mutually exclusive events
ﬁi
Po Lo (yy;/x0) = P (y/x)P (y;/0)
Sl Sm i =1 Sz»Sk Sk+Sm i

using the definitions again

=]

[y /x0)], | = g:l AG/0], A/
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or in matrix form
Alyy /xo) = A(y/x)A(y,/9)
Hence the conditional probability transition matrices for output
strings given input strings can be generated by the conditional probability
transition matr:ices for output symbols given input symbols, analogous to

the case for the transition matrices A(X).

Remark 3.7. Given initial distribution over states [I. the probability

T T e A e

of gerting output string y from input string x is just

. n
o\ < T ~ .
Poylx) = > LA/
h j=1 i=1 7 »J

with U = ;j We ¢can write

P/ = 1aGy/xu

Remark 3.8: We note the following identity

LRI e ST

A NTOOA A
Pq{y/x) =, Vo{yy/%0) for all 5 ¢ @
i Ty i 1
yit
since
<A o -
214 Pniyyéfxo) ® HA(y/x)a(yi/o)U
y.cY - yi eY
LS

WO/X D Al /U = TAGY/OA@)U
v,eY
1

[}

But for any n x n stochastic row matrix C
CU = U
Hence

TA(y/x)A(0)U = TA(y/x)U = Pg(y/x)
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Definition 3,8: The terminal distribution 1*(y/x) for a sequence of

outputs y given inputs x (assuming Pﬁ(y/x) > 0)

MA(y/x,

S ¢7£3])

The i’th component of II*(y/x) is the probability of being in state i
after input string x has occurred and output string y has been observed.

The following identity holds whenever Pg(y/x) > 0,

A A A
Pn(yyi/xa) = Pn(y/x)Pn*(y/x)(yi/o) y; € Y, oel Xxegl* yelVY?*

Definition 3.9: Machines A and A’ are indistinguishable written A 1 AY if

‘ 0
PR (y/x) = PR, (/%) ¥x e E¥, Wy e Y4
The concept of indistinguishability for machines depends on observ-
able identity when both machines are started from their initial state dis-

tributions.

o

Definition 3.10; Machines A and A' are kuindistinguishable if

¢
PRy/x) = oo xe @™, yem" for m=0.1, ..k

Definition 3.ii: In a machine A, two initial state distributions I and &

are indistinguishable if

Py/x = Ph/x Wy ey vxe s

Definition 3. 12: I[n a machine A, two initial state distributions Il and X

are k-indistinguishable if

P = Mo vxe @5 vy e 0F

Checking whether the indistinguishability definition (3.9) for
machines or for initial distributions (3.11) holds using only the defini-

tions involves calculation of an unbounded sequence of conditional
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probabilities, In the next section is shown a bound for the length of
strings whose probabilities need to be calculated, If n is the number
of states, then only strings of length n=1 or less need be considered
in establishing indistinguishability.
3.3 THE RELATIONSHIP BETWEEN THE INTUITIVE AND TECHNICAL CONCEPTS OF
INDISTINGUISHABILITY
We have yet to relate the intuitive notion of indistinguishability
to the technical Definition 3,9, The next theorem shows that two machines
indistinguishable in the technical sense are indeed indistinguishable
when plugged into C, any finite state probabilistic or deterministic
machine. Since C has a finite number of states, it is assumed that finite
strings of Z = C(Y*‘)D the random variable taking on values of strings of
outputs of C given strings of inputs from the random variable Y, depend

only on finite strings Y,

Theorem 3.4
Let C* be the class of finite state probabilistic and deterministic
sequential machines. TFor any C ¢ C*

if A EI A" then A » C EI A" » C

Proof: For any fixed value y of the output string random variable of

As Y,

A+C, . A C
Py (2 = COYX) = PL(y/x)P (2 = C(y)/Y)
since the occurence of different y are disjoint events, for all y e Y*:

Lge(y) = age (X}«

AC, 5
PG s ey = L

v o) P /St = con/y)
ye( et

Since Z and Z' range over the same set and the indistinguishability
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of A and A’
A Al
P(y/x) = Pnu(y/x)

So for all x ¢ £* and all z ¢ Yz

]
P§¢C(Z = C(y)/x) = P§0¢C

(z = C(y}/x)

which means A+C and A’+C are indistinguishable.

Q- E. D.

Since the machine C might igﬁore its inputs, it is clear that
the converse to Theorem 3.4 does not hold.

The criterion of interchangeability as a submachine has lead us to
= asa behavioral equivalence for probabilistic sequential machines.
The equivalence =, is well known as an equivalence between communication
channels. The other kinds of equivalences discussed are equally valid for
channels with numerically coded outputs.

The relationship between the equivalences Zpe Spr ye Ipe and %1
can be summarized in the following schematic way:

A ED A“\

N,

X4

= [ = 0 - = 9
A‘NA ;.;ﬁ;'sA_EA —-_—‘éA-TA

Ny

A\Y

EHE

A A’

I
As we have seen in previous chapters, the concepts of behavioral
equivalence for probabilistic machines analogous to those of deterministic
machine theory depend on the device being modeled. Consequently, applica-
tions of probabilistic sequential machines to new domains are likely

to suggest new kinds of behavioral equivalences.



CHAPTER 4

FINITE COMPLETE SETS OF INVARIANTS TFOR THE BEHAVIORAL

EQUIVALENCES Frs Iye AND EI AND THE REDUCTION

CONGRUENCE RELATIONS RF AND RN

The results of the previous chanters involve relations defined over
all finite strings of the input alphabet. In this section are found bounds
for the length of strings necessary to consider in order to decide whether

two e¢lements of the domains of the relations are in the same class.

Definition 4,1: A set of functions £ = {fl' P fm} is a set of

invariants for the relation R if for all x and y in the domain of R
ny==n>fi(x) = fi(Y) i=1, ;o0, m
The set of functions 21 is a complete set of invariants if
ny<::>fi(x) = fi(y) i=1, .,.,m
We exhibit sets of functions which are invariants for the above

relations, A set of functions which are invariant over R. and R

are:
&

N
Y= B
f(Agl,z)(X’ LA(xz)

for all z; 2g(z) i, foralll ¢ S

#

o A N
Foan, oy B0 = uylxad

While for the relation BT the set of functions below is a set of invariants:
g(x y}(A) = Pg(y/x) for all x and y; 2gi{x) = sg(y) < i
9
Likewise the set

h(xgl)(A) = E,(x) for all x: 2g(x) s 1

. A,
n(xar)(A) = ur(x) for r=2, ..., N

is a set of invariants for the relations EY and swq
. i

It is clear that for an unbounded i, the above are complete sets of
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invariants, However, in what follows a finite value of i will be found
for each of these cases, In the case of EE the bound will be the same
as the well known Moore bound for deterministic automata but in the case

of EN it will be lower for most machines, The main tool used in find-

ing the various values of i is the following simple lemma.
4,1 THE FUNDAMENTAL LEMMA

Lemma 4,1
Given an n-dimensional vector space V, a finite set T = {Ti} where

each Ti € VxV is a linear transformation on V and some finite set of

vectors VOC V such that dim <VO> =1 > 1,
Define
MO = V0
M, = {VO-Ti : T, €T, Vv € VO}
Moo= {v eT, +ooT, T, , eee, T. €T, v, €V}
k 0 11 1k 11 i 0 0
and let

i
Ly = UM
=0
Then there exists an integer J(T) such that
Q) Ly = Lymye
(ii) Lk-l g; Lk for k < J(T)
(iii) J(T) < ner

Proof: LO C L1 Cesa C Li Ceoes C Lk as a consequence of the defini-

tion, The sequence {dim Lj}';.a“_z0 is bounded above by n, the dimension of V,



Call J{I} the smallest index Kk such that L1 = | Showing that

+1 k°
: R T I . . . .
vae sequence {din L;r;:ﬂ) is strictly increasing requires that for all
j+1 < J(T)
L':'f'l # Lj‘*‘?: L_i+1 ?é LJ

which is logically equivalent to
b1 7 by = Lo = by
Hence it is sufficient to show
b CLy =Ly Clyg
Assume
%+chj

W.L.G. pick

But

w=v.«T, ,..T, e L
i i

0 1 j+1

jtl

So there is a finite set of indices I = {i} of a spanning set U' for Li

' »
Ut = {vO T

'.T 'osaT i i € I}
1 1 1
B1 BZ Br.

such that T < j and constants <y

W o= Z_A Ci (VO'I'Bic @ c'r‘%i )

iel 1 i
50
vieweT, o= Le (vpTpie e Tpi Ty ) e by
j+2 1 T j*l -
1.€,



Now consider the zoquence of dimensions

dinm L., dim L wes e dim L, o
1 I‘,” L ]9 A % r}(’-[)

since

T - r

N A iry < [} I ant 5 .. .
Ky kel for kel g J(T). dim L}, < diwm i,

Noting that
dim LO = r, dim L0 +J(M) ¢ dim L

which gives

J(T) e N - 7T

4.2 A BOUND FOR TESTING FOR MEMBERSHEP IN EI

Theorem 4.1

I1£f & is a probabilistic sequential machine with n states, thun
(n-1)-indistinguishability of initial distributions = and n' is
sufficient to guarantee indistinguishability of initial distributions
7 and 7',

Proof: Using Lemma 4.1 let

1 \‘.

V

it

{u} = \ : / and dim (V> =1
N,/ i
\\7

T = {A(yi/U) Py € Y, 6 € 5}

I, = ’
Vo' Ty A(yi/a)U
by the lc¢mma.
For any string x = ilvcﬁiri: for r' finite, A(y/x)U can be expressed as
Aly/x)U = }:: ciA(yBiuécyBi /C.1e000.1 JU (*)
iel 1 s 1 I

1
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with

r, sn=-=1 for i:c1, ypi € Y, 0,;¢L (fork=1, ..., ri)
k Ik

llence for initial distributions = and =°

1

A o A
PH(y/x) DA(y/x)U = /| CiHA(yBi“““yBi /0.4 ncji Ju
) o

iel 1 1 r

Let

<
i

k3 2 i’ —-—
= Ypico Vi and x = 0,
‘ r,

> cipgcyl/xl) with 2g(y") = 2g(x") s n - 1

A \
Pr(y/x)
icl

multiplying («) by n' gives

A i, 1
Z;; Cipnv(y /x7)

By the assumption of (n-l)-indistinguishability for m and n°

4

o v/x)

A1, i A 1,1, i i
Prly /x7) = Pro(y/x7) 2g(x7) = 2g(y") < n -1
Hence
A A
pﬁ ()’/ Xj" = PH [} (}’/X)

Q. E. D.

4,3 EQUIVALENCE OF DISTRIBUTIONS IN ONE MACHINE
Using Lemma 4.1, we can make effective the definition of the rela=

tions Rp and Ry of Chapter 2, A bound will be obtained on the lengths

of strings necded for deciding whether x and y are in the same congruence

class,

Definition 4.2: Distributions m and A are expectation equivalent for

A
a machine A, written = ~ h, if 7 A(X)F = A(X)F X & L*

L

Definition 4.3: Distributions = and A are K-expectation equivalent for




A

a machine A, written ﬂ?ﬂdg if

MA(x)F = M(X)F X e I*: 0 < 2g(x) <K

Theorem 4.2 (Generalization of the result of Yaz [1964])

S A LT

If A is a probabilistic sequential machine with n states and if =
and % are n=2 equivalent distributions of A then

A
~

£ A

i)
Proof: We use the elementary fact that for any constant c

MA(X)T = A(X)F & TA(X)F + ¢ = M(X)F + ¢ Vx ¢ T*

Since NA(x) and XA(x) are stochastic

1 1
= TAX)[F + cfs]| 1 = ME[F+c|:]] Vx ¢ I*
1 1

If all the entries of F are equal, then all distributions are expecta-

tion equivalent. If at least two of the entries of F are not equal, then

1
{F> # (F+c E >o Let A' be a machine differing from A only in that
1
1
F' = F + ¢ E . Suppose we experiment with A and A' simultaneously. No
1

new information is obtained, i.e. distributions are expectation equiva-
lent for A iff they are expectation equivalent for A', However, if we
comp:te a bound for the two machine experiment using Lemma 4,1, the bound
will be lower than would have been obtained from an experiment on A alone.
Since the results of the two experiments are identical, the lower bound

applies to A also.

Vo= (F, F+c dim <VO> = 2

P OO e
L]

T = {A(c): 0 € L} VyoTy = AR)V
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By Lemma 4.1, therc is a finite set of indices J of vectors A(xj)vJ

LN

with Vngo with tg(x.}) zn = 2 such that for an arbitrary x € I* there

are constants cj $0 that

rY

A(x)F c.A(x. Vj
(x) J%J(J)

which reduces to

where c¢' is a constant,

zz: C.A(X.)F + ¢!
jed 3 ]

P c oo

Multiplying by the initial distributions gives:

TA(XF = ) c.TA(x)F + c!
I

M(X)F = E:Z C.A(x.)F + ¢!
Sz

(n=2)=-expectation equivalence gives

n

HA(xj)F AA(xj)F

SO MA(X)F

A (x)F

Qo Eo De

4.4 BOUNDS FOR TESTING FOR MEMBERSHIP IN EE AND RE

Definition 4.4: The abstract join of probabilistic sequential machines

A= {n,A(0),.0A(k=1),F)> with n states and A' = {A,A'(0),...A' (k=1),F">
with nf states is the abstract n + n' state machine A® written

A® = APA' = (, A®(0),...A®(k-1),F®>
where

i 0

MQ) = Tr

and
F
F® = (F'

m and » can be embedded in the n + n' dimensional space as
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n' zeroes n zeroes
o N, R W

p \ N

'"‘B = (Tf.) l09 660y 0) }\\B = (09 vaoop Og ;‘\«)
The problem of deciding whether two machines A and A' are expectation
equivalent:

TA(X)F = A" (x)F Vi ¢ £*
is logically equivalent to deciding when n® and n® are equivalent in
A®A" ) i.,e, whether
AGA?

e~ e
™k

Hence following Caryle [1961], we use Theorem 4,2 to state

Remark 4.1:
AeA’ ABAY
e ~ e < w“‘fzé A where K = n + n' - 2

which gives the following theorem,

Theorem 4.3

Let A and A’ be probabilistic sequential machines having n and n'
states respectively,

Then a necessary and sufficient condition that A and A' are cxpecta-
tion equivalent:

[TA(z)F = aAA'(2)F'  Vz ¢ I*] &= [nA(X)F = M'(x)F' V¥x: 2g(x) s n+n'-2]

Theorem 4.3 makes the experimental determination of expectation equiva-
lence possible provided the number of states of each machine is known.,
Furthermore, it gives a bound on the process of finding whether two strings
are in the same equivalence class under the reduction relation RE of

Chapter 1. This result is summarized in the following theorem.

Theorem 4.4
Strings x and y are in the same equivalence class under the reduction
relation Rg of an n state probabilistic sequential machine A if and only if
EA(xz) = EA(yz) for all strings z: 2g(z) ¢n -2 and all I € S,
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Proof;
AR N S

x Rg yg;z;EA(xz) = EA(yz) for all z € T*, for all I ¢ S

== IA(X)A(z)F = IA(y)A(2)F
Let m = IA(x) and x = IA(y)

= A (Z)T = AA(Z)T Yz ¢ £*
By Theorem 4.2 and its obvious converse, we get

TA(X) Héiﬂ IA(Y)

which gives the theorem,
4.5 BOUNDS TOR TESTING FOR MEMBERSHIP IN o AND RM

Definition 4.5: n_ = the independence number of an n state machine A

F

with output vector F:
ny o= din (AFD 1= 1, 2, o, 0
It follows from vector space arguments that
n, = # {Fk H Fk # 0} where # is the cardinality
operator on sets,

The independence number is just the dimension of the space generater
by powers of the components of the output vector F. For a Rabin automata
n, = 1 and all central moments reduce to polynominals in what we may
consider the first '"central moment" EA(x)° In general, if the independence

then for all x in I*, the (nF+l)'st central moment uﬁ *l(x)
r.

number is Nps

reduces to a polynomial in the lower central moments since

np+1

Mh G0 = TAG) TP v 0

where Q(x) is a polynomial in which IA(x)(Fi), i=1, ..., n, occur,

Hence
nl"f N
W) = A 5 e (PN ¢ Q)
n.+l1 = 1 ~

F
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since ng is the dimension of the space <(F1) ti=1, 2, ..., n>>
ng :
= ) ¢ IAX) (F1) + Q(x)

i=1

Theorem 4.5
Let A be a probabilistic sequential machine with output vector F

and n states. Then for any r ¢ n_ and strings x and y in 5*:

T

gkA(xz) = E, (y2) i ;EA(xz') = E,(yz') ]
LA A 3 A
uy(x2) = uj(y2) I CORRWED

¢ ’ \ €

) Vz ¢ L* f . vYz' ¢ 4g(z') < ne-r-p

A A A A

uo(xz) = u(yz) | v (x2') = u (yz')

where p = 0 if € <IF, (Fz), so0y (Fr)}>, p = 1 otherwise,

— o 0o

Pquf:

Let V! = {F, 2, oo, (FT))

1
v if] e )
V01f° s<0>
1
VO =
1
Vék) E otherwise
1
1
The reason for the inclusion of . in VO here is the same as in
1

Theorem 4,2, ice, for i = 1, 2, 464, T

& > 6 et

IA) (FY) = A Py es A [(FY) + c|+ | 1 = A [(FY) + ¢

et o o o Pt
—

1

Hence the dimension of <VO>- is either r or r+l, We will call it
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r+p where p is defined in the statement of the theorem

dim {V, > =r+p where T <np

{Ti} = {A(1) : i€ L}

For any v, ¢ <:V0 > there exist constants Cy such that (defining (F°) =
T K
VT, = A()v, = 2;; ¢ AGE) (F)

£
Consider any string
z: 2g(z) = m® finite
Then there exists a spanning set A(xj)v0 with j ¢ J and constants cj(vo)

so that

\;—. ° <
A(z)v, o cj(vo),A(xj)vo lg(x)) $m-1-p

Let v, range over the (Fl) i = py 00, T and multiply by m and A

M@ E) = ) e (MG T n <r
: jed J J J
M@ E = e (POME)F D) ny e

jed

Since

n, ni;
nA(xj)(F ) AA(xj)(F J) by assumption

A (F) = A ()
That is, the moments about zero from m and X are equal if they are equal
for all strings of length < n-r-p., Let m = IA(X) and A = IA(y). Then we
have for any z and any initial distribution

IA(xz)(Fi) = IA(yz)(Fi) i=p, soes T
holds if and only if for i = p, .0, T

AGxz) (F) = TAQyz) (7))
for all strings z' of length less than or equal to n-r-p. Noting by

Theorem 2.4 (equation (2)) that any central moment uz(x) is a recursive

bt & GO ped
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function of IA(X) (F), seey IA(x)(Fm) the result is established.
Q. Le Do

Corollary 4.5 (Bound for testing the-relation R,)

Let A be a probabilistic sequential machine with n states and with

Ngng. xRyy &= for all strings z' : 2g(z') < n=Nep

F

. Y = [ 1

E,(xz') = E,(yz")

A A

My (x27) = u2(yZ')>
’ for all 1 € S
Aoy o A

iy (x2') = gzt |

Where p = 0 if e {r, (Fz), couy (FN)E> , P = 1 otherwise,

i L N e

Theorem 4,6 (Finite sct of invariants for EV)
I S S AN i
Suppose A and A' are probabilistic sequential machines having
n and n' states respectively
1
! 2 T
. s e ]
0if {¢| € <3F , (F9 )y so0ey (F )£>
1
let p = where
ring+ng, - {y ey e Y/Y" and y # 0}
1 otherwise

For any initial distribution 7 of A and any initial distribution

A of AT
T . -
: "y = F '
EA(x ) LA,(x )
A t A' ! L ¥ < t
uz(x ) = Wy (x') Vx': 2g(x') £ n+nter-p
Az AT o= -
AV
uﬁ(X') = u. (x") |

Proof: Construct A® = A®A' and let VO in Lemma 4.1 be
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1
F F n+n’ }\ / / x
Vé = {(FJ g wavy (F@n+n9 }oif 3} a‘y6> or else V“ L)< > otherwise .
' 1\
! ul
ni = dim (Vg >
n% = §:(eY or HeY') and y # 0 and FEYIY?)
= np#npo=#{§ FeYOY' andy # 0}

Using Lemma 4.1 and an argument like the one in Theorem 4.4 establishes
the theorem.

