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0. INTRODUCTION

The notion of behavioral equivalence is a fundamental part of the study
of automata theory. Two definitions of behavioral equivalence occur in the
literature for deterministic machines, One, due to Burks [5], calls two ma-
chines behaviorally equivalent if they define the same function from input
strings to output strings. The other, part of Rabin-Scott automata theory,
calls two machines behaviorally equivalent if they accept the same set of
tapes. The two definitions can be shown to be the same for deterministic ma-
chines by recoding arbitrary output symbols into strings of zeros and ones.
Both definitions have been generalized for probabilistic machines. However,
for probabilistic machines the resulting generalizations are not equivalent.

This paper is concerned with certain kinds of equivalences between prob-
abilistic machines. Two models will be discussed later in this section in
order to gain insight into the main kinds of equivalences which will be
studied. Of particular interest will be when a probabilistic sequential ma-

chine is equivalent in some sense to a finite deterministic machine,

0.1 THE CONCEPT OF PROBABILISTIC SEQUENTIAL MACHINE
By a probabilistic sequential machine is meant a system which satisfies

one of the following two definitions:

Definition 0.1: A (Moore-type) probabilistic sequential machine

A is a system A =<n, I, 8, 2, A0),...,A(k-1), F, 0 >

where



n: a natural number, the number of states
I: a n-dimensional stochastic vector, the initial state vector
S: set of state vectors = {S; = (1,0,442,0),..,5, = (0,¢..,0,1)}
2: alphabet set 2 = {0,1,2,...,k-1}
A(i): i =0,1,...,k-1 n x n switching matrix for input symbol i. A(i)

is the probability of a transition from state 4 to state m via
symbol i,

im

F: output vector, a n-dimensional column vector whose entries are
real numbers.

O: output function O(S;) =8; x F = F;: S

Definition 0.2: A (Mealy-type) probabilistic sequential machine,

A=<n, 1,8, 2, A0),...,A(k-1), W, P>
where n, I, S, 2, A(0),...,A(k-1) are as in 0.1 and where the output function
P satisfies

P(Si,d) = Wiy SieS, Je 2,

It is an easy matter to show that Definition 0.1 and 0.2 are equivalent
in the following sense: For every Moore-type probabilistic sequential ma-
chine there is a Mealy-type sequential machine whose output is the same ran-
dom variable over each input and vice-versa. Consequently, we will be con-
cerned only with the properties of Moore-type probabilistic sequential ma-
chines, which from now on will be called "sequential machines."

There seem to be many instances of systems like probabilistic sequential
machines from other fields of study not generally thought to be automata the-
ory. Braines and Svechinsky discuss a system like Definition 0.1 in their

paper "Matrix Structure in Simulation of Learning" [1]. If one takes the



cartesian product of machines of Definition 0.2, one gets the Markov processes
with rewards and alternatives as studied in sequential decision theory as pre-
sented by Howard [2]. Matrix games as discussed by Thrall [3] can be con-
sidered as instances of Definition 0.1 in which I and F are strategy vectors
and game matrix A(x) is defined by a string x. A simple correspondence shows
that the noisy discrete channel of Shannon [8] is equivalent to the system of
Definition 0.2. One would hope that someday probabilistic sequential machines
could become a unifying concept, organizing and providing results for these
diverse fields.

Probabilistic sequential machines are generalizations of the work of
Rabin [4] for probabilistic automata. If one restricts I to elements of S and
Fs; =0 or 1l for i = 1,2,...,n then Definition 0.1 defines probabilistic autom-

ata. Following Rabin, we remark that:

Remark 1: ILet x = il.,.ir;ij € Lyd = lyec.,T.
Then A(x) = A(i;)...A(ip) i.e. the switching matrix for a string x is found

by multiplying the matrices for the symbols of x together in order,

0.2 MODELS OF PROBABILISTIC SEQUENTIAL MACHINES
We consider here two models, one of which can be considered probabilis-
tic and one of which can be considered deterministic, although both fall with-

in the framework of probabilistic sequential machines.

Example 0.1. Probabilistic internal operation: A slot-machine
A simplie model of a probabilistic sequential machine is a slot-machine.

The static position of the dials represents the present state of the machine.



Usually there are 20 different positions on the dial and 3 dials for a total
of 8,000 states. The input consists of putting in a coin and pulling a lever,
causing the machine to travel transiently through many states until it settles
down in one state. An output is associated with each state. Nothing (which
is associated with 0) comes out unless the dials all display the same object.
In that case, some change tumbles out (which is associated with the correspond-
ing real number) usually dependent only on the kind of object being displayed,
i.e., the state of the machine, Such a machine whose output is controlled by
its states is known as a "Moore machine" [7]. Each state can be associated
with a number between 1 and 8,000, and the output for each state can be tab-
ulated in a column vector or 8,000 x 1 matrix. In the formalism, this column
vector will be called the "output vector" and designated by the symbol "F".
The output for state i will be written as "F;".

