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An assumption of statistical reflection symmetry is proposed for certain turbulent flows. On the
basis of this assumption it is shown that some space-time velocity correlations characterizing the
flow are even functions of the time delay between the correlation measurements. In particular the
second- and one of the fourth-order velocity correlations are symmetric in this relative time.

HE idea of using statistical symmetry con-

ditions to simplify the treatment of problems
in the theory of turbulence was first proposed by
Taylor in 1935." He suggested that certain types of
turbulence might be considered to be statistically
homogeneous and isotropie, ideas which were borne
out by experiment. On the basis of these hypotheses,
for instance, the second-order space-time velocity
correlation can be written,”

Q.x; T, t) = v(d', o,x”, ")
= Q.(r; U, trrs + Q,(r; U, t') 64, 1

witht=1" —1tt=¢"—t,and T = (' 4+ ') /2,
and where v,;(t/, ¢') is the ith component of the
velocity at t/, t’. Here v, = v, and similarly for other
components. The funetions @, and @, are scalar
functions of the scalars r, T, ¢. The bar indicates
ensemble averaging. If in addition to these spatial
assumptions, one also supposes that the turbulence
is statistically stationary, the correlations will not
depend upon the absolute time 7', but only upon
the relative, ¢ Results similar to these can be
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F16. 1. A member of the ensemble is shown opposite its mirror
image, az. The line represents the plane of symmetry.

1 G. 1. Taylor, Proc. Roy. Soc. (London) A151, 421 (1935).
2 See G. K. Batchelor, Homogeneous Turbulence (Cambridge
University Press, New York, 1956).

written down for correlations other than the second-
order velocity correlation of Eq. (1).

These considerations have not explicitly involved
the use of reflection symmetry properties, except
insofar as the requirement has been made that
tensor correlations formed from true vectors
(velocities, for example) be true tensors and not
have pseudo-tensor properties. It is the purpose of
this paper to show that by fixing reflection symmetry
restrictions upon the ensemble from which the
correlations are calculated, some correlations
characterizing the turbulence field can be shown
to be even functions of the relative time ¢.

We return to the general problem where the
assumptions of statistical homogeneity, isotropy,
and stationarity do not necessarily apply. Statistieal
reflection symmetry is now assumed. It is supposed
that for every given member of the ensemble
(velocity and pressure given as a function of space
and time) there is a single mirror image for all
times. The equations of mechanics of course allow
this possibility. Then we imagine, for clarity, that
a replica of the original ensemble is made and
placed by the original ensemble in such a way that
each member of the original has its mirror image
opposite it. In Fig. 1 a member a of the ensemble is
shown with its reflection azp opposite it. In that
figure the plane of symmetry is the y — 2 plane and
the two points 1 and 2 are located on the same
perpendicular to that plane and lie the same dis-
tance from it. The quantities v and v are the velocity
and the reflected value of the velocity at the indi-
cated space-time points.

The procedure to be utilized is the following. A
function G of the velocities at the points 1 and 2
and the times ¢’ and '’ is averaged over the original
ensemble. This average is then compared with the
average of the same function G over the reflection
of the original ensemble (which is really the original
ensemble reordered) but with . the difference that
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the velocities in the second case are to be evaluated
at the point 1 and the time #/ and the point 2 and
the time ¢. It is noted that the sign of the relative
time, ¢ = #” — ¢/, has been changed in the second
average. Then if the two averages can be shown to
be equal, the average (correlation) is an even
function of the relative time.

To begin, it follows from the construction of the
mirror image ensemble that

ve1, t) = [—0.(2, 1), 0,2, 1), 0.2, {")]
and 2
vk(zy f,) [—7)1,(1, t,)y Dy(]-) t’)’ Uz(l i t’)]'

Then the function G of the velocities to be used in
averaging over the original ensemble is

Il

Gl.(1, 1), 0,1, V), v.(1, t');

va(2, 1), 0,2, 1), 0.2, )], (3)
and the function for the second averaging is
Grlvr(l, ), 0,01, 1), v.p(1, t);

vel2, V), 0,e(2, 1), 0.(2, )] (4)

Using (2), G can be written
Grl—vA2, '), 0,2, 1), v.(2, t');

—u,(1, ¥), 0,01, '), 0,01, t')]. (5)
Finally, then, if the correlation being considered is
such that

GR =@ y (5a)

that is, the expression (5) equals the expression
(3), the correlation is an even function of the relative
time ¢. This is true even for nonstationary stochastic
processes. The same sort of considerations can be
applied to correlations involving functions other
than the velocity.

Some examples of interest in the theory of turbu-
lence will now be considered. For incompressible
fluid flow the second-order velocity correlation of
Eq. (1) can be expressed in terms of the longitudinal
velocity correlation ¢ when it is supposed that the
turbulence is homogeneous and isotropic, by the
relation”

) - _ LT, 1)
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+ [Q("y T, H+ 3 or 0ii) (6)
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where the longitudinal correlation is defined by

Qr; T, ) =o', '’ + i, 1), (7

with % the unit vector in the x direction. Thus the
expression (3) is in this case

G =v.(1, 2,17, (8)

where the point 1 is determined by the vector ' and
the point 2 by ' 4 ri. Also we have, under the
reflection symmetry assumption,

Gr = [—v.2, ¥)][—-2.(1, O], )

which is the same as (8). Hence,

Qr;T,0) = Qr; T, — 1) (10)

and

Qir;T,8) = Q. T, — 1), (11)
so that the second-order velocity correlation is
symmetric in the relative time.* It should be noted
that to establish Eq. (11) it is assumed that the
ensemble has reflection symmetry about every plane.

When one considers the third-order velocity
correlation, @Q;.;, it is found that on the basis of
the assumption of reflection symmetry, no time
symmetry property can be established. The fourth-
order velocity correlation is defined by

Qif:klzui(r’) t/)ui(r’) t/)uk(r,+r7 t,+t)ul(r,+ry t’+7)
(12)

This correlation can be expressed in terms of five
generating scalar functions under the assumptions
of homogeneity and isotropy. It is possible to find
enough combinations of velocity components which
satisfy the relation (5a) to show that each one of
the scalar generating functions is symmetric in the
relative time, if the ensemble has the above proposed
reflection symmetry. Consequently, the fourth-order
velocity correlation is symmetric in the relative
time,
Qiiinit; T, 8) = Qiju(t; T, — ). (13)
In conclusion it is seen that on the basis of a
reflection symmetry assumption for the ensemble

*It is not difficult to show, by considering the correlation
of y components, that even for compressible flows the two
functions @, and @, of Eq. (1) are symmetric in ¢{ under the
reflection assumption and thus @;; is symmetric for such flows.
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of turbulent flows, certain of the more symmetric
correlations are even functions of the relative time,
even for nonstationary processes. In particular it
has been shown that the second- and one of the
fourth-order velocity correlations are even functions
of the relative time. It would be of interest to check
the reflection symmetry assumption through an

WILLIAM C. MEECHAM

experimental observation of the time symmetry
properties of the correlations.
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