Q. E. D,
4.6 DISCUSSION OF THE GENERALIZATION OF THE MOORE BOUND

Corollary 4.6

Let A and A be n=state deterministic machines with two-valued
output alphabet Y = Y’ = {1,2}, Then A and A' are indistinguishable for
all strings if they are indistinguishable for all strings of length at
most 2n-2.

Proof: In Theorem 4.6 we have n.@ = 2+2-2 = 2 and p = 0 so that

r < 2, For deterministic machines, indistinguishability reduces to

(x) = FA {x) for all x ¢ £* and also

. A Al
E\(x) = By (X)) == 1,(x) = 1,y(x)
Hence the right side of Theorem 4.6 gives the result,

Q. E. D,

Theorem 4,6 can be rezarded as a generalization of the Moore result
[1956] to probabilistic machines with arbitrary rather than binary output
alphabets. Note that Moore's bound is 2n-1 since he considers the initial
output as part of the experiment. We consider the initial outputs when

considering strings of length 1 since the symbol A has identity symbol



matrix.

The vole of the zero outnut symbol in Theerem 4,6 is a siznificant
departure from Moore's deterministic results. In order to get » = 0 in
Corollary 4.6 we used a two-valued outvut set {1,2} rather than {0.1} with
the implicit assumption that such recoding of output symbols cannot
affect indistinguishability between deterministic machines. Without

the vecoding, p = 1 and the bound is still the Moore bound.



CHAPTER 5

ON A FINITE COMPLETE SET OF INVARIANTS FOR TAPE EQUIVALENCE =

5.0 INTRODUCTION

Rabin [1964] and Paz [1964] have shown that some probabilistic auto=
mata can accept nonregular sets. Consequently an experiment unbounded
in length may be needed to determine whether two arbitrary probabilistic
sequential machines accept the same set of tapes. Only for certain classes
of machines do the results of a bounded experiment provide a finite
complete set of invariants for o

In this chapter will be found finite experiments for determining
whether iy holds and hence a finite complete set of invariants for two
special classes of machines. Part I deals with machines with isolated
cutpoints, Rabin has proven that an isclated cutpoint machine accepts
the same set of tapes as some finite deterministic machine. This property
makes such machines very special and in Part II we seek a more generally
defined class of machines

Part Il contains a sufficient condition for the existence of
a finite bound on experiments for deciding whther i holds, A class of
probabilistic machines will be presented which have a larger bound on

experimentation than isolated cutpoint machines.

PART I, ISOLATED CUTPOINT MACHINES

Definition 5.1: For a probabilistic sequential machine A, a cutpoint A is

isolated if there exists a § > 0, called the separation such that

2

E (x) = 2l 26 for all x in I*

Ki
The concept of isolated cutpoint was developed by Rabin [1964] to

resolve the problem of being able to decide statistically whether a machine

66
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with random switching accepts a given tape, The number of sample runs
necessary to determine whether a tape x is accepted (for any fixed proba-
bility of being correct) depends on the difference between the expecta-
tion of the tape EA(x) and the cutpoint A. But the expectations EA(x) are
not known beforehand. However the assumption of a uniform bound for
the difference between the expectation of any tape and the cutpoint
provides a bound on the number of trial runs dependent only on the proba-
bility that the decision be correct.

No finite characterization of isolated cutpoint machines has appeared
in the literature. However it is extremely easy to construct examples

of such machines,

5.1 THE RABIN REDUCTION THEOREM

Rabin proved [1964] that any set of tapes accepted by an n-state
probabilistic automaton with isolated cutpoint A and separation § > 0
also can be accepted by some deterministic machine D with no more than ny

states where
np s (P
Paz [1964] sharpened the bound to

1.n-1

n ﬁfg)

p s (I+

A similar situation holds for probabilistic sequential machines.
In order to prepare results for the next section, the bound will be
established using two theorems. The proof of the first theorem is exactly
analogous to a portion of the proof of the Rabin reduction theorem,

(Theorem 3, Rabin [1964]) and the improvement made by Paz [1964].

Theorem Soi

Let A be a probabilistic sequential machine with n states, If
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. IS R . P .
e {e s 1 =1, ..., ki is any set of distributions of A such that there
exist strings zij so that
iAj : 140 i i
teA(z, ,)F - ¢ A(Zii)“‘ > §
for all i # j; i, i =1, 2, .., k

then

d.n-1

k¢ 1 += where d = max(F,) - min(F.)
0 i i R |

i i A .
Proof: Let ¢  and e’ be in E, Write

Y ]

hence

5o
< |(e’-¢ )A(Lij}Fl

(o]

(o2

J_ i o).
- |(el'e1)r1 *ooa. ¥ n en)rnl (1)

Following Paz [1964], we rewrite the sum as two parts:

"%*-3

; ~ i1 St i i
s K““~w,)r & (ef-e, )1, + (e;=-e; )T
et o el g%f- k%K) Tk

where the sets of indices ave

P
+
i
e
o=
~
©

We note thet

. . — . . n
S ed iy ST pdiady o S L
) (elee) v ) (eleey = ) el - ) e
2 O < A = B =

. \ i i .
But since e” and ¢  are stochastic

Hi
[
£
[
I
-

Hence o . -

(2)

-~
~—
o
o

¥

[
P

g
H

13

~—
[
=
1

o
b oall =]
Nt
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Since all terms on the left are positive and all on the right

are negative - . =

‘w ' J % o |

el = ) Je)e]]

keK* kk EEi* kok

¥rom which we get
i
T .

$_IEek«okl =22 ei=ef (3)
k=1 keK*

Using (1) and the above rewriting we get

I o1y, el
ko) Tk ! 2;%_(ek eyl

ing I = F, .= min(F,
Letting }max mix( 1)9 len min(rl)

since A(zii) is a stochastic matrix

+
~
(b
(D

/

- J_olyp
© = |ZZ:+(ek € Fnax

keK kekK=
using (2)
. i, . |
5 < 'Z;<~+(ek &) (F )
. el
= ksK*(e ek)| IFmax Fminl
s 3 ledreyl (= Pug)
kek* ax
so we get (excluding the trivial case where F = F . )
max min

el
ekt (Frax = Fin)

By (3)

28
2 e e i = [e =e 2 (4)

max min

From this point on the proof of Rabin [1964] will be paraphrased.
Note that the '"6'" used in (1) is the same as '"2§" for Rabin so our results

are superficially different. Using an argument invoiving volumes of sects
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in n-dimensional space, a bound on k will be deduced. Let d = F -~ F .
max min
Define the set o i=1, ..., k by
soo= {(ey, vauy ) | el ce., j =1, cu., m; ﬁﬂ (e.uei) = é&
! A I 1N i~y ? P 4 j d

j=1

] . i
Each o, is the set o translated by e : 1 =1, ,.,,, k where:
: .

, ; . $
O‘é‘{(ei‘) ¢o 00 er‘;) I Osegnglg 2860y ngzeg‘:‘a“-}

J
The set ¢ is @n n-1 dimensional simplex contained in the hyperplane

Kb e X E %w The n-1 dimensional volume, V _,(0) of o, is
, S n-1 . .
Vnnl(ﬁ) = c(ﬁq where ¢ is a constant with respect to §.

Since the e’ : i = 1, «.., k are all stochastic, we get

é .
(elg vy en)sci::$ z&;ei =1 + T 0 < ej i =1, ;00
i=

Hence each ¢, £ t where

o= {(e'l'9 ch o e;) ] E&:e; =1 4 %@ 0 < eV i=1, ..., n}
i=1

We show that the 9 have no interior points in common,
A point e = (e19 sway en)eoi is an interior point of oy (in the topology
of the hyperplane Xpd oo b x = 1+ %J if and only if
0<e_ =ce p=1l, ..., n

Suppose o, and Gj have a point e in common:

i j . .
0<e .e, O0<e_ =-c¢ p=1lg ..oomn 147

p - p p_p
e; .ed = {ep - e;) - {fp - c:) p=1l, ..., n
le” - eil <le - el| + e - e;| p=1l, .c0,n



i

T Y Tty 3

;glyef L ﬁéis&ﬁ B ;ﬁiiin U
which contradicts equation (4 Hence 9. and J, (1 # i) have no interior
points in common
Consequently
Vnal(g} Pt vﬂMTCSk) < Vnn](T)
Hence
ckcgjn&l cc (14 %q““l
So
k(e ™!

Q( Eﬁ D\"

We are now ready to prove the adaptation of the Rabin reduction theorem

to probabilistic sequential machines.

Theorem 5.2 (Reduction theorem for probabilistic sequential machines)
Let A be an n state probabilistic machine having isolated cutpoint
A with separation §. Then there exists a deterministic machine D with n,
states such that
T(A,A) = T(D)

Proof: We define RT' the congruence relation induced by T(A,A) by:
X RT y if xz € T(A,2) < yz € T(A;}) Yz ¢ T*
Let Xpe ooy Xy oo be a set of distinct representatives of
the classes of RTc

Since X5 b? xj i#j (where 54 is the negation of the relation

RT) there exists z ¢ I* (W.L.G.) such that
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NP 2 4 TAGRG2)F <)

Because + is an isolated cutpoint of A

IA(xiz)F = A+ 83 IA(sz)F £ A =6

Since A i3 a macline

IA(xi)A(z)F > A+ 8 IA(xj)A(z)F 2k =8

hence for each pair of classes 1 and j there is a z so that

I(IA{xi) - IA(xj))A(z)FI > 26

By Theorem 5.1, there are at most k distinct distributions IA(xi)

[N

v 4 nel :
wheve k £ (1 + w0 . If two representatives of classes of RT have
3

the same distribution it follows immediately that the representatives

are in the same RT class, Consecquently there are at most (1 + 5%'nml

¢lasses of RTﬂ Since RT has finite rank and is almost by definition

Cra

a right congruence relation, Theorem 2 of Rabin § Scott [1959] applies
and there exists a finite deterministic machine D such that
TD) = T(A, ).

Q. E. D.

5.2 A FINTTE SET OF INVARTANTS ¥FOR ET “OR PROBABILISTIC SEQUENTIAL

MACHINES HAVING ISGLATED CUTPOINTS.
It is now possible to writc down a bound on the length of strings

required for determining whether . holds between two probabilistic

T
sequential machines having isolated cutpoints,
Theorem 5.3

Let A and A' be probabilistic sequential machines having n and n'f
states, isolated cutpoints 2 and A', and separations § and 8', respective-

ly, then A e At e,



T(A,4) = T(A",A) if and only if x e T(A,\) & x ¢ T(A',})

Yx £ I* ¢ 2g(X) <p

where
d.n-1 d' o'l . ,
p < (1455 o (1 + =p) with d = [maxF, - minF,|
and d' = |maxF! - minF!|
i 1 i1 1

Proof: By Theorem 5.2 there are deterministic machines D and D'

such that
T(A,2) = T(D)
T(A',A') = T(D")
and
d.n-1
mp s (L3
d* n'-1
e £ L+ 5w

By Theorem 10 of Rabin and Scott [1959], two deterministic automata
are inequivalent by % if and only if there is a tape x of length less
than the product of the number of internal states of the two automata
accepted by one machine but not by the other,
Hence
T(D) = T(D') iff for all x in £* such that 2g(x) < Ny My,
x € T(D) &= x ¢ T(D")

Substitution of T(A,1) and T(A',A') into the above gives the theorem.

Q. E. D.



PART II. A CLASS OF MACHINES CONTAINING
ISOLATED CUTPOINT MACHINES

5.3 THE STABILITY CONGRUENCE RELATION

Definition 5,2: An input string x is stable for a pair of machines

Aand A if x e T(A))) & x e T(A',1).,

e

Definition 5.3: The stable set for A and A', written S(A,AY):

S(A,A') = {x : x is a stable tape for A and A'}

Note that S{A,A") = T(A,A}:T(A',A) U [S* = T(A,)]N[Z* - T(A',N)].

Lgamma 5,1 S(!\[}Aq) = ¥ &= A ET Al
Proof: Suppose S(A,A') = E*, Then for all x e I*:

x € T{A;A) &> x & T(A",1) which is just the definition of A =_ A?,

T
If A r A", for all x ¢ I*;: x £ T(A, )&= x € T(A',)) which implies x € S(A,A'),

Definition 5.,4: The stability right congruence relation RS(A,A"):

X RS(AQA") y iff Vz € IL*: xz € S(A,A")& yz € S(A,AY)

We remark that RS(A,A°) is the right congruence relation induced by
S(A,A"). If it is clear in context, RS(A”A“) will be abbreviated to Rso Rs
has only one class if A S A', since by Lemma 5.1 the stable set consists of
all possible finite input sequences and is hence closed under extensions,
However, if A = A’ does not hold, Rs may have several congruence classes
which represent, intuitively, distinct ways that the machines A and A' can

be unstable,

5.4 A SUFFICIENT CONDITION FOR A FINITE COMPLETE SET OF INVARIANTS FOR =5

Theorem 5.4 (Sufficient conditior for a finite experiment for deciding
whether 2 holds.,)
i{f the rank of RS(APA“) = r, finite, then
A Er AV &= [¥x e Z*: 2g.(X) s 15 x € S(A,A")]

Proof: We first show that Rs refines the set * - S(A,A'), Since

A e B*, we set z = A which gives

74
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x Roy =[x € S(A;A") ==y ¢ S(A,A")]
Logical equivalence gives
X Rs y == [X £ S(AJAY) =y £ S(ALA")]
which means that RS refines I* - S(A,A"), i.e.,
xRy == [x € % = S(AA )=y = 2% = S'ALAYY]
Using Thedrem 2 of Rabin and Scott [1959], Z*/Rs = D is a finite deter-

ministic machine such that T(D), the set of tapes accepted by D, is just

the set I* - S(A,A7) ie. D =(R_[A], {R[x]}, M, 7>

Where
RQ[A] is the initial state of D
Rs[x] is the state set of D. #{Rs[x]} = Rank R_ = r
M is the transition function of D: M(Rs[x],c) = Rs[xo]

~

7 is the set of final states of D: L = {Rs[x] 2 X € I* = S(A,A")}

Note that
x £ T(D) = x € S(AAY) (%)
Theorem 7 of Rabin and Scott [1959] tells us that T(D) is empty iff D

rejects all strings whose lengths are at most the number of states of D,

Symbolically we have:
TD) = ¢ & [Vx ¢ T*: 4g.(x) < r; x £ T(D)]
Using (+) we obtain
T(D) = o & [Vx e I* ; 2g.(X) < 1; x € S(A,AY)] (x%)
But T(D) = I* - S(A,A') = & <==I* = S(A,AY),
Hence by (%)

I* = S(AA ) == [Vx € T*: 2g.(X) < 1; X € S(A,AY)]
From Lemma 5.1 and the above equivalence
Az A" ==[¥x € I*: g, (X) < 1; x € S(AAY)], 0. E, D,

The converse to Theorem 5.4 does not hold, Even though the rank of Rs
is infinite, there might be a finite string which shows that A = A' does not
hold, Let us now seek propertics of pairs of machines which cause the rank
of RS(ADAE) to be finite,

5,5 EXPERIMENTS WITH MACHINES

Let us formalize what is usually meant by experiments with
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a machine to make later definitions more precise,

Definition 5.5: An experiment on the r machines A(l) A using

) LR ]

the input set T = {xl, o0y Xps sse} Written T(A(l), cony A(r), \) is a table:

Xl x2 a0 XI’( P
(A o
. ﬂ A2 E T S
A0 bl bY L. by .
where b = 1 if (8,08 (xj)F(S) > A x €T
=0 if I(S)A(S)(xj)F(s) < A S =1, 450, T

An experiment is finite if T is finite,

Definition 5.6: A simultaneous experiment on the machines A(l), cooy A(r)

using the input sets of tapes Tl’ sany Tm’ written

1 r)
T1 X T2 X os0 X Tm(A( ), csoy A( ), A)

is a table of m experiments

r,a®, ..., A 3

o
Ll
9

ne. (r)
T AT, ey AT, )

In what follows we will not make use of the concept of simultaneous
experiment, but have included it here for the sake of generality. In
particular, we will consider an experiment with two tapes xz and yz on
the two machines A and A’ which will be written according to the nota-

tion of Definition 5.5 as {xz,yz}(A,A*,)).
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5.6 THE MINORITY PROPERTY

Definition 5.7: A machine A is in the minority for an experiment

{xz,yz}(A,A",1) if the experiment yields

Xz yz Xz yz

A 0 1 A: 1 0
or

A': 0 0 A': 0 0

or else a complement event of the above occurs.

Xz yz X2 yz

A: 1 0 A: 0 1
or

A': 1 1 A 1 1

5.7 THE BALANCE PROPERTY
A property of two machines will be defined which leads to a finite
test for e

Definition 5.8: Machines A and A' have the balance property if for all

X € I* and those y € I* such that ~x RS(A,A') y either:

(i) There are strings z and z' such that A is in the minority for
the experiment {xz,yz}(A,A',1) and A' is in the minority for
the experiment {xz°,yz'}(A,A',1).

or else

(ii) There is an experiment {xzz,yzz}(A,A',A) which yields

Xz, Yz,
A: 0 1
At 1 0
or the complement
Xz, Yz,
A: 1 0



78

Note that condition (i) specifically rules out the case when only one
machine ever is in the minority; i.e., there are at least two distinct z's
such that xz « S(A,A"} = yz ¢ S(A,A"). Condition (ii)} allows just one 2y

to cause A and A’ to accept one continuation and reject the other for both

x and y.