The enormous number of distinct ways the lever can be pulled are pre-
vented from significantly influencing the outcome by spring loading. Hence
for all practical purposes there is only one kind of transition law associ-
ated with pulling the lever, If the randomness of transition of the dials
caused by variable factors like dust friction, humidity, heating and small
vibrations does not change over long periods of time, the probability of a
transition from any state of the dials to any other can be determined ex-
perimentally to any required precision., This situation is summarized for-
mally in the assumption for probabilistic sequential machines that the transi-
tion probsbilities are stationary. Symbolizing the usual lever play of the

machine by L, the transition probabilities can be tabulated in a matrix



A(L), with the entry in the i'th row and j'th column (written A(L) J-)being
the probability of a transition from state i to state j via input L.

If there were no other permissible way to affect the rotation of the
dials than by a pull of the lever, then the behavior of a slot-machine A
could be described as a finite state Markov chain with rewards and transition
matrix A(L). However, sudden small external shocks during the rotation of
the dials can influence the state transitions of the machine. 1In order to
model completely how such machines are played, we can consider a finite re-
peatable set of such non-standard inputs to the machine. For instance, one
such input might be described as the application of a kick with a prescribed
kinetic energy on a certain spot on the machine occurringl/S of a second
after the lever is released. Symbolizing this manner of playing the machine
by K, the transition matrix A(K) could be determined experimentally since
the input is repeatable. A finite set of such repeatable inputs could be
defined and their effects on the behavior of the machine ascertained.

To find out how strings of S and K inputs to the machine affect its
operation, it is sufficient to multiply the matrices A(S) and A(K) together
in the order specified by the string, e.g., if a string X is SKKSK then the
transition matrix A(X) is the product A(S)+A(K)-A(K)-A(S)-A(K).

Consider how the dials of the machine might be found initially. If
the dials can be completely observed, the initial state of the machine is ob-
servable. In this case, in the formalism the initial state i is represented
by a vector I (or a 1 x 8,000 matrix) with a 1 in the i'th component and

zeros elsewhere. On the other hand, the dials may not be completely visible,



and we may wish to specify the average behavior of a large number of machines
run simultaneously, or we may wish to consider the average return from play-
ing one machine only when it is left by other players on one of a set of pre-
ferred states., In any one of these cases, I can be a stochastic vector
(Il""’IB,OOO) where Ij is the probability of being in state i1 at time tg.
In the general case, the next state probabilities starting with an ini-
tial state vector I and an input string X are given by I.A(X). Hence the
expected value of output of a machine A starting with initial state distribu-
tion I and output vector F after a string X of inputs has occurred is just
Ea(X) = I-A(X)-F
which is a bilinear form in I and F with form matrix A(X). The variance in

output and other higher moments can be defined analogously.

Example 0.2. Deterministic internal structure: Chemical production cell
Suppose & chemical tank A is divided into several isolated compartments
Ay,...,An by partitions which are interconnected by an electronically con-
trolled system of pumps and valves, Suppose that there is a finite set of
controls X = 0,1,...,K-1 and that for each control c a fixed fraction of the
chemical in compartment A, vgj, is pumped into compartment Aj. For all con-
trols ¢ in 2, the full influence on redistribution of liquid in the tank can
be described in a n x n matrix A(c) with vgj being A(C)ij' Furthermore, sup-
pose that the liquid being pumped between compartments is a catalyst which
causes production of a desired end product in each compartment with a differ-
ent efficiency, i.e., if the mass fraction of catalyst in A; is P4 and Fj is

the efficiency of A;, then the output of end product is P;F;. Note that it

6



is assumed that the output of the compartment depends linearly on the catalyst
present.

The initial state I is an n component vector with the i'th component I;
E;
being the mass fraction of catalyst in compartment i. Note }; I; = 1 since
i=1

the tank is a closed system as far as the catalyst is concerned. The dis-
tribution of mass fractions of catalyst over the compartments after a se-
quence of controls X = i;...1iy is just

TeA(ig)eveo-A(diy) = I-A(X) .

That is, (I-A(X)). is the mass fraction of catalyst in compartment i after

i
starting with initial distribution I of catalyst fractions over compartments

and the string of control inputs X = i;...1p.

The total end product from the tank is the sum of the outputs from each

n
compartment : }: (I+A(X))4F; which can be written I-A(X)-F in matrix nota-
i=1

tion. This expression has the same form as the expectation of output for the
probabilistic slot-machine, but there are no overt probabilities involwved
here. The mass fractions of catalyst play the same role as the probabilities
in the first example. However, the output will still be written like an ex-
pectation as Ep(X).

The total end product accumulated, Ty, for the string of controls X
from time to to time tO +m 1s given by adding the output from each substring,

i.e.,

Ty = Ep(i1) + Ep(iii)+.. +Ep(irize.inm)



1. DETERMINING WHETHER A PROBABILISTIC SEQUENTIAL MACHINE IS
EXPECTATION EQUIVALENT TO A FINITE DETERMINISTIC MACHINE

1.1 THE CONCEPT OF EXPECTATION EQUIVALENCE
In the two models discussed in the introduction, the expected value of
output, EA(X), played an important role in the physical interpretations. Let

us repeat the definition of the expected value of output.