Example 5,1: Machines A and A’ which have the balance property.

Suppose we consider a mod 2 counter and a mod 3 counter connected
together by means of a 3 state buffer, Two of the states of the buffer serve
as a channel for carrying information between the counters. However, one of
the states in the buffer is a sink. Fach time the buffer is entered or left
there 1s nrobability ¢ that the machine will enter the sink state which has
output cqual to the cutpoint. Conscquently we view the entry to the sink as
a breakdown of the machine which causes it to accept all subsequent tapes.

In general the cutpoints for the machines will not be isolated.

Figure 5.1 shows the machines A and A’ which are nearly isomorphic as far
as state transitions are concerned. The 0 symbol of the counters and
most other loops have been deleted from the diagram.

A and A' are each started in an initial state rather than a distri-
bution over the states. so that input strings cause distributions with only
two positive components. One component will be the probability of being in
the sink or absorbing state and the other (initially much larger) will be
the probability of being in some other state, Tape acceptance depends only
on this ister state since we will assume F(sink) = 0 and the cutpoint A = 0,
llence in this case it is sufficient to consider all pairs of stutcs rather
than all pairs of accessible distributic - in an experiment to find out
whether the balance property holds. Witi a minor change in the notation
for an experiment to point out this simplification, we summarize a sequence

of experiments in Table 5.1
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1,b,U

A's :
y | | ?
fhe Q=0d®) | gt |0 ¥
\\ /’b\ | /u

U (1-e) (V)

A: 1

legygy — 1 1Y

_Figure 5,1: Transition diagrams fcr maciiecs A and A' which have the
balance property. St:tus left of the center linc have
outputs greater than ¢r equal to the cutpoint; states on the
right have outputs loss than the cutpoint. Most loons are
omitted from the above graphs to simplify them; hence if the
graph leaves the transition of a state undefined for a part-
icular symbol the reader may assume a loop has been deleted.
The symbols are read as: U— un, D—down, 1—one. Note that
"up' has a different orientation for the two machines.
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Table 5.1 A sequence of experiments which shows that the balance property
holds for A and A", The strings x and y of the definition
of the balance property are replaced by states (which are the
responses to the inmuts x and y other than the sink state),

Accepted Strings:

Machine states , i “j
A | DD11U v
(1) | 1 ; 1
(2 i 0 g 1
E. ; :
Lo |
(1) 1 0
(2") | 1 .§ 1
A , 1DDI11U 1uvu
(1) ; 1 1
(2) | 0 1
Ezz .
A (17) | 1 | 1
(3" 1 0
A ; DD11U 110U
(4 i 1 1
(2) * 0 1
E ;
3 A (2") 1 0
(3 : 1 1
A (3) ;u51ng substrlngs of {u51ng same strings
those for (1) and (2) | as for (1) and (2)
! ;or with the initial
4) % - symbol removed
Ey - :
Af Any accepted
states

Rejected strings:

Z, ? Z,
, i ' J
A | 1UU DDl Uy
(6) 0 | i
(7) 1 1
Ec: = e
A U VA | 0 1
(8") | g 0
A | U " DD11UU
(6) 1 | 1
(8) 0 1
E ¢ =
O A ) 0 0
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5.8 THE CONCEPT OF STABILITY NEAR THE CUTPOINT

As we have seen above, it is a straightforward task to find a finite
bound on the length of experiments needed to determine whether two
machines are equivalent by = when the machines both have isolated cut-
points, There is an apparently large class of machines which may have
non-isolated cutpoints for which a bound can be found, Although the cut«
points are not necessarily isolated for this class of machines, special

properties will be required of them,

Definition 5.,9: Machines A and A' are stable when closer than S to

the cutpoint A, if for any x in I*:

Either EA(x) or EA,(x) in the open interval (A-6,X+8)=x € T(A,\)e=x € T(A',)).
When Definition 5.9 holds, we sometimes will just say that "A and

A' are stable near the cutpoint" with the § understood in context,
Clearly isolated cutpoint machines are special cases of those

machines stable close to the cutpoint, But what properties of isolated

cutpoint machines would we expect machines stable close to the cutpoint

to have? In general it is not true that machines stable near the cutpoint

are tape equivalent to deterministic machines, nor even that there is

a finite set of invariants for Zpe However, for the class of machines

stable near the cutpoint and with the balance property, there is a bound

on experimentation for r analogous to the isolated cutpoint case,

Example 5.2: A class of machines stable near the cutpoint but with
non-isolated cutpoints,
We shall assume that the state descriptions of machines M and M'

can be decomposed into two parts Bl and B2 and Bi and Bé respectively.
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)
/ Bi(0) 0
MY = s b o o 1o L0 0] o#R cerx
‘l\\ A
while
Sin SZ
J
B, (R) 0
M(R) = ¢ BE 0
0 ” L3 L3 o ¢ ¢

The analogous situation holds for M'. Figure 5.2 shows the state

decomposition,

M ‘

- h
\\J» Bl all c ¢ & >(V Bz /{
S, ,,

in

Figure 5.2: Machines of Example 5.2,

Special properties will be imposed on the submachines so that M and

M? will be stable when near the cutpoint. Any state s of a probabilis-

tic sequential machine has an output weight an However, this fact
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will be ignored temporarily in order to define a particular property of

M and M7,

(1)

(ii)

(iii)

(iv)

(v)

Let Sin and S%n be the initial states of the machines under

consideration,

Let B1 and Bi be deterministic,

The only way state transitions can occur from B, to B, is

1 2

via state SO to Szo Likewise, the only way state transitions

can occur from Bi to B% is from Sé to S%D We will require

82 and B% to be started simultaneously in what follows. To

obtain simultaneous arrivals at S, and S!

2 oo We ignore the

outputs and regard B1 and Bi as Rabin-Scott automata with
final states S0 and 86 respectively: Then we need only
T(Bl) = T(Bi)

= ToA
T(BIDA) T(Blgx)
because we have not used the normal outputs.

The submachines B, and B, satisfy

E, (x) = E ,(x) for all x not containing an R
B, B2

That is,

By B

Furthermore, BZ and B“2 are selected so that cutpeint A is

, for the alphabet 7 - {R},

not isolated.

Lastly, the entries of FM and F,,, have the following property:

M?

There is a § > 0 so that

F, > »+ dor F, <A - § where S, is in B.,
i 1 1 1

0
3

FC > A+ 68 or F! <« A = 8§ where S! is in B
i 1 i 1

R Fi <A =6 all S]° in B,
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s X - '3 )
A 8§ ¢ Fi < A =48 all Si in 82

Whenever the state activity of M is in Bys the state activity of
M! is in Bi, The expectations for the submachines B, and Bi are just
the weights attached to the states since these submachines are deter-
ministic; hence

Ey (X) £ (A=8,246)
1

Eyo (X) ¢ (A=85248)

1

The only other possible mode of operation is for the state activity
of M to be in B, and the state activity of M' to be in Bé for which we have:

()\""5) < EM]_(X) = EMi(X) S (}\"'6)

Hence M and M' are stable when close to the non-isolated cutpoint A,
More elaborate examples can be constructed by weakening the above restric-

tions. In particular (ii) and (iii) can be modified easily.

5.9 A FINITE TEST FOR ET FOR MACHINES STABLE NEAR THE CUTPOINT AND

WHICH HAVE THE BALANCE PROPERTY

Theorem 5.5
Let A and A' be probabilistic sequential machines having n, and
n,, states respectively. If A and A' are stable near the cutpoint A

(when closer than &) and have the balance property then

Az A ifVxe P [xe TN & x e TA )]

-1
pca+t o are SN anad

n

(m?x(Fi) - m}n(Fi))

d'

(m?x(Fi) - m%n(F{))

Proof: Let us pick a set of representatives Xio voop Xip oo from
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the congruence classes of the stability congruence relation RS° Then

Xy Ry xj fori#3 1=1,2, 440

Definition 5,10: Given a representative Xy of a congruence class of
RS(A,A'), the pair of distributions (IA(xi),I'A'(xi)) will be called

a canonical distribution pair,

Of course, there is at least one canonical distribution pair for each
representative of a class of Rsa Subject to the hypothesis of the theorem,
it will be shown that there are only a finite number of canonical pairs.

The definition of the balance property (Definition 5.8) leads us to
consider two cases.

Case (i): Suppose part (i) of Definition 5.8 is satisfied., Then for any
representatives of the classes of Rs’ X; and x,, there are strings z and z°'
such that A is in the minority for the experiment {xiz,sz}(A,A",A) and A’
is in the minority for the experiment {xiz',ijV}(A,A',x)°

Without loss of generality, assume that X;2 £ S(A,A') in the experiment
in which A is in the minority., The expectations EA(xiz) and EA,(xiz) must
lie on opposite sides of the interval (A-8,A+8) since A and A' are stable
near the cutpoint. Furthermore, EA(XiZ) must lie on the opposite side of A
from EA(xiz) because A is in the minority, The value of EA(sz) may approach

i but the value of EA(xiz) must be no closer than § to A, Hence
[EA(xiz) - EA(sz)I > 6
which gives by definition
]I«A(xiz)°F - IoA(sz)oFl > 8
Using the property of machines

liaA(xi)eA(z)ﬁF - IoA(xj)aA(z)oFl > 6 (5)
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a similar argument gives:

II'A'(xi)AV(z”)F’ - I'A'(xj)A'(z')F'| 26 (6)
Case (ii): Without loss of generality, assume that IA(xizz)F > A, Then
we must have by definition IA(szz)F < Ay I”A'(xizz)F' < A and
I?A“(szz)F” 2 A, Since A and A’ are stable near the cutpoint, all
expectations above are outside the interval (A-8,A+$8),
Hence

IIA(xizz)F - IA(xJ.zz)FI 228 > 8 (5)*
[T'AY (x2,)F" - I'A'(szz)F'l 226 > 6 (6)°

Consequently, either (5) and (6) hold or (5)' and (6)' hold,

(]

Letting et IA(xi)

o)

IA(xj) and zij = z or z, we observe that Theorem 5.1 applies

2

and the maximal number of distinct distributions IA(xi) of A is

n, -1

dy A
dA s (1 + 39 = kA
and letting
1. o
e I'A (xi)
el = ITAT (x.)
J
and z,, = z' or z
ij 2
Using Theorem 5,1 we get
, n,=1
d’' A
dAv s (1 + —§9 = kA'

Consequently the number of distinct canonical distribution pairs is

Rk We note that dAdA' < kAkA9°

To complete the proof it will be shown that Xy and xj distinct

finite and equal to dAod

representatives implies that

(TA(x,), T'A'(x)))
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and
(IA(x,),I'A" (x.))
J J’
are distinct pairs of distributions,

Assume to the contrary that IA(xi) = IA(xj) and I'A'(xi) = I"A'(xj)u
Multiplying the former equality by A(z)F and the latter by A'(z)F' for
an arbitrary z gives:

IuA(xi)oA(z)F = IA(xj)eA(z)F
I'A'(xi)aA'(z)F' = I'A'(xj)°A'(z)FV
Since A and A' are machines we obtain
IA(xiz)F = IA(sz)F
I'A'(xiz)F' = I°A'(sz)F'

Suppose

v
>

IA(xiz)F > A 6= I'A'(xiz)F' >

Substituting equals for equals we get

v
>

IA(sz)F 2\ = I'A'(sz)F' 2
Which means we have shown that
[IA(xiz)F > A c:;I'A'(xiz)F‘ > A] ==>[IA(sz)F 2 Aé:éI'A'(sz)F' 2 A]
Using Definition 5,3 we get
X,z € S(ALAD = sz e S(A,AY) (%)
Reversing the roles of Xy and xj in the previous argument gives the converse
of (x) so we have for an arbitrary z
X,z € S(AAY &= sz e S(A,AY)
Hence by Definition 5.4
X RS(A,A')Xj
which is a contradiction,
Consequently there are dAadAﬁ classes of RS(A,A'), Theorem 5.4 applies:
A = A' &= [Vx ¢ (Z)dAodA': x € S(A,A")]

k,, and transitivity of implication yields the theorem,

But d,-d,, < k,°k,,

QG EO Do
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5.10 CONCLUSIONS
If the properties of being stable near the cutpoint and having
the balance nroperty imply that a machine has an isolated cutpoint,
then the bound of Theorem 5.5 is not as good as the hound of Theorem 5,3,

If this were the case, instead of a finite sc¢t of invariants for =.. for
]

T
certain probabilistic machines, we would have obtained a very peculiar
behavioral characterization of finite deterministic machines, However
the great richness of the class of probabilistic machines leads

the author to believe that there probably are many such probabilistic
machines whose cutpoints arc non-isolated. The lack of an adequate
characterization of isolated cutpoint machines adds to the difficulty

of proving whether the class of machines of Part I is property contained

in the class of Part II,



CHAPTER 6

=, AND

STABILITY PROBLEMS FOR 5 3y =

6.1 ENUMERATION OF THE BEHAVIORAL EQUIVALENCE CLASS OF A MACHINE

In general a machine may be behaviorally equivalent to a machine
with fewer states, with the same number of states, or with more states.
Some machines behaviorally equivalent to machines with fewer states
will be discussed in Chapter 8. The systematic expansion of a machine
into behaviorally equivalent machines with more states does not appear
in the literature of automata theory. Although the expansions of
a machine are relevant to certain problems such as the decomposition of
machines, they will not be discussed here., This chapter and Chapter 7
will deal with the remaining case: machines behaviorally equivalent to
a given machine and having the same number of states as the given machine.

In order to avoid large differences between machines masked by
the initial distributions, only those equivalences defined for all
initial states will be considered. To justify this strong restriction
consider digital computers to be probabilistic machines. An automaton
state model may compress all the intricacies of a stored program into
a single initial state, e.g., different stored programs correspond to
different initial states., Using such a modecl and defining behavioral
equivalence for two machines from particular initial states makes heteroc-
geneous kinds of computers behaviorally equivalent. For example.
a computer could be in a behavior class with all other computers for
which there are stored programs to do some particular computation. But
behaviorzl equivalence from any initial states requires that the behavior
class contains only those machines which have sets of stored programs

making them interchangeable.

89



90

6.2 THE GENERAL STABILITY PROBLEM

Our goal in this section is to study changes in the switching of
a machine which do not change the behavior class of the machine. There-
fore the output vector F will be kept fixed. Usually we will think of A
as a satisfactory machine and A’ as the machine which A becomes after
some permanent perturbation in switching, Of interest are those A' which

are stable changes, i.e,, behaviorally equivalent to A,

Definition 6.,1: A’ is a ==-stable perturbation of A if

(i) A and A’ have the same number of states.,

(ii) F

F', i.e.,, A and A' have identical output vectors.,

(iii) A = A' for all I € S (where = is a machine equivalence),

Rabin [1964] formulated a stability problem for = However,

T
the Rabin stability problem requires equivalence from fixed initial states
rather than all states, Very few results concerning this problem have
appeared in the literature since it was published more than two years
ago, Progress has been made by Paz [1964] for certain special cases,
Some of the results of Chapter 7 apply to the Rabin problem,

Some of the general properties of the transformations T which map
the machine A into a stable perturbation A’ will be studied. In parti-
cular, those transformations T which map the monoid (A(Z*), < into

the monoid <A“(Z*)9;> such that A = A’ for some machine equivalence

= will be called stability transformations.

When a stability transformation T is applied to symbol matrices,

we obtain by definition:
T(A(1)) = A'(1) ietr

Let x = i, .., 1 i, e s =1, 2, cooy D
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But

AT(x) = A”(il)A"(iz) A Aﬂ(ip)

since A' is a machine, Hence T must be a monoid homorphism preserving
the monoid operation matrix multiplication,

TG d)) = TN AG) LA

= T(ALPTALr 0o T(AL))

Theorem 6,1
The most general form of stability transformation is
T(A{X)) = A(x} + Ex X ¢ L*
where Ex is an n x n "error matrix" with /} (E ) ik = 0 and
k=1

1> ,\(X)Lk + (Ex)ll\ z 0

Proof: Given a machine A and any stable perturbation A" = T(A),

start each machine .n the states S1 = (1, 0y ooy 0}y ¢0u0y S_ = {0, .0vs,y 0, 1)

L]

Let S, = A(x) - S;(TA(X))

X X
1 “(ellg e oy eln)

.

‘(ex X 3
q1% "% “pp’

"

S A(X) - S (TA(x))

Any initial state I is a linear combination of the above basis
state vectors. Let us call E_= ii~e§j|i which is uniquely determined.

The error pattern for distributions over the states from any initial
distribution I can be obtained by I(»EX) = JA(x) - IT{(A(Xx)):

Both T(A(x}) and A(x) are stochastic, so summing over the rows

i (TGN, > (A1, i [E,]
= " 4

1 =14 ii e,

1Y

.,
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Since 1 2 [.!\’(x)]ij = A(x)ij + e.j 2 0 the other part is established,

Qo Ee Do

Computation of the error matrix for a string x from the error

matrices of the symbols of x is given by the next result.

Theorem 6.2

Let T : A—A' be a stability transformation and let

X = il’°°ik ij e L i=1l, .«., Kk
k .
Ex = jEI(A(1j) + Eij) - A(x)
Proof: Ex = A'(x) - A(X)

A“(iloeoik) - A(x)

AV(il)mA'(ik) - A(x)

(A(i.) + E. ) - A(x)
1 15

L]
==

J

Corollary 6,2

Let T : A—>A' be a stability transformation. Then the error
matrix for Xo is specified by the error matrices for x and o by

E._ = E A(o) + A(X)E_ + E_E X e I* cel
X0 X o X'o

The previous two theorems taken together tell us that the most
general form of stability transformation is uniquely determined by
the error matrices of the symbols,

Error matrices for some of the equivalences defined in previous

chapters will be characterized,



6,3 ENUMERATION OF STABLE MACHINES FOR EI’ =, AND EF

Let us first consider indistinguishability 2;. As one might exnect,
those machines which are indistinguishable from every initial state have

closely related symbol matrices,

Theorem 6,3
A’ is a Esttable perturbation of A iff there exists a subspace

i1

V< Kern. 3: such that
‘ (]

\1/
(1) A'(y/o) = A(y/o) + H(y/c) where (H(y/c))i eV, i=1,2, (.., n

(ii) VA(y/o) CV forallyeY, o€l

Proof; (necessity)

i1 1
5;A(y/0) gf = S,A' (y/0) : yeY,cel i=1,2, co0,n
B! 1
Hence
1 1
A(y/o) E = A'(y/o) E yeVY, el
1/ 1

/

The solution of the above equation is a particular solution plus

a kernel:
1 0
; = R I
A'(y/o) = A(y/o) + H(y/c) where H(y/o) c ;
1 0
For strings of length 2 we have
1 1
A(y17,/010,) | o] = A (yyy,/000,) | 2| ¥is¥p €Y, 0),0, €8
1 1

Hence

AQ(Y1Y2/0102) = A(ylyz/clcz) * H2
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where
1, ,0)
2|7
1/ o)
But
= Alyy,/o,0,) ”(yl/cl)A(yz/@z) +
where
H' = A(y,/o0,)H + H, 'H
1910 y,00,) * Ty s v y/o))
Hence
1 1‘ /13
I ¢ ¢
H = H, A @ + HY oo
AR (v /o) V2% | 1] \ ]
\1 V11 1
A
0=H Aly,7o,) | -] + 0
byrop 027D
1/
(1
i.e., H(YI/GI)A(yz/czj £ Kerni{: Vyl,yz e Y Valgcz ¢ L
1
(Sufficiency)

£y
]

Let y = YpeeYp P ¥y € Y be any sequence oi outputs and x = Xpowe X 8 Xy

any sequence of inputs

=

&
-

A (y/x) II[A(Yi/Xi) + H(yi/xi)]

[

i

1

Aly/x) + Auyloﬁcyrxl/xleuﬂxr_l)n(yr/xr) Foook H(yl/xl)A(yzuecyr/xz.aﬂxr)

I3

A(y/x) + ... * (*“‘(”(yl/xl)A(yz/xz)j o Aly /%)
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1
= A(y/x) + H' where (H“)is Kern, E
1
Hence
1 1
Atly/x| s | = A/ s
1 1

By substituting A(x) for A(y/x) and Kern.(Fr), r=1, ..., N, for

1
Kern|{ ° | in the proof of Theorem 6.3, a proof (similar to the proof of
1
Theorem 2.5) of an analogous result is obtained for N Table 6.1
summarizes these results,
Stability Class Condition on Error Matrices
= * = e 9 =
= | A'/o) = Aly/o) + H(Y/o) \Y 3(‘{1{0’/")1' i=1,2, ¢o0, n, ye¥, oeZ}>
1
VeA(y/o) & V C Kern, :
1
5y | A(0) = A(0) + H_ VO My, i=1, 2, ..., n; 0eD)
N
V A(0) ¢ V C [ Kern,(F%)
r=1
= | A0 = Af0) + H Vo {{(Hg) =1, 2, ..., n; oeI
V A(o) € V ¢ Kern, (F)

Table 6,1, Characterization of the error

matrices for 2 Eye and 2

Examgle 6,1

We take the following example from the literature of decomposition



of probabilistic machines.
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Bacon [1964] has a notion of decomposition

which is related to the error matrices of 2L The following example is

due to Bacon but is expressed in our notation,

M= {4, |, {ug, u2}9 M(u;), M(u,), Fyp Oy >

where
F1
FM = Fl

F3

M(ul) = foz 52
i 0 .4
i
| .4 .1
\ezs .25

.3
0
.4

25

Hence by definition Y = {F,,F,}

M(Fl/ul) = /.2 .2
0 .4
.4 1
L2525
A\‘ :l'-
1(Fy/up) ;,3 0
i 0 .3
.08 .12
\
\.06 .14

c o o O

o o o O

o o o O

M(Fs/uz) =

M(uz)

M(FS/ul)

n

« 3
0

008
.06

o o o O

o O O O

\
\

0
<3

.12
.14

o O o O

o O o o

32
. 24

The subspace <{(1, =1, 0, 0}, (0, 0, 1, -1J} > = V is invariant

under all M(Fi/uj) i =

(1,
0,
(1,
0,
1,
(0,
a,
(09

-1, 0,
0, 1
-1, 0
0, 1
-1, 0
0, 1
-1, 0
0, 1

1,

0)
1)
0)
-1)
0)
1)
0)
1)

~

2; §=

M(T /uy)
M(Fl/ul)
M(Fs/ul)
M(Fs/ul)
M(Fl/uz)
M(Fl/uz)
M(Fs/uz)
M(Fs/uz)

1, 2,

1]

1

]

2 (1,
.15(1,
.3 (0,
.15(0,
3 (1,
15Q1,
.7 (0,
,08 (0,

since;

-1,
-1,
0,
0,
-1,

0)
0)
-1)

0)
0)

. 1)

-1)
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Furthermore we note that V C Kern, (F)

1, -1, 0, 0) [Fp\
Fl\;

(0, 0, 1, -1) Fl..\
=0

There seems to be a close relationship between Bacon's definition
of lumpability of a matrix and ours of error matrices of a matrix, We

shall take up this matter again in Chapter 10,

6,4 INVARIANT ERROR MATRICES
Table 6.1 shows that the rows of each error matrix come from
a particular invariant subspace. In the next section, some general
results will be proved about such error matrices., Hence we make the follow-
ing definition in order to discuss error matrices without considering

the kernel in which the invariant subspace is contained.

Definition 6,2: Ho is an invariant error matrix for symbol o of

——

machine A if there is a stochastic matrix A'(o) such that
(1) A'(o) = A(o) + Ho
(ii) There is a subspace V such that
VAV Vo € £ and (Hc)i eV i=1,2, .cop

If there is some symbol o' such that H_ # 0 then there is
a machine A' with symbol matrices {A7(¢) : o € L} such that A' # A,

The simplest invariant subspaces are those of dimension one. Most
of the results of this section will deal with such one dimensional in-

variant subspaces., Recall that a vector v is an eigenvector of matrix
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A with eigenvalue A if v¢A = iv, It is clear that a one dimensional sub-
space invariant under a linear transformation is just all the multiples
of an eigenvector of the transformation,

Definition 6,3: Ho is an eigenerror matrix for symbol g of machine A if

Definition 6,2 holds with the subspace V of part (ii) being one dimensional,

Some symbol matrices give rise to non-zero eigenerrors while other
symbol matrices have only the trivial zero eigenerror. A general theory
which characterizes the existence or non-existence of nontrivial eigenerrors
from elementary properties of the symbol matrices does not exist. The next
few results deal with certain types of machines which help to show

the scope required of a general theory,

Theorem 6,4
Probabilistic sequential machine A has nontrivial eigenerror matrices

for every symbol ¢ if there is a vector v # 0 such that

(i) vA(o) = Rov Vo € I
‘r‘!”’\
(ii) v, =0

(iii) There exist constants K(i,o) not all equal to zero for any o

such that 1 3 A(o)ij + 0

K,. vV, 2
(i,0) 'j

Proof: Construct

K,V

H = .

¢

l\(nw’)v
= A?
A(U)ij + (Hc)ij A (c)ij

A'(0) is a stochastic matrix because of (ii) and (iii) above:
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Furthermore:
Aol o K(l,oz)v
HOZGA(GI) = é all 0,50y € z
Acl s K(n,cz)v
i.e,, (ch)igv = {(v) and [(ch)A(ol)]ieV i=1,2, ;.o, 1

Consequently, by (iii) H0 # 0 for any o, All Hc : 0 € L are invariant
error matrices and are one dimensional by construction,

Q. E. D.

Theorem 6.4 provides a simple method for constructing stable per-
turbations of some machines. Indeed, it was this result which was used
to construct most of the examples of Chapter 1 and Chapter 2.

Cycles are one of the most important features of the state behavior
of machine, There is a relationship for deterministic machines between
cycles in the state behavior and invariant subspaces of the transition
matrices. Hence machines with cycles will now be considered. The next
theorem, with the aid of the following lemma, shows that the only eigen-
error of a symbol which causes a deterministic cycle of all the states is
the trivial zero eigenerror, On the other hand, Example 6,2 shows that
symbols causing deterministic cycles which do not involve all the states

may have nontrivial eigenerrors,

Lemma 6,.1:
EE
Let P be an n x n permutation matrix of the cyclic permutation T

of the indices of the states. The only real eigenvectors of P are

n

\ (Vl' coay Vl) if XP = +1 and

\Y (Vl’ “’Vlg s99p Vl, “‘Vl) if )\P = =] and n iS even,

Proof: Since P is a permutation matrix, the real eigenvalues of
L
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P are +#1 and -1.
Case (i) A o= o+1
viP)" = v r=1, 2, 565, N+l
which gives
Ve = V.0 2V 2 .0 % ,,, =
i n(i) nz(l)

izlg 2» (l()’)bn

1, 2, ,.., n there is some j such that HJ(i) = k hence

i

For each k

VBV, E e Vo
Case (ii) AP = -]

Wi (DY r=1,2, ..., 0+l

i.e. V. ® Voo B V9.0 B Lo (el)nv i\ TV

FTeR i n{ij n=(i) ‘ m(i) i

If n is odd we get v o= oevy o= 0, But if n is even

v = (VI‘ =Vys soss Vi -vl)

Theorem 6.5

Let A be a machine with 3 states or more such that there is a symbol ¢
so that A(c) is a cyclic permutation of ail the states. Then A{c) has no
(nontrivial) eigenerror matrix,

Proof: Suppose to the contrary that A(o} has eigernvrror matrix g,

The rows of HU must be multiples of some ei-unvecior v ie.

L!i {1 o6 O \ v \
H = 7 * ° °
3 : ° . 5
o
¢ d v
n

In order for HG to be nonzero, we require some div #0and v # (0,.4.,90),
Since (Hc)i is invariant under each symbol matrix, it is also

invariant under A{o):

e e o
\H ) Alo) = d; (VA(e)) = d.a oV
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That is, v is an eigenvector of A(¢). But by Lemma 6.1, the only non-
trivial real eigenvectors of A(c) are
v = (vl,OGO,vl) if Ac = ]
' = - a0 e - if R - i .
v (vl, VisesaaVis Vl) if Ao 1 and n is even
The vector v can not serve as an eigenerror since for constant c
n
ZZ:cvj = cnvy # 0 for vy #0
j=1
The vector di,v' has n/2 negative components if vy # 0. Hence adding
this nonzerc vector to row i' of A(g) causes at least n/2-1 negative entries
in the corresponding row of A'(g) so that A'(g) is not stochastic, which
is a contradiction,

Q. E. D,

Examnle 6,2

A symbol which causes cycles whose lengths are shorter than the number

of states may possess non-trivial eigenerrors,

Let A(K) ={0 1 0

A, =1, A, =1, A, = -1

Let the subspace associated with 1 be Ul’ with -1 be U-l'

s
—
i
-~
<
<
#

= (V1,~V2,+V1)}

)
—
[l
—~—
<
<
[§

= (Vl, 0.”\/1)}

For rows 1 and 3 there are no eigenerrors from the space U1° However,

there can be eigenerrors from the space U 1°



» () i3 by definitvion

b
.
13
it
—t
[
st
*»
o~
<
t
3
[
S’
[a—
%
=
[y
v

an ¢leonorror Tov coe boand «csv 15 oan edsencrioy for vow 3 for U < ¢

is an eigenerror pattern for row I,
However Ul 3\ U‘l = ¢ (0, 0, 0)} as is5 the case in general for

the spaces associated with eigenvectors of different eigenvalues,
Hence we can have cigenerror patterns of either

(1 !

AY(K)y =A(K) + |0 0 0

or

AR) =AY ¢ (o, <2y pyl L2 2py20
!

0 0 0

Nete that the fixed point S2 has the e¢igenerror pattern of

3

¢ is possible that this is true in general,

the positive cisonvalue,

¥

but ncither a genceral proof nor a counter-examnle has been found.

6.5 STABILITY TRANSFORMATIONS WHIG!T PRESERVE TIHE BEHAVIOR OF EIGENSTATES
Suprase T : & —> A' is a staiility transformation which maps

the stochastic cicenvector v ¢f Al.y into v', i.e., v _T(A(e)) = v',
& 9 Y 5t ) I e

Thus while machine & stays in distribution v, for input sequences

¢’ ,r = i, 2, ..., machine A' will travel through a trajectory cf dis-
. . U o e :

tributicuns vg(lAgw}) , =1, 2, ... ienc: only for certain types of

equivalerces betweon machines can A and A' be equivalent; i.e.,

: . . . T .
the behavior of the trajectory VUA'LU ) + ¢£=1, 2, .., must be cqui-

valent to that of the distribution Vo Let us formalize this concept,
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Definition 6,4: A stochastic vector v, is an eigenstate for input o

of machine A if vGA(o) =V for some o ¢ I,

Definition 6.,5¢: The machine ﬁ_started igwinitial distribution I will

be written <},A\>a

Definition 6.,6: A stability transformation T : A — A' is eigenstate

behavior preserving for behavioral equivalence = if for all eigenstates

v_of A
o

vy Aty 2 G AV(eT), A r=1,2, ..,

Theorem 6.6
If any stability transformation T : A—> A' preserves =\ i.e,
T(A(o)) = A'(0) = A(c) + Ho o€l
where H = {(H)i 2 i=1,2, oo, n: VYoeI}
and there is a space V such that
N )
HCVC( )Kern. (F5)
k=1
VeA(o) C V
then T is eigenstate behavior preserving for N
Proof:
v0 A(o) = vU
vy AT = v = v AGT)
By Table 6,1 and Theorem 6,2
Vs A'(orx) =V, [A(orx) + H(er)]

where

[kl(crx)]iev iﬂtl’ 2’ oeo,n

r
Vs A(o™x) + V0 H(er)
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multiplying by (FJ} i j ¢k 2N gives
A (oTx) (P AloTx) () j
v A' (o x}(F7) = Vg A(o"x) (F7) + VG(”(er)(F })

N
since He V C (\\Kerno(FL)
k=1

13

v, AGTx) (7))

(v, AR ()

i3

oy ()
v, AR

! Al
Sincz uh(x) = wy () by Table 6.1, we get for any j

A
-

= v_ A'(x)(F)
bo}
we have

(v, MDA () = v A (F) T=1,2, . N

A
o
1A

which gives

(vg At (oT), AD 2 <v0, A

=

Theorem 6.7

O Y

If :ny stability transformation T : . —> A' preserves 210 iee,

T(A(y/0)) = A'(y/o) = A(y/o) + He cel,yeY

y/o)

where H = {{(ll

). ti=1,2, oo, n; YoeI, VyeVY}d

i

(y/o)

and there is a space V such that

¢ VC Kern,

bt o O pud

VA(y/o) ¢V
Then 1 is elgenstate behavior preserving for EIo
Eﬁggﬁ Suppose v0 A(0) = vo_

Let y range over all output sequences of length r; i.e. ¥y ¢ (Y)rn
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+

Vg A?(yw/ofx) = vo[A(yw/orx) HY for all w € y*, x ¢ I* and some H'
depending on yw and o x.

Summing over each side

;E:j v A'(yw/orx)
ye(MT © ye(Y)

]

T §
r[v0 A(yw/o x) + VoH ]

1

ZZ:; g A"(y/or)A”(w/x) [v A(y/or)A(w/x) + v H']
yeMT ° ye()T ¢ o

Noting that

:E:: Aly/o) = A(eT)

ye(Y)T

since if y = €Y (Y)r&l

y = ypyi yi yp €
then

Y Avp/eN = Y A ) AGy/e)
ypyiE(Y) ype(Y) yeY
r-1
= A(y /o~ ")A(0)
ypeTl P

Continuing the process (or using a formal induction) we get
the result,

Hence we obtain

(vy AT (™A' (W/x) = v, AGHAW/X) + v H"

where H" = ;z: H?

ye(Y)T
= r "
v, A(o) A(W/X) + VUH
= "
v, A(w/x) + VoH
1
multiplying by § and noting that H is closed under addition we get
1

1
(v, AT @A W/X)| ¢ | = v AW/x)
1

+ v H"
g

— 0 0 o =
b D B O P
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1
= vg A(w/X) E
1
By definstion
At : A
iv wo (W/XY = P/
(\'*“ 1'“\' (61') ) ("\/)“/ ‘\.(1 x)

v

But the transformation T is a stability transformation for any initial
state == which here implies any initial distributien.

Al A

P (w = P (w/x

Vc( /x) Vg /x)

So by transitivity of equality we get

A P U
Pv. arery 078 = Ty 07

which means

<‘Vﬁ l‘\'(cr)g AV EI <V09 S

which shows thot the stability transformation T is eigenstate behavicy

preserving,

(‘QD'E’J I)n



CHAPTER 7

ON THE STABILITY PROBLEM FOR TAPE EQUIVALENCE =

7.1 INTRODUCTION

Suppose malfunctions cause permanent changes in the symbol matrices
of a machine A, producing a machine A' where

A'(o) = A{o) + EU cel

As in Chapter 6, E; will be called the "error matrix™ or "error
pattern'" for the symbol o, The stability problem for r considered here
involves characterizing those E  so that for any initial state distribu-
tion, the set of tapes accepted is unchanged. Results which are true
for any initial state are certainly true for particular initial states;

hence the results of this chapter imply certain facts relevant to

the Rabin problem. Usually such facts will be presented as corollaries,

Definition 7,1: A’ is a A-stable perturbation of A if Definition 6,1

holds for S and A = ',
Aithough we are interested in A-stable perturbations of a machine,
when a result holds for unequal cutpoints, i.e., A # A7, it will be

proved for the general cutpoint case,

7.2 FARKAS' LEMMA AND TAPE ACCEPTANCE FOR NONSINGULAR MACHINES

Definition 7,2: A string x of inputs to a probabilistic szquential

machine A is backward deterministic if knowing x begins at time t-2g(x)

and the distribution at time t, then the distribution at time t-2g(x)
can be deduced,

The notion of backward determinism has been discussed by Burks
[1957] for the deterministic case, This definition is equivalent to

requiring the matrices of the symbols which occur in x to be nonsingular,

107
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1f all o ¢ ¢ are backward deterministic, the machine A will be called
"backward deterministic’” or more frequently '‘nonsingular".

Farkas® lemma is widely used in the study of convex sets and
linear programming, For backward deterministic input strings for pro-
babilistic sequential machines, it gives a necessary and sufficient
condition that they will be accepted, A nonhomogeneous form of Farkas'

lemma (Thrall and Tornheim, Vector Spaces and Matrices, pp. 291-292,

Theorems 11,4 C and D) will be used. The theorem will be quoted from
Thrall and Tornheim and then restricted to our application using nota-
tion appropriate to the stability problem,

"Theorem 11,4 D, Let A be an m-by-n matrix, let & be a vector in V;
(m-dimensional column space), let k be a scalar, and suppose that there

. . T . .
is at least one vector ¢ in Vn (n-dimensional row space) such that

AP 2 6 (1)
Then a vector o in V; will satisfy the condition a¢ 2 k for all ¢ that
satisfy (1) if and only if there exists a vector y 2 0 in V; such that
o = yA and y§ 2 k."

To appiy Farkas’ lemma to probabilistic machines, the above nota-
tion will be changed and simplifications made, Restricing o to the set
of n-dimensional stochastic vectors, we replace it by I, F replaces §
while A replaces k, Only matrices A whose inverses are stochastic
matrices describing the state transitions of a machine will be considered,
hence A is replaced by A(x)“’lc

Note that A(x)’1¢ > F has the solution ¢ = A(x)F which permits
simplification of the statement of the lemma. In addition, y = IA(X)
is stochastic since I and A(x) are stochastic, Farkas' lemma can now

be restated about nonsingular switching matrices of probabilistic
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machines which gives a necessary and sufficient condition for tapc

acceptance,

Theorem 7.1
Let A(x) be an n=by-n nonsingular stochastic matrix. Let F and ¢
be n-dimensional column vectors, let A be a scalar (such that )\ < m?x(Fi)
to avoid trivial cases). Then an n-dimensional stochastic vector I
will satisfy the condition I¢ 2 A for all ¢ such that A(x)“l¢ 2 F if and
only if there exists a stochastic vector y such that y = IA(x) and
IA(X)F 2 A,
The theorem can be restated in the following symbolic form:
Te (I ¢ Ip 2 2} & IAXF 2 A < x € T(A,N)
b :
peK(A(x) 71, T)
where

K(A(x)algF) = {¢ : A(x)&1¢ > I'} which is a convex set,

Example 7,1 The convex set K(A(x)&lkF)

Let A(x) = j1/2 1/2 0 F= |F
0 1/2 1/2 F2
0 0 1 Fq

At g2 2

0 2 -1 ;

0 0 1

KIAG)"1,F] = all ¢ = (4, 6y, ¢5) such that

209y = 200y * 03

v
o]
—

2°¢2 - ¢3 2 FZ

05 2

v
k)
(3}
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Solving the above incqualities pives:
0, 2 Fp v Ty

FZ*FS

s S e

>
kv

¢3

by

Fs

Fixire 7.1 shows K(A(x)ﬂlsF) for this case.

iy ¢2
~ /1
IS ‘ v ¢
1 ~ F2+F3 - 3
“ 2 -
. -
~.
.,
N F
r1+r2 0 3

Tiguse 7.1, K(A(x)”l,F) of Example 7.1 is the positive
orthant with the rectangular solid removed.

7.3 A NECESSARY AND SUFFICIENT CONDITION FOR A-STABILITY FOR NON-
SINGULAR MACHINES

Theorem 7.2 (Stability result)

o e Lo L

Let A and A' be nonsingular probabilistic sequential machines both
with initial distribution I.
[TCA,>: = T(A',1") ¥I e S*] ify [“){1 : 1o > A} = {“\{1 . I¢ 2 A'} Vx & I¥
¢g§(A(x)'1,F) ¢2§(A'(x)'l,F')
Proofs Using the synbelic formulation of Theorem 7.1

x e T(A) & le DAL 1¢ » AZ
"
¢sK(A(x)*1,F)
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x = TAATAY) e Tef {1 I¢ 2 A"}
BATERED
Assuming that
T(A,)) = T(A',A") VI ¢ S*
gives the necessary and sufficient condition
VX & I* ¢ (‘}11 : 1¢ > A} = (*\{I : I¢ > A"}
(A(x) sF) eK(A“CX) F')

Q. E. D,

Corollary 7.2 ({Application to the Rabin stability problem)

Let A and A* be nonsingular probabilistic sequential machines with
initial distributions I and I' respectively.
T(AA) = T(A, M) [Te(){I ¢ I 2 M}&ST'e (”\{1 : 1¢ > A} for all x ¢ £*]
¢2K(A(X) ¢€k(A'CX) F')
7.4 A SPECIAL CLASS OF STABILITY TRANSEORMATIONS FOR NONSINGULAR MACHINES
Theorem 7.2 is identically true when K(A(x)”l,F) = K(A“(x)wle’)c

Let us investigate the constraints imposed upon the stability trans-

formation T : A » A' by this equality, assuming as well that F = F'.

Theorem 7.3

L 4 ¢ ST SR

KA LR = K7L R AT = AG)T
where (i) L is a permutation matrix
(1i) (nx)F =

Proof: We establish the theorem by showing a series of lemmas.

B

Lemma 7.1

Let A and B be n x n matrices

K(A,F) = {¢ ¢ Ap 2 F}

K

K(B,F) = {¢ : B¢ > F}

]
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and T

K(A,F) = K(B,F) iff there exist non-negative matrices FA B

such that

(i) A= YBB

B = PAA

(ii) FAF F

v

1‘BF >

Proof: If K(A,F) € K(B,F) then for all ¢ in K(A,F) : [A¢ 2 F=>B¢ 3 F]

W
-

Let Bi = i'th row of B Fi = i'th row of F i=1,2, (s n
Then the above becomes:

[Ad 2 F= Bi¢ 2 Fi] for all ¢ € K(A,F) i=1,2, ..., n
We use Farkas' lemma for each i getting:

r Ed o
gyisvn HE

i 2 0 and (1) yiF 2 Fi

i=1. 2’ 606.“
(2) Bi = YiA

Rewriting the above in matrix notation where

Y; = the i'th row of FA we obtain:

There is a matrix ', such that (I‘A)ij 2 0

A

. -
(i) B FAA
(ii)? YAF > F

Now assume K(B,F) ¢ K(A,F). By the same argument we get

there is a matrix T, with (I’B)ij 2 0 such that

B

()" A =T.B

(1i)" TGF 2 F

By (i)', (ii)', (i)", and (ii)" we obtain the necessary part. To
obtain the sufficient part of the lemma, multiply the defining

inequality for K(A,F) by I',, for K(B,F) by I', and use (2).
g B

A’
Q. E. D.
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Lemma 7,2
If A and B are nonsingular

FAFB = En : the n-dimensional matrix identity.

Prcof:

B=TrA=T,(IB) = I,ly=E

Lemma 7°£

For any n x n nonsingular matrix A such that

k=1Ajk= 2: 17= 15 2. “«boy n
then
L(A-l).k=l/z 1-1, 25 obo,n
k=1
Proof: E = A"1A
LRSS n
a1
= AT ()
=1 ik* k]
n A,
' -1
L= ) (B, = Ll Y@ )W,
2 n’ij 531 =1 ik kj
-1 T
=i(A ir 2. (A, .
k=1 S S AL
n
«1
- EZ:(A )ikst
K=1 .
hence
o 1
__,(A )ik=l/2'
k=1
Lemma 7.4

Let A= Ax)"Y B =AY ()]
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then

(ii) FA and PB are stochastic matrices

Proof: By Lemma 7.1

LSt e

ar, > 0 so tlL.at

A
A rAA(x)'1
! ml = ‘1
[A"(x) 7y gz;(PA)ik[A(x) I
] -1 - n I -1
J__;i[A (x) ]ij = ;;; 2;% (7)) ;5 [A(X) ]kj

1

2:1 Jil ()33 G0

n n
NN (™,
J=

= J

By the preceding Lemma 7.3

n
ZEJ [A(x)al]kj = 1 since A(x) is stochastic
=1

.

L =

.

[A'(x)‘l]kj = 1 since A'(x) is stochastic

—

L =1

hence
L .
1= f ; (T )iy i=1,2, .4s,n

since FA 2 0, by definition Ty is a stochastic matrix,

We know by Lemma 7.1 that there exists I'_ > 0 such that

B
Ax)™L = rBA°(x)“1
The same argument gives that
g is stochastic,
By Lemma 7,2 we conclude that

Qo Eo DC—
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The only stochastic matrices whose inverses are stochastic are
permutation matrices.

Proof: Let X be an n x n matrix which is stochastic such that X1
is stochastic,

If X is not a permutation matrix, then some state vector Si must
be mapped by X into a vector with at least two non-zero components,
Assume that (W,L.G.)

(lg O, 9 6agp O)X = (al, a 064 p O)

2!
o = >
Where al + a2 1 | al >0 a2 0
-1
(aln azg Og 400y O)X = (1. 0, coay O) (*)
Let X! = Hxi il
1]

The above equation (*) gives

X = 1

a,x!. + )1

111 *

a, x!, +axl!, =0 i=2 -
%11 T 82%04 p oees M

But 1 2 X%j » 0 because x" is stochastic,

Hence the only solution to the previous equations

i

x} x!o=1, x!, =x}, =0 i =2, o0 N
21 11 S & | 2i ’ >

But this requires that an be of the form

1 () o a a o O

}. 0 ] [ ] a 0
=1

- ; 9 )
X - x31 x32 o L o 9

a < ¢

\ o L3
b SR x!
N1 *n2 ¢ ’ ° ’ nn
which is singular since it has two rows equal, contradicting the non-
singularity of X. Hence X must be a permutation matrix. It is well known

alsc that the inverse of a permutation matrix is a permutation matrix,

Qd Eo Da
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We arc now able to prove the theorenm.

Proof: (of Theorem 7,3) By Lemma 7,1 there exists ', and T', such

A A B
that
OB AN
A" = T
and FBF 2 F pF 2 F
By Lemma 7.4 FB = FA'I and FB and PA are stochastic, Multiplication by

a stochastic matrix preserves a vector inequality, hence
FA(FBF) > FAF

-1
(T Tp)F = (T, I, )F = F

F 2 FAF
but F < FAF
consequently F = PAF

By the same argument F=TF

Q. E, D.

Corollary 7.3a

If A and A' are nonsingular probabilistic sequential machines then
¥x e I KA L,F) = KA () ,F) = forall TeS*: Az A
Proof: Immediate from Theorem 7.3 and the definition of dis-

tribution equivalence.

Corollary 7.3b

Let A and A' be probabilistic sequential machines with string x
backward deterministic for both machines
KA LP) = kA (0™ F) = A = A +H

where His Kern. (F) i=1,2, t60p,n
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Proof:
F = TAF FA = En + H' where Hie Kern,{F) i =1, 2, ses, n
A = A
At (%) = A(x)FA
A'(x) = A(x)(En + H')
A'(x) = A(x) + A(X)H'

But (A(x)H')F = A(x)(H'F) = 0 Hence A(x)H’

1

H where Hie Kern. (F).

Qs Eo Do

Hence the result that Vx e I* K(A(x)‘l,F) K(A'(x)’l,F)

guarantees stability implies the result that A and A' are A-stable if
they are distribution equivalent, Let us try to fird more general con-

ditions on nonsingular machines A and A" such that A Er A,

7.5 POLAR SETS OF VECTORS

If u and v are vectors in the same space, the inrer product of u
and v wil! be written (u,v). Of course, regarding u and v asl xn
matrices we have

(u,v) = uan = vouT

Definition 7,3: Let K be a convex set., The polar set of K, written

K*, is defined as:
K* = {u ; (vyu) 20 for all v ¢ K}
In some definitions of the polar set, < is used in place of > and
the constant may be one rather than zero (Radstrom [19491), The follow-

ing identity holds for any of these definitions of thsz polar set.

Lemma 7.6

AR AT N KIS

If Kl and K2 are sets of points in a vector space V, then
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L* * *
l\lﬂ K = (K1U K,)

Proof: (W.L.G, assume K, and K, are sets of column vectors)

ae (K, U Kz)* = ak 20 forall k ek UK,

=> a*k >0 for k ¢ K1 and ask > 0 for k ¢ K2

N % *

The argument reverses to give the opposite containment,

QB EG DO

Let K be the triangular region shown in Figure 7.2

52

i
K*

|
(-1,+1) | S (0,1)
i
K :
i !
*sl" (1,0 0,0 ‘s

Figure 7.2, Polar set example,

The set K is the region with extreme points (-1,+1), (-1,0) and
(0,1} *¥* is the infinite region bounded by the S2 axis and the line

through {=1,+1) and (0,0).

7.6 TAPE ACCEPTANCE EXPRESSED IN POLAR SET NOTATION
In this section we will show how Theorem 7,2 can be rephrased in

the notation of convex sets using the polar set concept.

Theorem 7.4

T A ST YL LR,

Let x be a backward deterministic string in both A and A':
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1 1\
(xeT(A, A ) XeT (A A1) VIeS*]em [KIAG) ™H Far| £ 10 8* = KA () ™h,Frant| £ 1ot
1 1

xe T(A;)) & IAX)F 2 A

since TA(x) 1is stochastic for all x

E !
TA(X)oA |+ | = AeTA(X) = A
1 1
Hence
1
IA(X)F > A & IA(X)[F = A ] 20
1

which gives

1
x € T(AN) =3 TA(X)[F = Al |] 20
1
Likewise we get for A’
1
X € T(A"A'") == I'A" (X)[F' = A E ] 20
1

In order for the above equations to hold for any initial distribu-

tion I, we use Theorem 7.2 getting

(Yr:tezor = ()10 : 1% 200

WH y ¢

¢sK[A(x)”19F - A< ¢8K{Av(x)'l,p' Y
vl

i o0 o Pt
A

But if we regard I and ¢ as vectors in the same space
I9 2 0 (I,4) 20

Hence translation of the above gives

R 1
K[AG) L, F - A\ 1M s = 1<[A'(x)°1,r~'s -2 1*() s*
1
1 1

Q& Eo Dd
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7.7 STABILITY FOR CERTAIN MACHINES WHICH HAVE SINGUIAR SWITCHING
MATRICES

Definition 7.4: The set of singular switching matrices of a machine A

will be written
Z(A) = {A(o): o £ ¢ and determ. (A(c)) = 0}
For some probabilistic machines A with singular switching matrices

Z(A), the mcthods of Chapter 6 can be used to obtain a machine A' such

that
Z(A') = ¢
while
A= A
E
$0 that

x € T(A,N) & x e T(A',A)

Indeed, Example 1.1 is of this type if we interchange A and A’
i.e., the machine A' has a singular matrix A'(1l) while A(l) is nonsin-
gular.

Hence applying Farkas' lemma to the nonsingular machinc A!
we obtain

x e T(AN) = Te[ {1 1 I > A}

9eK(A' (x) ~,F)

. -1 . .

Thersfore A'(x) ~ nlays the role of the inverse of the sinpular
matrizx A{x). Unfortunately, finding conditions for the cxistence of
a nonsingular machine A' which is expectation equivalent to an arbitrary

machine A contains subproblems concerning invariant error patterns for

A left open in Chapter 6.



CHAPTER 8

MINIMAL PROBABILISTIC SEQUENTIAL MACHINES

This chapter will contrast the properties of ST and 5 with
those of pe The former equivalences lead to minimal machine results
which are similar to those of deterministic machine theory. On the other
hand, the later equivalence requires such disciplines as convex set

theory to discuss minimality, Consequently, such results which can be

obtained represent a departure from deterministic machine theory.

8.1 STATE EQUIVALENCE OF MACHINES
In previous chapters, the same symbolism was used to represent both
abstract, or arbitrary initial distribution machines, and machines with

a fixed initial distribution. In what follows we use <{I,A> to mean

i

the machine A started in initial distribution I. We let = be a machine

equivalence variable ranging over the above equivalences.

Definition 8.1: Machines A and A' are state equivalent for =, written

A =(s) A*. If there is a (possibly multi-valued) function h such that:
S ,A> = @é(i)ﬂ/\ﬂ}f i=1,2, ..., n

and

{81 ) o 2 <S]9,MAV> i''=1, 2, ..., n'

Definition 8.1 requires that for every initial state of A there is
an initial state of A' such that the machines are equivalent and vice-

versa.

8.2 EQUIVALENT STATES OF A MACIIINE
In order to discuss reduction of a machine to a smaller machine,

an equivalence relation on states is needed. They symbol "' will

121
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be used as a state equivalence variable. When "~ is used in a context
we will mean that any one of a designated class of state equivalences

can be substituted for "~ in the context,

Definition 8,2: States Si and Sj of a machine A are equivalent by ~ if

<SioA> = <SJ WA

Hence for =pe Iy and = we have states Si and Sj are equivalent

N

for:

(a) ‘E: Siﬂé Sj¢==$ SiA(z)F = SjA(z)F Vz ¢ L*

B} k k
() =y Sy S5 SAREE) = SA@EF) Vaerr k=1,2, o, N

(€ = S Sj¢==é S,A(y/x) Yy € Y¥, Vx ¢ o*

i = SjA(y/X)

b 2 @ P
bd 0 O @ peed

8.3 STATE AND DISTRIBUTION REDUCTION OF A MACHINE

Merging some of the states of a machine to get a new (perhaps non-
deterministic) machine is a notion from automata theory. For probabil-
istic machines, Carlyle [1961] has noted that a state Si can be "merged"
with a distribution 7 = (nl, ooy T 15 0, Tie1? 0009 ﬂn) over the other
states of the machine, That is, when the machine attempts to enter
state Si' it can be routed to the other states with distribution w, If
the i'th row of every symbol matrix happens to be the same convex sum
of the other rows, this possibility of reduction holds for every state
equivalence, i.e.,

[S;A(0) = > 14S5A(0) Vo e 1] = ;0 = G,A)
JA
As Carlyle has pointed out, a probabilistic sequential machine

with a minimal number of states by state reduction may be reduced fur-
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ther by the use of such equivalent distributions. For any real model

of a probabilistic machine, such minimizing of states would cause

the machine to operate more slowly. Hence the results will be concerned
only with equivalent state reduction although the definitions will be

general enough for equivalent distribution reduction,

Definition 8.3; The reduced machine Af = A[W(Si)] where distribution

replaces state Si of machine A is obtained by:

. -
(1) If =1 +Im

(ii) The i=th row is deleted in F

k=1,2, veo,n; k#1

(iii) The symbol matrices of A(n(Si)) are given by:
AITSI(0) 5 4 = AW o *+ A 4my
k=1, 2, ccs, N k #1
j=1, 2, cssy j#i
This notation for the reduced machine has been selected for intui-
tive rather than esthetic reasons. If m is activated when Si is specified,

then © depends on Si’ i.e., n(si)o

8.4 REDUCTION IN SEQUENCE
Let s covy O be distributions and Sl’ cog Sm be states. The re-
placement of the states by the corresponding distributions will be

formalized. Implicit in what follows is the assumption that (ar)r = 0.

Definition 8.4: The sequentially reduced machine

Al ... [al(Sl)]az(Sz)] oon um(Sm)] is defined recursively by:
AL oo [oy (5 1ay(8,)] <o (51 = A7 Hay (5]

where

Ar+l = Ar[ar(sr)] r=1,2, ..., m=l and A1 = A
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If o gz eees X happen to be states and a. = Sr+1

r=1, ..., mel then the above defines state reduction in sequence.

For this special case we use the notation

X , _am=l1 .
A[ ot [Sl + 52] « SS] e ] “ Sm] = A [Sm(smal)]

Definition 8.5: The index merging function hr(i) for state reduction

in sequence
rific<r
hr(i) =
i otherwise
More generally, if Sl# is a representative of a ~ class:
. 1# if Si € 4,[51#]
hj (1) =
\i otherwise

Let # be a permutation on the integers 1, .,., m, Then we obtain

the following results.

Theorem 8.1

O acear

Let ~ range over e ™ and M

If S, ~vS,, S.~ S S ~ §  then
1 m

20 %27 73" 0t Vel
A :"(S) A['ﬁ° [Sl « Sz] * °°°] € Sm] E(S) A["’° [S"P\l) « Sﬁ(?)]"‘"* .i « SFP(’“)l

Proof: The proof will branch into parts (a), (b) and (c) corres-

LRt LRI

ponding to e Iy and 51
For r =1 A z(s) ﬂla Suppose by induction that
AT = ATl (S )] 2(s) A for r < m-l
rr-l
Then

r+l T
A = A [Sr¢1(sr)]

and
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f
T, . T e I
A (o)jgr + A (0)j9r+l for k = 13

j#r
WIS, BI@); =

j=19 29 eoognr"‘n'

A
Ar(g)j , for k # 1, k # 14l
(a) We show that for any initial state Si of A, there is a state
T , )
Sh (i) of A {Sr*l(sr)] such that
r+l
E,(¢) = E ¢ (o) Yo € L
A ATIS ., (5,1
Let k = hr+1(1)
Cail
T = 0 %
A [Sr+1(sr)](x) A’ (x) for x ¢ L
r - f
A [Sr+l(sr)](o) = A'(0) for o ¢ L
T=1;¢ ' ‘ |3 o=
A8, (5, (@) = byl e = 1e 2y cees T = 0!
Then
by g ees By py (by »*b) pop) oo blanA\\ SR
: v P
b i
- / *
A'(0)F" = r-1,1 .
\ br+191 5% Fral
Vo \\ r+l
\Png1 0 bngral (bngr * bngr+1) e bn’n’// \ e
i
o
A'(0)F'), = > b, .F.+ (b _+b F
(A"(0) )k j#§;?+1 kyj 3 ( k,r k9r+1) T+l
j=1

But since S »5 S and A ¢ L*
T T+]

SrA(A)F = Sr+1A(A)P = Pr = Fr+1
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/

0 ' b T
(A"(0)F'), = j#éﬁ?ﬁ1bkojpj + bk.rrr + bk.r*lFr*l
j =] F 1 \
n' 1 g "\
A r= Lo
= 2. by (Foo= (AT T[S (5. ,)]()) .y o Fp |
j=1 k,j j r'r-l hr+1(1) i
r+l
Fn.

By the induction hypothesis on states

N @F = QO = NS, 1@,y | Py

By definition

= r !
(A8, SPIEFY (5
r+l
which shows that there are states such that A and Ar[Sr*l(Sr)] have

the same expectation for any string of length one. Hence we have set

up the initial condition for an induction on strings x € I* to prove

that A and Ar[Sr¢1(Sr)] are state equivalent for expectation equivalence.
Suppose

(A, = (Ar[sr+1(8r)](x)p')hr+1(i) for all x ¢ (5)¢ for d finite.
Let F" = A'(x)F' and call hr+1(i) = k. By the induction hypothesis on
strings
Fe= (ATOFY), = (A(X)F)4 (*)

n
] 9t N " it
(A'(0)F")y = ;é; bk,jrj * bk.r+1F ! bk.rrr
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i

we obtain; (A”(O)A“(x)F“)k = (Avccx)pn)k

o
b C]’:‘\Ul
;l Kyj J

W s (5 )] @),

it

Noting that F*is the output vector of Ar“l[sr(srﬁl)] and using
the induction hypothesis on states

(Arml(ST(Sral)](cx}P*)k = (A(ox)F,

Hence
0 r A . Ny Ay -
(AT (ox)F"), = (AT[S, (S J]{oxj i), = (A(ox)F,

and the length of ox it d+1, which completes the induction on strings.

Hence
T T e 771 F : 1 an g L*
(A [Sr*l(sr)](z))hr+l(i)r (ALZ)r)i for all i and all z € &

By definition

T+l

A EE(S) A

which completes the induction on states.

Consequently,

A[ coo [Sl * 52] € o ] < Sm] EE(S) A

Given any permutation P of the integers {1, 2, ..., m} by the transi-

tivity and symmetry of %§'we can obtain (subject to the hypothesis of

the theorem)

A
Siawh S

A
i = Sp) “E Sp)
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Letting Siv the proof proceeds exactly as before so that:

=Sﬂi)’
A[ 008 [Sl * s2] € e ] « Sm] EECS) A[ “‘"[SH;(l) * S‘?cz)] + o ] ha Smm)]’

(b) N-moment equivalence N
It must be shown that for each initial state Si of A there is

a state S of Ar[sr+1(8r)] such that for any string x

P ()

ARy = (A8, D]y 4y (OF 3

r+l(i

2
2
Qe

A ), = (Ar[5r+1(sr)]hr+1(i)(X)‘F§r+l)

By substituting (Fk)9 k=1,2, ..., N for F in part (a), the proof
proceeds in the same way.
(¢) Indistinguishability EI:

Define a new alphabet L' = {y/o: y ¢ Y, 0 € L} with the string

operation o defined by

yl/c1 0 yz/o2 =y, 0 yz/o1 ° 9,

Let F be replaced by and the proof proceeds as part (a).

a a o

1
In all cases we have A =(s) A", Hence for any initial distribution
. . A . . g
I, the i'th equality defining ~ for equivalent states can be multiplied

by E : I. and adding over i gives A = A" for any initial distribution.

. A J
e~ndS.
jerds, ] Q. E. D.

8.5 MINIMAL MACHINES FOR EF’ ?N AND EI

The formalism necessary for proving a fundamental result has now

been established. In the theorem which follows = will be restricted

to {z ~}, The reader may suspect that

' "E* CN N

the result will hold for any equivalence relation on states which also

} and ~ to {-y, o
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has the properties of the classes of the partition of V(A) discussed in
Theoren 1.4. However, as we shall see in the next section, for T
Theorem 8.1 does not hold. Consequently the basic result which follows

is proved only for the above equivalences,

Let A be a probabilistic sequential machine, There is a machine A’
with rank @éf states such that
A =(s) A
and any machine B, such that B 2(s) A has at least rank 1M states.
Proof: Partition the states of A by«éfinto classes Wis sees W

having representatives Sl#ﬁ 52#’ soey Sr#q Use Theorem 8,1 to reduce A

to A' by collapsing all states in the class w Nl#]o

1
By Theorem 8.1, regardless of the order of collapsing, we have
AY =(S) A
where we let hl#(i) be the index merging function for A' and A, i.e.,

f T = v 1h. :*4
(At(x)F )h1#(i) z (A(x)A)i for all Si € S, for all x ¢ &*,

4] and S.eﬁ{s

Proceed to the class,ﬁ[sz#]d Suppose Sieé{sz ; 2#]a

: , LA Y = o
Clearly Si and Sj are not 1n.~{Sl#] SO hl#(x) i and hl#(g) j-

Hence we get

SIATOOFT = SAG)F Vx ¢ I*

]

QoAG 9
oi/\ (x)F

k]
Q/Sj S Si Q, Sga Therefore we use Theorem 8.1 on A

14
(noting that QJ[

SiA(x)F VX ¢ o*
But S. -
i

SE#] has the same number of members as}$[87#])q By sub-

) . # # # # . . .
stituting k and (k+1) for 1 and 2° above, an inductive argument is

2| states is obtained at the termination

obtained. A machine with rank

of the induction. The mnarticular machine obtained derends en the ren-

I
5 A s <
resentatives selected from the classes of ~ and is hence not uniaue.
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However if A" and A'" are two minimal state machines then A" =(s) A™!
since each is individually equivalent by =(s) to A.
If there were some machine B with fewer states than rank |f§| then

for some i and all x ¢ I*
B - :A
Sh(i)B(x)F SiA(x)r
B A
Sh(i)B(x)F = SkA(x)F
for Si‘éﬁsk, i.e., Si and Sk in different classes under Qw Therefore

there must be a x' such that
SiA(x')FA # SjA(x')FA
which gives the contradiction

B(x')FB ¢ s, . B(x')FB

Sh(i) h(i)

Q. E, D,
The previous two theorems are formalizations and generalizations
of remarks made by Carlyle [1961] concerning = Let us turn attention

now to =, to see why it does not satisfy Theorcem 8,1,

8.6 MINIMAL MACHINES FOR =

We make a definition of ~p analogous to 8.2 (a), (b) and (¢).
Definition 8.6: Equivalence of states for =
A

Si ~p Sj if SiA(z)F 2SS SjA(z)F > A

As in the definition of 2 the above depends on the cutpoint X,
And as before it will be assumed that A is defined with A and remains
fixed in a context. The relation Q% is an equivalence relation on
states. Furthermore Si ﬁ% Sj = SiA(x) A% SjA(x)a However while
multiples of equalities can be added, expressions involving > and <

cannot be manipulated in this way., This elementary fact leads to

the conclusion that neither equivalence in Theorem 8.1 holds.

Remark 8.3: There is a machine A such that for Si}tf Sj:
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(a) A[Si(sj)] =r A while A zT A[Sj(si)]
Furthermore, there are classes of machines such that:

A D -
(b) S5~ S, = ALS;(8))] =g A

Demonstration (of the remark)

Suppose Definition 8.6 is satisfied. It is not necessary for

Fi = Fj9 i.e.,

Fiz A Fy o2

So specify that Fi # Fif In particular let

1
A= <3, .1, .3, .6), £, A(L), F =:%£1)D 0A> and » = 2, Let
0 0 1
£ = {A,1} and A(1) = {0 O 1
0 0 1
1
IA(MTF = (1, 3, 46) 201)= 3,13 so A € T(A )
4
o : ) ' ; A
For all z ¢ I* ; SZA(Z)} 22 SSA(Z)F > 2 s0 S2 a Ssa

]

A= A, 91 = <2 G109, T A [ 0

1

I'A' (DT = I'F? = (.1, 09)(2 )

)= 1,99 so A £ T(A",)) Hence A[SZ(SS)] fT A

On the other hand

A= AL 5] = <20 G190, 5, AL (3]s 00

1

AT (A)F" = (L1, 09)(4

) = 3.7 so A e T(A",))

For all z" e 5, I"A"(z")F" > 2 50 T(A,2) = T(A",2), i.e.; A[S5(S,)] 5 A,

So even though S QT S

3 2

AlS5(S)] #p AlS,(55)]

Of course much more elaborate machines can be constructed to
show that this property is not dependent only on the identity but
occurs for a large class of probabilistic machines.

Following in the same reasoning, a few other observations are immediate.
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8.7 THE CRITICAL SET OF TAPES

Definition 8.7: The set of all tapes x such that IA(X)F = ) will be

called the critical tapes for A, i.e,,

C(AsA) = {xC : IA(xC)F = A}

Theorem 8.3

If A[Si(sj)] e A and A[Sj(si)] e A while Fj > Fi and if the cut-
point A is not isolated for A, i,e.,, C(A,X) # ¢
for all X, € C(A,N) ¢ IA(xC)j =0

Proof: By assumption Fj > Fi” then EA[Sj(Si)](x) 2 EA(x)F Vx e I*
since the probabilities of S; will be shifted to state Sj whose output
weight is greater, Equality can occur only when IA(x)i = 0, Likewise

E,[x] 2 EA[Si(Sj)](x) Vx g I*

with equality only when IA(x)j = 0, Suppose the cutpoint is not isolated.

Then for X, € C(A4)) we have

E (x)zXzE (x.)

Al (5)] e Als; (5,)] e
Suppose IA(x)j # 0; then X, € T(A[Sj(Si)],A) and X, 4 T(A[Si(Sj)],A)o
Hence A[si(Sj)] iT A[Sj(Si)] contrary to the assumption,

Q. E. D,

8,8 GEOMETRIC INTERPRETATION OF S*

The set of distributions over the states of an n-state machine,
S*, is isomorphic to a set in n~l dimensional space because only n-1
of the probabilities can be specified independently. For four state
machines S* can be depicted using a tetrahedron which has unit
altitudes. Each vertex of the tetrahedron represents a state, Label
S

the vertices S S, and let a, be the altitude from Si;

1% 72° SS’ 4

i=1, 4o, 4, The distribution v = (pl, Pys P3s p4) is represented by
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coordinates on the altitudes measured from the base, Figure 8.1 shows

this convention for the first component.

S

3

E}égﬁ§m§;3¢ A coordinate of a distribution in
the tetrahedron isomorphic to S*
for n=4,

8.9 THE CRITICAL DISTRIBUTIONS OF S*
Let us generalize the notion of critical tapes (Definition 8.7) to

distributions,

Definition 8.8: A distribution vector m is critical for machine

A if #F = X, The set of critical distributions D(A,A) = {rm e S": 7F = A},

From the definitions it is clear that

{IeA(xc) DX, € C(A,2)}C D(A,N)

Definition 819: A distribution w is said to be accented if 7F 2 X,

A distribution m is rejected if nT < A.
The set of critical distributions D(A,A) is a plane in S* which
separates the accepted distributions from the rejected distributions.

The following example illustrates these notions.

Exanple 8.1
4
Let F = (1/2 and » = 2.
2
1

The solution set of the equation nF = 2 where = is stochastic is

a convex set determined by its extreme points. Using the well known
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method of Kemeny et.al [1959], we find the extreme points

n(1) = (3/7, 4/7, 0, 0)
m(2) = (0, 0, 1, 0) = S,
n(3) = (1/3, 0, 0, 2/3)

The plane D(A,4) is shown ir Figure 8,2.

Figure 8,2. D(A,A) is the area enclosed by the dotted
- lines, i.e., the triangle m(1)=-n(2)=-n(3).

8.10 GEOMETRIC INTERPRETATION OF STATE MERGING

All the distributions on the "S1 side" of D(A,A) in Figure 8.2 are

accepted, while all distributions on the "82-54 side" are rejected.

Clearly, identifying S1 with either S2 or S4 would change the acceptance

of the empty string (and probably many other strings) into rejecticn

4
and hence for any machine A with output vector F = h/Z

\2
1
I(“‘,‘zj ; I(“‘[S4(S])]92)

On the other hand, supposec S

2 is identified with 54e Figure 8.3

shows the resulting homomorphism of the tetrahedron,

Sy .. v S, = 1(2)

S,(S»)
4\92
Figure 8,3, The set of distributions when 52 is identified
with 849 ise, 54(SZ)°



From Figure 8.3 we observe that #(1) (the projection of =(l) on
81=S4) lies inside the accepted region and is no longer an extreme point.
Furthermore, all the distributions in the wedge-shaped volume (of
Figure 8.2) bounded by n(3)=n(1)zﬁY3)an(2) will be called the 84(82)
wedge and written W(S4(52})C While the distributions of W(S4(82)) are
rejected, their images after merging are accepted. llence if any accessi-
ble distribution I:<A(x) & V(A) for any machine A with output F and
cutpoint 2 falls in W(S4(82)) we have

T(A,2) # T(A[S,(5,)]:2)
Likewise we find that if I<A(x) & V(A) and I-°A(X) ¢ WCSZ(S4)) then
T(A.2) # T(A[S,(5,)1:2)

We summarize these remarks in the following theorem. The first

part of which will not be proved since the substitution of general varia-

bles in the above remarks sketches a proof.

Theorem 8.4

oty g .04 vt

Let A be a four state probabilistic sequential machine and let

Az A[Si(Sj” PN W(Si(Sj)) N V(A) = ¢ or W(Si(Sj)) = D(A,A)
Proof: Sufficiency is sketched in the example above. For necessity
we note that
W(Si(Sj)) NV = ¢ =>V(A) CE" - W(Si(Sj)))
But any distribution in S* - W(Si(Sj)) does not have its acceptance
changed by the identification of Sj with Sic Likewise if
W(Si(Sj)) = D(A,A), D(A,1) is parallel to Si=Sj and merging Si with Sj

does not change the acceptance of any distribution. Hence if x ¢ T(A,}),

then x ¢ T(A[Si(SQ)]gx) and vice versa.
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Corollary 8.4

If Fi = Fj for a four state machine A and Siﬁf Sj then
A[Si(Sj)] ET A ET A[Sj(si)]

Proof; For F, = Fj and four states the extreme points on the lines
Si=Sk and SJ.aSk (where Sy is adjacent to Si and Sj) are permutations of
each other, and the line joining them is hence parallel to Si=Sje
Therefore, identifying Si and Sj causes D(A,)) to be compressed with-
out sweeping out any volume; i.e. W(Si(Sj)) = D(A,1) and
W(Sj(Si)) = D(A,A). Theorem 8.4 hence gives the result.

Q. E. D,

The proofs of this section concerning the four state machine
admittedly make use of many implicit facts of the geometry of three
dimensions. It seems likely that analogous arguments (except for
Corollary 8.4) hold in n-dimensions, but the author has no proofs for

the general case.

8.11 COMPARISON OF STATE REDUCTION FOR 21 Ey AND =, WITH =
The last paragraph of Theorem 8.1 shows the essential difference
. - A A A
between the former equivalences and =pe If Si'AT Sj» Sirﬁasj or Si/E/Sj

then simple multiplication by constants and addition of equalities shows
that for any initial distribution I and distribution I' (which is I with
Si and Sj merged) we have
A= (SIALS;(8)] = KIA> = <17, AlS; 51
However for ET(S)Q a system of inequalities is obtained which
may not be able to be added and SinT Sj is not enough to guarantee

this property,

Az (S)A[Si(Sj)] = KLA> = (I7, A[Si(Sj)]>]
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The results of the previous sections concerning convex sets
show that merging of equivalent states does not preserve tape equi-
valence. The status of the vectors I.A(x) : x € I* in the set S*

relative to D(A,A) must be considered.



CHAPTER 9

APPLICATIONS TO OPTIMAL CONTROL PROBLEMS

9.0 INTRODUCTION
The close connection between the theory of sequential machines
and the theory of optimal control has been pointed out by various
authors, Arbib [1964] has attempted to make a 'rapprochement' between
the two areas of study. The purpose of this chapter is to show how
some of the notions of previous chapters apply to the optimal control
problem as defined by Eaton and Zadeh [1962]. Before applying some of
the previous theorems to certain optimal control problems, let us consider

some basic observable events of a probabilistic system.

9,1 INPUT EVENTS

The most fundamental conditional probability of a machine is
the probability which relates sequences of outputs to sequences of inputs.
As has been observed in Chapter 3, such a joint probability is defined
recursively from the joint probability of output symbol y and states
Sj given input symbol o and initial state Sio The ""Moore model' which
has been used throughout requires y to be a function only of Sj° Hence
this basic probability can be expressed as (using the notation of
Chapter 3):

P(y»Sj/GQSi) = Aly/o)y; ={Mo)ij 1f 0(S;) =y

\ﬂ ~therwise
From the above conditional probabilities the system probabilities
or stochastic input-output relation can be computed. As in previous
chapters, the probability of observing the output sequence YiereYy if

the machine A is started in initial distribution n and the input

138
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. . . . A
Sequence 0,0..0,, 18 applied will be designated pﬂ(yloocyr/clnooor)c

1
Control engineers frequently need to use all the information
available in order to control a process. The following concepts, system-

atized by Carlyle [1965], formalize other conditional probabilities which

can be determined by experiments on a probabilistic system.

Definition 9,1: A y-input event for a machine A, written Ty(A»A), is

the set of input strings which produce y e Y* as the last sequence of

outputs with probability greater than or equal to A,

RO IR PPN SROTVMRIIR I
ype(Y)mg(x)“lg(Y)

s o

We note the connection between y-input events and the concept of

tape acceptance:

T, (AsA) = T(A,)
To(AA) = % = T(A;A)
9.2 INPUT EVENT EQUIVALENCE: = .

Definition 9,2: Machines A and A’ are A-input event equivalent,

written A 5 IE A', if for a fixed real number A and all y in the output
alphabet Y:

T (A,A) =T (A",A
y( »A) y( s A)
Following Carlyle [1965] and Paz [1964] (who calls it "'strong

equivalence'"), let us define a very strong equivalence for input events.

Definition 9,3: Machines A and A’ are input event equivalent, written

A B A', if for all X and all y in the output alphabet Y:

T (A0) = T (A';3)
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Note that *1E is just the universal quantification over X of S IE

It has been shown (Carlyle [1965], Theorem 7) that

= J = A?
A-IA :A-IE/\

Let us relate =g o the other previously defined machine equivalences.,

Theorem 9.1

A e A' = A *IE A' = A =y A'
Proof:
A z;p A' =Y Prob. {0, (x) = y} = Prob.{0),(x) = y} VyeY, Vx ¢ £*
By definition
Prob. {0, (x) = ZI A
O(S )=y

Distribution equivalence implies

LA, = ) I'"A'(x);, fory #0 and not with probability
1° i%;
O(Si) =y 0'(Si,)=y zero of occurring.

Hence taking sums over those y # 0

Z IA(x) }: I'AT(x);, = Z TA(x) Z;h VAT (x),
0(s )=y#0 0°(s |)=y#o 0(% )=0 0'(5,)=0
which gives the first part.
For the second implication, regrouping of the terms of Theorem 2.1
shows that uN(x) depends only on E:: I A(x) and (rk), =1, ..., N.
0(‘3 )=y

But from the above and noting that F = F', we see that the arguments of

the function uﬁ(x) are all equal for machines A and A'.

Immediately from the definition we obtain:

= ] = ?
Az AV A A
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In general, there is no relationship between = and Epe However,

A LE
for the special case of Rabin automata, the inequalities involved are

2 ate s« at: z 6 = 0
degenerate so that: A SIE AP & A =7 AT,

9,3 INPUT-OUTPUT EVENTS

We now consider events which require information about the outcome
of initial portions of the experiment. Generalizing the definition of
Carlyle [1965]. we let q(y/ux,v) be the probability of observing output
string y as a consequent of input string x, having alrecady observed v as
output because of the input string u. The fundamental definition of

conditional probabilities gives us that:

1

T A(vy/ux) |«

qly/ux,v) = == 317
SYTORE

\1

Definition 9.4: The input-output event for y e Y* of machine A and

cutpoint x; written IOy(AQXJ is given by:
IOy(AﬁA) = {(ux,v) : q{y/ux,v) z A}

Herc we let x and y be arbitrary strings while Carlyle restricts
them to symbols, Let us interpret one kind of input-output event for
a computer. Suppose the input sequences are programs, the output
sequences are results and » is a reliability. The input-output event
for a particular result y consists of all programs ux and "intermediate
results'" v which guarantee that y will occur as an output sequence with

reliability at least as high as i.

9.4 INPUT-QUTPUT EVENT EQUIVALENCE: EIO

Analogous with the concept of tape equivalence, a fixed cutpoint
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equivalence will be defined for input-output events.

Definition 9,5: Machines A and A' are A-input output event equivalent,

3 = 1 X
written A 210 A, if:
IOy(A,A) = IOy(A',A) for all y ¢ Y
By universally quantifying the cutpoint of %10° the definition

of Carlyle [1965] is obtained.

Definition 9.6: Machines A and A' are input=-output event equivalent,

written A = A", if:

I0

A A' for all real A

HI

I0

The equivalence = amounts to the same thing as s i,e. as has

10
been noted by Carlyle, the definitions yield:

Theorem 9,2
= 9 = 1
Az A& Az A

Let us show the relationships among the machine equivalences

defined thus far.

- )
A D .1\\\'N
A =" AT A _:— ——? = ] = [] f_ —=‘__9~‘
N M':};A Sp A=A S A S A s A A
Shagnap L Paz. ;N o, | Rabin f
“AIE =2
* = A - q
A Erg M= A0 A
\Carlyle

Figure 9.1, Relationships among the machine equivalences,

9.5 OPTIMAL CONTROL PROBLEMS

An optimal control problem is essentially a probabilistic sequential
machine with costs associated with the action of inputs, A certain
state, or set of states (usually absorbing) is designated as the '"target"

and the problem involves getting the state activity to the target with
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S
L

minimal costs. Usually information obtained from the outcome of
an input or sequence of inputs is used to evaluate some function which
speeifies the next innut or sequence of inputs. TFollowing Eaton and

~

Zadeh [1962], we shall assume that after each input the resulting state
is Known. The Kinds of next input functions or policies which will be
considered here usuzally depend only on the state. The outputs of

the probabilistic machine will not be used as outputs in the usual

sense but will be used to express the costs of the actions on the control
system. Hence the expectation of "output" EA(x) will actually be

the expected cost at the time step after the input of the string x

into control system A. It is helpful to think of the outnut vector F

as being expanded into a n x 2 matrix, the first column having arbitrary
but unequal components which are used to identify the state. The second
column functions as the output in the sense of the formal definition

but contains the costs associated with the states. A minor difficulty
occurs because many optimal control problems have costs associated with
the state transitions rather than states. However, we shall see in
Lemma 9.1 that an expanded machine can be built for any such control
problem with the costs associated only with the states. Lemma 9.1

also translates between the terminology of probabilistic machines and

that of the previously mentioned paper of Eaton and Zadeh.

Lemma 9.1 Translation between probabilistic sequential machines and
optimal control problems;
The following makes a correspondcn:e between the terminology and

assumptions of Eaton and Zadeh [1962] in "Optimal Pursuit Strategies in

Discrete State Probabilistic Systems," and those of probabilistic sequen-



tial machines.

(1)

(2)

(3)

4)

(5)

(6)

(7)

(8)

Eaton § Zadeh

Transitions take
place at integral
values of t start-
ing at t = 0

Input u_ takes on

t
values {al,GAD,am}

Inputs referred to
as "commands' or
""actions"

States
qlsfﬁdbqann+1

The state q is
n+l
the target state

Pij(k) prob. of

one step transition
from ay to qy when

command 0y is

applied

P..(k) is stochas-
1]

tic

Associated with
each non-zero trane
sition s, + s. by

1 J
command 0, is a

positive cost
€5k
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First level
translation: Machine A

Same

L= {Ul,OZ.One.Om}

sometimes abbreviat-
ed 1,2,..,.,m

Inputs called "input
symbols"

States
s = {Slgeeqpsngs

}

n+l

S is a sink or
n+l

absorbing state

AR

A(k)i j is stochas-
d

tic

C(k) is the cost
matrix for A(k) (no
way to express this
as a single output
vector in machine A,
but can be expressed
as the output
vectors of a set of
machines having the
same transitions

as A),

Second level translation:

expanded Machine B

Same

L = {Ul,cngeugom}

Inputs called "input
symbols"

States
(si,sj,k) where

si,sjes and kel

If the state

(sn+1,sj,k) is

accessible then

sj = Sn+1

B(k . .

( )(mnlau) s (2,3,V)
= A(k)ij where
k and 1 = &

V=
= 0 otherwise

all

= AkK). . =1
; ( )1:3

so B(k) is stochastic

B . .
Fliyil = G5
i,e.,, the output
vector of B contains
all costs.

@5t m, 1,0, 4,5,



(9) The cost of going
to the target is 0

(10) By an %-step transi-

tion sequence is a
sequence of states

(ags0) o®y 3 38peeeresy)

(11) A transition
sequence is 29951Q££
if the conditional
prob. of observing
the sequence given
the initial state

q is positive

Cost of the
sequence of length
% is the sum of the
one step costs.

(12)

(13) A strategy or 2
policy is a function
m which assigns

a command to every

state By o= ﬂ(qt)

write
= (“l-ﬁ‘—\‘*lﬂn)
(14) The policy matrix
(H ) where

ﬂi is the optimal

control for state
q.
i

The cost matrix for

SRR RATL B SR AP

policy i
L(ﬁ§ = j ni)

(15)

(16) Xi(w) is the expect-

ed cost of policy
from initial state
44

(17

A policy m is pro-

per if X, (n) <o
131;«; va,l
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€KY pyp = O

Same as E. § Z.

' if Fé # Fe
1 J

for i £

PA

9.1 0

Same as £, § Z. but
outside normal P,S.M,
framework.,

Same as E. § Z.
slA(nl)
A(m) = :
Sn+lA(”n+1)
SIC(nl)
C(w) = .
3n+lc(“n+1)
Same as E. & Z.

Same as E,  Z.

Pl ~

- o T

[

B

&

"

B

uence of 7«states
O (sosslpao)

1 = (sl,széal),,a,
1 = (8).128000, 1)

-

. if

©@oly,b, B C@b b,
)

2:-1 b,(?‘,nl'bﬁ,

b

» ot B(o

go

Zp

=0 Or)

) S
Srotrsl?

' is a projective

function defined by

7!

CHETLITLARY
n(st)

write

B

= (Qﬂ

’QOEQG"T )
1 n

(M (s

=AM 45

= 0 otherwise

C

osts arc embedded in

the output vector FB

C

Analogous to E.
i.

1=

n), . = TB
( )153 (Siﬁsj’oﬂ.)
1
& Z.
'
€. \(m i, o, )(w)
"

' .
’, . ™) <
(mnlmon )( ) ®
i
1,2}'@?4“

)

> 0

Z'si’d)’(si’sj'on )

i
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Lemma 9.2
X'(n) = :E: B(w)lFB if = is a proper policy,
i=1
Proof: The basic recursive equation of Eaton and Zadeh will be

formulated using the expanded machine B

X;(m) = E{Cij("i) + Xj(n)}
nsl
= 3>_=_1, Pij ("i)[cij("i) * Xy (m]
i.e,
X(m) = C(m) + P(m) - X(m) (1

where the one step average cost from state i is:

C(n), = ;Z; cij(ni)ﬁij(ni) where ﬁij(ni) = ||pij(ni) ij =1, 2, veo, n|]
If the target can be reached from any state with positive probability

by the policy then P(m) is not stochastic, i.e., the matrix ﬁ(n) has

all eigenvalues less than unity in modulus and (1) can be solved as

X(m) = (€ - p(m) lem

equivalently

-]

X(m) = :E: P(n)iC(n)

i=0

Equation (1) can be expressed using machine B and definition (16) of
Lemma 9.1, X'(m) = B(n)FB + B(m)X'(m) which gives, if a unique solution

exists (i.e., m is proper):

X' (1) = j?: IO 2)

i=1

which is a sum of expectations of B.

Q'. EP. DC
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Lenma 9.3
X(7) = X(n') &= X' (n) = X' (=")
Proof: From (16) of Lemma 9.1 we see that the elements of X(=)

are rewritten m.n times in X' (m).
9.6 EQUIVALENCE OF POLICIES

Theorem 9,1
Let m and n' be policies of an optimal control problem.
Let A =<n+l, , S, I={mm'}, A(r), A(r*), F, 0
be a probabilistic sequential machine having input symbols = and ='
and switching matrices P(m) = A(r) and P(n') = A(n"),
Let the cost matrix C be }ndenendent of the input,. Furthermore

let the column space of C be generated by powers of the components of F:
T 2 N
(€) e LLF), (F), oy (FID
Then for RN(AL the N-moment reduction relation defined by A

TR (M)’ = X(m) = X(n')

Proof; There must be a set of constants {di} )

«h; = Sl

k=1

2 sAmdch,

I NS P

siA(n) .ggé dk(F )

;{; Zﬁ: ERON G ()
J=

L]

X(n)i

o
i

Tffjs

-

L)

k=1

since ﬂRNﬂ' and A(m) and A(n") are assumed to be distinct; Theorem 1,8D

gives:
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A(n) = A(n') + H

where Hi eV i=1,2, .c., n and some H.1 #0

while
VA(o) ¢ V ce{m,n'}
N .
\Y C.fﬂ\Kern,(Fl)
i=1
Hence

+

AmI =A@ @it e L e

= A(Tr')j

+

H' « ,,. + H"
where Hi and H'i' are inV fori =1, 2, .44, n
multiplying by (Fk) 1 <k <N
AmIE) = A ) w ) v e e
=A@ 0 L, 0
Substitution in (x) gives for i = 1, 2, ..., n
X(n); = f;: j?: disieA(n')j(F(k)) = X(n1),

j=1 k=1
Q. E. D.

ExamEIe 9°L

We illustrate Theorem 9.1 with the following optimal control
problem. Using the notation of Eaton and Zadeh:
Let
Q= {ql‘ P qs} where q4 is the target state

o = {0, 1} input alphabet,

0 3/8 5/8
AO) = {0 3/4 1/4
0 0 1

1/4 1/4 1/2
AQl) = {1/2 1/2 0©
0 0 1
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The cost matrix C is independent of input:

1 2 01
!
C(l) =C(0) =C = 3 6 0}
0 0 0
Let
i1
F = (2 and N = 1
0

Claim: The policies of w = (1, 0) and n' = (0, 1) are equivalent, i.c.,
X(m) = X(mn")«
Note that © and n' are proper:

1/4 1/4 1/2

A(m) = | 0 3/4 1/4
0 0 1
0 3/8 5/8

A = {1/2 172 0
0 0 1

For N =1 RN(A) = RE(A)
From Thebrem 4,4:

MRem! <= A(mz)F = A(n'z)F Vz € {n,n"}* such that %g.(z) s 1

Hence

3/4
A(m)F = A(r")F = | 3/2
0

Likewise the reader may verify that
A(rm')F = A(n'n")F
A(nm) = A(m'n)F

which shows that wR.7f,

E

By Theorem 9,1 we know

X(r) = X(n')
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However, in the next example we will construct the expanded machine B

from A in order to make this fact more transparent,

Example 9.2  Construction of the expanded machine B from machine A.
In writing down the matrices the following ordering is used for
the states of B; i.e., the r'th row or column of the matrix corresponds

to the r'th state in the ordering:

S110* S1110 S1200 S1210 S130* S1310 S210 ¢ S2110 S2200 S2210 S2300 52310
S310* S3110 S320* S3210 S330¢ S331
Hence 1
1
2
2
0
0
3
3
B 6
F~ = 6
0
0
0
0
0
0 |
0 |
0|
while B(rm) =
110 111 120 121 130 131 210 211 220 221 230 231 210 311 320 321 330 331
10 1/4 174 172
111/ 1/4 174 172
120 0 34 1/4
121 | 0 34 1/4
130 1
131 1
200 1/4  1/4  1/2
2010 1/4  1/4  1/2 |
220 0 34 1/4 |
221, 0 3/4 1/4 ‘
230 | 1 ;
231 1
3000 1/4  1/4 1/2
310 174 1/ 1/2 ~
320 0 34 1/4 ;
321 0 34 1/4 j
330 1

331 1



and B(n%) =

110 111 120 121 130 131 210 211 220 221 230 231 310 311 320 321 330 331

116 0 3/8
110 3/8
120
121
130
131
2iC 3/8
211 0 3/8
220
221
230
231
3100 0 3/8
311} 0 3/8
320
321
330
331

<

We note that

which meansz

where HiFB = 0

Call

5/8
578

5/8
5/8

5/8
5/8

B(n’)FB = B{n)FB =

i=1,2, ccoyn

<ﬁui,
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1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

B(m') - B(m) = H

i=1,2, .0, 181>=V,

3/4
3/4
9/2
9/2

3/4
3/4
9/2
9/2

3/4
3/4
9/2
9/2

[

(1)
(2)

|
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It follows that

»0,0,0,0,0,0,0,0),
,=2,3/4,-1/2,3/4,-1/2,1/4,0,0,0,0,0,0,0) }>

-
o o

It can be easily verified that the subspace V_, is invariant under

B
both B(n) and B(n') i.e.,

VBvB(w) C Vg (3)

VgeB(1') C Vg
From (2) we see that VBFB =0 i,e,, VB C Kern.(FB)
Hence for any r (using (2) and (3))

B(r")F = (B(r) + B)T = B(m) + H!

where H! C Kern.(FP)  i=1,2, ..., my
Consequently,

B(r")TEE = B(m)TES

Summing over r and making use of the fact that = and n' are proper policies

X'(rt) = ) BT = ) BmMTFS = Xx'(m)
r=] r=1
which means by Lemma 9,3
X(m) = X(n')

It is clear from the example that the simple expression for
the expected cost provided by machine B is obtained at the expense of
the large size and high redundancy of the matrices of B, Each row of |
the policy matrix A(w) is copied (n+l)em times in the matrix B(w) which
has order (n+1)2mo

One can imagine very obscure situations in which this redundancy
could be used for error correction. For instance, the formal construct
of expanded machine B might be useful in studying certain high reliabil-

ity biological systems for which the large number of states is not

a prohibitive restriction.



Still considering those ontimal control nroblems for which the cost
matrix is independent of the input symbols we obtain a more gencral

and easily testable version of Theorem 9.1,

Let C(~} = C(u") for proper policies 7 and «'.

1f A(ﬁ}i N A(w")ievc; Kernc(CT)i and VA(x")¢c V. i=1, 2, .1
then X(m) = X(7n')
Proof: A('nf)i = A(n')i + Hi where HieV i=1,2, ....n
For any j A(ﬂ)j o (A(ﬁ’)+H)j (%)
But H, A(n*)s=V i=1,2, .e.am
Hence /\(*ﬂ"g;E = A(ﬂ“)j + H' where H;sV i=1,2, ..., n
Multiplying by S, and (C'),
s (€)= SiA(n’)j(CT)i SICAR
= SiA("n")j(CT)j i=1,2, ..., n
Summing over j we obtain
X(n) = X(n%)
0. E. D.

We note that Theorem 9.2 can not be generalized by the substitution
of Vi for V in the statement of the theorem. Inasmuch as the terms
of (+} of the form Hj~H need not be in Kernq(CT)ig the result does

not follow.

Theorem 9.3

Given an optimal contrel problem with n+l states, actions

Qe eveg O and cost matrices C(a])g R 1 (1
i A

o).

1 ™
Suppose the expected costs at times t = 1, 2, ..., 2n for

policics 7 and n' are equal, i.e.,
b ¢ ¢ ]
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X(m,t) = X(n',t) t=1,2, ..., 2n
Then
X(w) = X(n")
Proof: We construct a family of probabilistic sequential machines

and test them in pairs for expectation equivalence.
Consider the machines
Al =nel, s, S, (), AR, (C(m);) s 0,0 D
At = nel, 8., S, {n'), A, ()T, 01>
i=1,2, «c., n+l
From the definitions it follows that
al sE XL X(r); = X(n'), i= 1,2, voo, n+l
From Theorem 4.3 we get that
[s;A(m " (Cm )T = SiA(n')t(C(w')i)T t =1, 2, v, 2(n+1)-2]=3 AL z_ ard
But by definition
sAMECm )’ = X ()
Hence by the transitivity of implication
F((n,t) = X(n',t)

E”l. 2. LAY ) zn-—‘

= X(m) = X(n')

The assumption that costs are independent of input does not

vield a lower bound than Theorem 9.3.
9,7 CHARACTERIZATION OF EQUIVALENT PROPER POLICIES

Theorenm 9,4
Let m and 7' be proper policies with reduced (target omitted)

matrices B(m) and B(w')

X(m) = X(r') & DIE - B(n)]“lFB‘= where D = B(n) - B(w')

O soe O



Proof: By Lemma 9.3 we have
X(r) = X(1') € X'(n) = X' (n')
By Lemma 9.2
X'(m) = X'(n') & [E - B(m] Bmr® = [E - B(r)] ' B(at)E"
X(m) = X(n') if and only if
[E - B(m] 'B(m) = [E - B(r")] " B(n") + 1
where 1l ¢ Kern, (F), But since m is proper
[E - B(m)] 'B(r) = Bm)[E - B(M]™
B(m) [E - B(n)]'1 = [E - B(n')]“ls(n') +H
Clearing this expression of inverses we get
[E ~ B(n')]B(m) = B(x")[E -~ B(m)] + [E - B(n")JH[E - B(m)]
Hence
B(r) = B(n') + [E - B(r")JH[E - B(m)]
or
D = [B(r) - B(r')] = [E - B(n")JH[E - B(m)]
D[E = B(n)]‘1 = [E - B(n")]H
Multiplying by FP

D[E - B(m)] " FB = [E - B(a')] (HFD)

which establishes sufficiency.
Necessity follows from the fact that
) -1B : -1 .
D[E - B(m)]""'F =0 => D[E - B(m)]™" =H
where Hie Kerno(FB) i=1,2, ;esyn

B

Write

[E - B(r)]([E - B(n')]"tH")
[E - B(x')]H

HY

33
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and since
HFS = [E - B(r)]7HIFD = 0
i=1,2, ..., n,
Reversing the previous argument for sufficiency gives the theorem,
Q. E. D.
Theorem 9.4 shew that two policies are equivalent if and only if

one can be interchanged on the first time step for the other without

affecting the total expected cost, i.e.,

;E:B(W)B(ﬂ')iFB = X(n") (%)
i=0

and

X(m) = 2 B(r)B(mirt
=

Reversing the role of m and n' in Theorem 9,4 was required to

get (*) above.

9.8 EXPERIMENTATION ON THE EXPANDED MACHINE

Given an n+l state optimal control problem, the expanded machine B
has (n+1)2m states where m is the number of possible input actions.
Were we to use the methods of Theorem 9,3 to obtain a bound on
the length of the sequence of costs {X{(n,t)}zzl, the bound would be

2(n+1)2m=2h However, Theorem 9.3 can be translated directly into

machine B and we get:

Theorem 9.5
If for the expanded machine B associated with an n+l state optimal
control problem with proper policies m and n'
s;B(MF’ = s B F®  fort =1, 2, ..., 2n
L= Gy 1y 1)s eney Gpoomy )

for arbitrary jl’ cbop jn
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then
X(n) = X(n")
The difference between the bound 2(n+1)2m=2 for arbitrary matrices
and 2n for the matrices of B clearly illustrates the special character

of the matrices of the expanded machines.

9.9 OPTIMAL CONTROL PROBLEMS WITH OPTIMAL POLICIES OF SEQUENCES OF INPUTS
This section differs from previous sections in two ways. All costs

will depend only on the states, But more important, the concept of

policy will be extended to a function which assigns to states strings

of elementary actions, i.e., strings of symbols rather than individual

symbols. We might have done this in Lemma 9.1 when establishing

the correspondence between optimal control problems and probabilistic

sequential machines. However, treating the elementary actions as symbols

seemed to be the most natural procedure, The consequence of this

difference in viewpoint is that the states that the machine passes

through while the string comes in are not used in the policy function.

Theorem 9,6

B i AR TR

Let B =n+l, I, B(0): Yo 2 I, FBS(%3> be an abstract probabil-
istic sequential machine constructed from the n+l state optimal control
problem with set of actions I and costs B associated only with the
states. Supposc B has a proper policy ©*.

Let RH(B) be the expectation equivalence reduction relation
defined by B.

If rank IRE(B)E = r (finite) there is a deterministic policy of

strings n_ = (xgﬂ Coe s xo) such that X(n.) < X(v) for any stationary
85 Tp 1 n D y

policy =.
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Proof: We modify Theorem 1.3 by defining OA,(RF(X)) to be
a vector of outputs A(x)F. In fact, Example 1.3 illustrates this

point. The initial state I is not used in showing that R, has finitc

E
rank, but only in computing the expectation, IA(X)F, serving as output
for the '"state" RE[x]s Instead, the vector A(x)F could have been
used as the output.

Hence if RB has finite rank r there is a deterministic machine

X*/RE = A' with r states such that OA,(RE(x)) = A(x)F. Schematically

we have (for £ = {0,1} W.L.G,):

A

—

N3 AT
RE[l]\\ 1

~~—

Fipure 9.2, The constructed finite deterministic machine
with vector outputs.
Any stationary policy m is defined by a stationary stochastic
process. Started from initial state Si at time t, the process causes

a distribution of probabilities qg (x,t) over all strings x of length t.
i

We attach the stochastic process which provides the set of dis=
tributions {qz (X’t)}tfo over input sequences to the input of
i =
B' = Z*/RE(B) which has vectorial outputs OB‘(RF[X]) = B(x)FB, Let
Xip veon X be arbitrary representatives of the class of REE Every
string x produced by the stochastic process falls into some class of

REQ indeed a probability distribution is induced over the classes of R.

which are just the states of B'. Call this probability PE(RE[xj],t)
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for the class with representative xj_ The occurrence of different

strings of the same length are disjoint events. Hence:

Nt

PLRGIx;1.t) = ng . (a t)
Xa(f:) ﬂ R.[x

We now show that the expected cost of the t'th sten 1s given by:
*r
X, (r,t) = '7" PT(R,[S.] t)’B(x.)“FB
ive P T R A R i1
J=1
Using the notation of 2.1 we have:

(where S{0) is the state at time t = ()

X, (r,8) = E{ 2 03(x)/S(0) =
xz (o)t
- . B
= q. (x,t)S,B(x)F
X%t Si 1

Since each x has a representative xj
= P , BUx.Y.FB 4, T (R . B
pl(RL[lest) B(lelr * ohoo ¥ Pl(IE[xr]”t) B(xr)lr
which establishes the above.
Consequently, the expected cost of the t'th step for policy w can
be viewed as an expectation of the distribution

. ‘ : o e
tPiLRE[x1]°t)& ., P (R [xr]ﬁt)) over the states of I

E

Since we have assumed the existence of a proper policy n*

]

X(1*) = :gﬁ Xi(ﬂ*qt) must be finite for all 1 = 1, 2, cbep, N

t=0
But
[ *
et 3 1t ; - % .
X.(n*y = (/T ?f m {; IR E B(x F“ o0 ¥ (j;1P? (R.[x jpt;jeB(xq}.PB
1 St i Y E'r 1
t=l) t=
.
Since Ei: (\ = 1. and the costs are non=negative, at least one
T i
J

of the terms, say the x% diverges

Z{; }” (R ],t) —» w

t=()

for any stationary stochastic process. In order for Xi(n*) to be
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finite, it follows that at least (W,L.G.)
*y B -
B(xi)ir 0
Consider the class of stings G*(i):
LTI . *
G*(1) = {x : x ¢ RE[xi]}
Given the machine B' = Z*/RE(B); G*(i) consists of all paths from
RE[A] to RE[x;]e The expected total cost of the deterministic sequence
X = ilesoiv is just the sum of the i'th components of the outputs of

the states of B'

E(total cost of x) = }i: B(i 5401.)‘FB
=1 1 j'1

The shortest path from RE[A] to RE[x;] is a good candidate for
minimality of cost., Of course, depending on the values attached to
states, a longer one might have lower cost.

Suppose xi is a deterministic string with minimal total cost of
all strings in RE[x;]. We show any stationary policy is no less costly
than the policy T = (xi, beay xg)

Let m be a stationary proper policy. As we have shown

i ™ B
X, (n,t) = gg; Pi(RE[xj]”t)B(xj)ir

In order for Xi(n) to be finite
lim  PT(R.[x:],t) =1
ivEYi
t -y @
That is, all strings produced with positive probability by the stochas-

tic process defining m are ultimately in Rf[x;]ﬁ

M

If a string z has occurred, then its substrings must have occurred

also, llence the total cost of the policy m from state Si at time t
is just:
—1
7 P > Y ¢ N
xi(n9t) =y Ifobe(z occurs) «E(total cost of z)
all zel™:

2g(z)=t
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Hence
Xi(n) = lim E_AProbﬂ(z occurs)*E(total cost of z)
a(z) —>» zel*
fo(a)=t

Since all z with positive probability of occurring are in RE[x;]:

X.(n) = lim 2 q" (z, 8(2))°E(total cost of z)
1 N ) *a 'S,
fe(z) —» e all ZERF[Xi] i

But by definition
Xi("D) = E(total cost of xz) < E(total cost of z) for all zsRE[x;]

Substituting we get

YO 2 ln 2 al (s X ()

lg(2)—>= zeRH[xi] i
But since all z which occur with positive probability are in RF[X:]
as g(z) —>» «
» w
lim ( 2., ag (z2,28(2))) =1
fo(z)— = zeR [x:] i
E*1
which gives

X, (™) 2 X, (np)

Q. E. D.

Derman [1962] has shown that the approach of Eaton and Zadeh
cannot be improved upon by collecting added information. That is,
a policy consisting of deterministic selection of input symbols based
upon knowledge of the state alone has as low a cost as any other type
nf nolicy. In Theorem 9.6 we have shown that for the class of machines
which have rank of RE finite, the state information is not always needed.
An optimal nolicy consisting of sequences of inputs can be found which

disregards intcrmediate states,



CHAPTER 10

SUMMARY AND OPEN PROBLEMS

10,1 SUMMARY

Let us summarize the most important original aspects of the work,
Chapter 1 contains a method of constructing a finite deterministic
machine (if one exists) which is expectation equivalent to a given
probabilistic sequential machine (Theorem 1.3 and Theorem 1.7). In
Chapter 2 the method is extended giving invariant subspace conditions
for the existence of an input-state calculable (deterministic switching
but random outputs) machine which is N-moment equivalent to a given pro-
babilistic sequential machine (Theorems 2.4 and 2.5).

Chapter 3 raises the criterion of interchangeability as submachines
as a condition of behavioral equivalence. Indistinguishability is
the only equivalence which meets the interchangeability condition
(Theorem 3.4). It is also proven that the class of finite deterministic
machines can distinguish between two tape equivalent machines which are
not expectation equivalent (Theorem 3.2).

Chapter 4 provides bounds on the length of strings necessary for
deciding *E (Theorem 4.3), 2 (Theorem 4.5), the reduction relations
RE {(Theorem 4.4) and RN (Corollary 4.5).

Chapter 5 extends the Rabin reduction theorem for probabilistic
automata to probabilistic sequential machines (Theorem 5.2). A finite
set of invariants exists for 2 for isolated cutpoint machines (Theorem
5.3), Using the notion of stability congruence relation, a sufficient
condition is found for the existence of a finite set of invariants for
ET (Theorem 5.4). Lastly, two new properties are defined, the balance

property and stability near the cutpoint, which lead to a class
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of machines with a finite set of invariants for ET (Theorem 5,.5).

Chapter 6 considers stability problems for = =N’ and =. simul-

I

taneously, Properties of general stability transformations are obtained

ED

(Theorem 6.1 and Theorem 6.2) in terms of error matrices, Properties of
error matrices for the three cases above are summarized in Table 6.1,
The notions of invariant error matrices and eigenerrors are introduced
to allow the three equivalences to be studied together. A sufficient
condition for the existence of eigenerrors is found (Theorem 6.4).

A symbol matrix of a cyclic permutation of all the states (n 2 3) has no

nontrivial eigenerrors (Theorem 6.5). Finally, it is shown that stability
transformations associated with invariant error matrices preserve

the behavior of eigenstates, the stochastic vectors mapped into themselves
by the symbol matrices (Theorem 6.6 and Theorem 6,7).

Chapter 7 brings out the essential difference between stability
problems for =, and the machine equivalences of Chapter 6 by translating
the tape acceptance of a machine into the notation of convex sets, For
nonsingular machines, necessary and sufficient conditions are obtained
(Theorem 7.2 and Theorem 7.4). A sufficient condition for nonsingular
machines to be equivalent by E is found as a by~product (Theorem 7.3).
Extensions to certain singular cases are possible.

Chapter 8 shows the essential difference between minimization of
states for ET and the equivalences Zps Eye and =10 It is proven formally
that a minimal state machine can be obtained via state reduction for
Spe and = (Theorem 8,1 and Theorem 8,2). Examples are presented
showing the failure of state reduction methods for e (Remark 8.3),

A necessary condition is provided for state reduction to be commutative

for Er (Theorem 8.3). Finally, machines with four states are discussed



geomet rically to exhibit Fundamental properties of statoe roduction
for Zi {Theorem 8§ 47,

Chapter 9 connects probabilistic sequential machines with optimal
control theory. Several cauivalences haviig experimental intcrpreta-
tions are defined for input and output events. A1l machine equivalences
in this thesis are related by Figure 9.1, A transiation is made
between the terminology of probabilistic machines and that of optimal
control (Lemma 9.1). The subject of equivalent policics is considered
for certain special cases (Theorems 9.1, 9.2 and 9.3). A characteriza-
tion of cquivalent proper policies for machines with costs associated
with the states is obtained (Theorem 9.4)., The reduction relation RE
of Chapter 1 is used to obtain a sufficient condition for the cxistence

of optimal policies consisting of strings rather than symbols (Theorem 9,6).

10.2 OPEN PROBLEMS

A greet mary onen problems have been suggested by this research.
There are a rather large number of new concepts contained in this
thesis which scem to deserve further study.

In Chapter 2, there is no bound relating the number of states of
an input-state calculable machine to the number of states of an N-moment
equivalent probabilistic sequential machine. Perhaps the method of
Theorem 5.1 could be used to obtain such a bound. In addition.
the methods of Chapter 2 may be able to he extended to given an input-
state calculable machine cquivalent by 3, tooa probabilistic sequential
machine

It would be interesting to know bounds similar to those of
Chapter 4 for deciding whether the new cquivalences of Chapter 9 hold

between arbitrary machines,
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Ong ui the princinal results of Chapter 5 is not satisfactory in
that it is either a characterization of certain isolated cutpoint
machines or else is a characterization of a broader class than isolated
cutpoint machines (Theorem 5.5). Finding out which is the case involves
either finding a very fortunate example or additional results concern-
ing the basic concepts involved. The discovery of any classes of non-
isolated cutpoint machines which have a finite set of invariants for
= would be very enlightening.

The stability problems of Chapter 6 and Chapter 7 seem to provide
a very rich area of study. The concept of invariant error matrix, when
fully developed theorctically, may provide insight into decompositions
of probabilistic machines.. The notion of lumpability used by Bacon
leads to one kind of invariant error matrix and to a decomposition
which is equivalent to the original machine by I Other kinds of
invariant error matrices may lead to decompositions cquivalent hy
different machine equivalences. The theorey of convex sets seems
especially rclevant to the equivalences 210 S and 2,10 The machine
interpretation of additional basic notions of convex sets and the convex
set interpretation of additional machine concepts would make the connec-
tion shown in Chapter 7 more important.

An interesting class of problems arises if the probabilities of
the probabilistic scquential machines are identified with physical
quantities. Suppose we construct a voltage analog of the expectation
of a probabilistic sequential machine using n voltage storage devices.
The output valucs Fi correspond to amplification factors. Let us

pass its analog output (corresponding to EA(x)) through a threshold

device which emits a 1 when the voltage is greater than or equal to A
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and a 0 otherwise. Conscquently, the constructed device is able to
compute T(A,)) by analog means, But how is the size of such a device
related to the size of a deterministic machine which also recognizes

the set T(A,))? If we have a deterministic machine D which recognizes

a set T(D), how do we find the smallest (by number of states which are
voltage storage devices in this example) probabilistic automata A' which
recognizes T(A}A) = T(D)?

A partial answer to the first question is provided by the generali«
zation of the Rabin-Paz bound (Thecrem 5.2). We let "y be the number
of states of the deterministic machine, n the number of voltage storage
devices of the analog tape recognizing machine:

n, s (1+ 5%0n'1 where d = F = F .

The term 26 can be interpreted as the minimum separation in
expectation that can be allowed between incquivalent input sequences.

In this example, ¢ is related to the precision of voltage measurement.
Unfortunately no characterization of the class of machines for which
the bound is met exactly is known. The Appendix contains probabilistic
machines for which no tape equivalent deterministic machine meets

the bound.

It is casy to show that the following relationship holds between

two state "cores'" of D and the voltage storage devices.

. 1 .
Number of voltage storage devices > . Number of "cores" + 1.

The answer to the second question, providire an algorithm for
going from a sct of tapes accepted to a minimal state probabilistic
machine which accepts the same set of tapes would provide interesting

results for the representation theory of abstract algebras.



APPENDIX

We exhibit a class of machines for which the Rabin~Paz bound is
non-minimal, Each member of the class will accept the same set of
tapes as some finite deterministic machine, but the bound will be
too high by a factor of at most e,

Let the class be C = {A(p) :pe [0,1]} where

AP o 2, 1, 0y, {0}, ACD), (é)' 0>

and

SORE P

a1, = (0,0 [ 8,
= (1-p)”
EA(p)(of)‘=.(1-p)r
pick some finite r' and let
1-p* - -pT e 28
Hence
26 = (1-p)" p
Pick A = (lee)r' - & which makes it an isolated cutpoint with
separation 6.
It is clear that
Ta® ) = (0% : t s v}
Conscquently there is a deterministic machine D with r'+2 states
(and no less) such that
Ta®™ 5 =T

The Rabin-Paz bound gives

1
n

D
(1-p)¥ p
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Note that for suy r', the function

. . . ‘o . x 1
is centinuous with respect to n and has minimum va.uce for p = p = porra o
ilence
. r'+l
£(p) 2 £() = g
1 -
(1 - =
As we have scen above, n, = r'+2, Substituting the values in the bound
we get
'+
r'+2 <1+ rl ;
(1 - ) ¥
r'+l
We observe that
. 1
lim : T e = 2.71828. ..,

r' > (lvm

Furthermore, by checking a few terms, it can be seen that

< ¢ for any finite r'

lewaver, for these probabilistic machines, a good approximaticn
for ny is obtained by dividing the Rabin-Paz bound by ¢. For the follow-
ing case the bound can be divided by ¢ also
It is clear that if the n state "probabilistic" machinc of
the bound is actually & deterministic automaton, we obtain
ny =S (1 %9“’1
A forn2 5

It is not known whether there are other classes of machines for

which the Rabin-Paz bound is too high by the factor of e.
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