Definition 1.1: The expected value of output for a probabilistic sequential

machine A is given by

*
Ep(x) = I-A(x)-F for x in X

Definition 1.2: Machines A and A' are expectation equivalent, written A = A',

if

E

*
a(%) = Ep(x)  for all x in 2

Recall from example 0.2 that EA(x) was the actual output of the chemical
cell and not an expectation. Hence the basic concept of expectsation equiva-
lence is analogous to the definition of behavioral equivalence of Burks for
the model 0.2, However for example 0.1, the slot-machine, expectation equiv-
alence is not the generalization of this kind of behavioral equivalence,

The concept of indistinguishability discussed in Chapter 3 seems to be the
appropriate generalization of this kind of behavioral equivalence. ILet us
now turn to an example to show how proper coding of the outputs could make
the concept of expected value of output relevant to an unreliable digital

computer,



Example 1l.1l. Proper choice of output code can make the expected value of
output relevant to the study of real computers. We encode the output so
EA(X) is approximately the code for output for string x. Then expectation
equivalent machines have nearly the same input-output behavior when one
averages it over a large number of programs.

Suppose from some machine A we have

IA(x) = (.0000, .0625, .8750, .0625, .0000, ...)
A(y) = (.8750, .0625, .0000, .0000, .0625, ...)
IA(z) = (.0000, .0000, .0O0O, .1250, .8750, ...)
and
o= ( T, B, A, Ax, * eed)

with the intent that

x causes an "A" as output
y causes a 'T" as output
z causes a X" as output

We can recode the output symbols by the following (FE' is T recoded)
IIH
7 = (100, 011, 010, 00l, 000, ...)
and
Ep(x) = 010z which is the code for A
Ep(y) = 100,  which is the code for T
Ep(z) = (.001)o which is not a code, but

if decoding is used which picks the closest code number, z is associated with
output "*",

A more careful choice of code numbers could have made each expectation
equal to a code, simplifying the decoding problem.* However in a practical
situation, only a sample expectation to be decoded can be obtained and a more

elaborate statistical decision rule than Jjust comparing for equality must be



used in decoding the output symbol,

*Proof: Let Xi be the code weight. (Xj = Fy) and I-A(zj) = (Piys PigyeesPip)
i=1,2,...,n

The condition that Ey(z;) = X; 1 = 1,2,...,n implies that

i
Py1Xy + PioXo + ov. + PoinXn = Xy
Pnixl + PpoXo + ... + Pn;Xn - i
or equivalently
P11-1 Pio ... Pip / X
P'X =| Poy  Pos-l ... Paon N
Pni e e Pn;"l \ %

which has a non-zero solution iff Determ.(P') = O.

By definition an eigenvalue of a matrix M is some number A; such that

/ My1-Ai mi2 +e. Myp
Determ.| mp;y Moo=-Ai ... Mop = 0
Mna N - mnn")\j_

For any stochastic matrix, 1 is an eigenvalue.

Hence Determ.(P') = 0 is always true for any choice of probabilities
and the result follows.

In order for the encoding to be unique we also need Xj # X3, 1 # 3 but

conditions on the probabilities for this to occur will not be considered here.

Example 1,2,
Machines A and A' which are expectation equivalent: A = FA!

IMX)F = I'A'(x)F' Vx ¢ r

10



A = <1, A0), A(1), F>and A' = <TI,A'(0), A'(L), F>
A0) = [1 o o A1) = (5/5 /5 1/5
1/2 1/k 1/M 1/5 4/5 o
/4 o 3/Y L/s  1/5 o
A'(o) = (1 0o o) AT(l) = f?/lo 0 3/10
5/8 o 3/8 13/5 0 2/5 |
o 1/2 1/2 l9/10 0 1/10}
|7
F=7F =15
5

These machines are expectation equivalent from any initial probability dis-
tribution, I, over states.

The previous example shows that two machines can have very different
switching matrices and still be expectation equivalent. Frequently, studies
of Markov processes are concerned with the location of the zeros in the trans-
ition matrices, The example shows that the locations of zeros in the transi-
tion matrices is not the only relevant factor in the study of expectation
equivalence, Since the graph theoretic properties of the transition matrices,
such as the accessibility of a state,depend on where the zeros are, one
would not expect a purely graph theoretic approach to be very fruitful in
the study of this problem, Hence some of the tools of linear algebra will be

used in addition to the above approaches.

1.2 THE REDUCTION RELATION Rp

In this section a congruence relation, Rp, will be defined so that a
quotient machine can be constructed. States of the quotient machine will
correspond to the distinct values of expectation which occur for input strings.
If the rank of Ry happens to be finite, the machine constructed has a finite

11



number of states. By attaching a deterministic output device to each state
of the constructed machine, the expectation equivalent deterministic machine
is obtained,

If the rank of Ry is finite, some class of the relation must contain in-
finitely many strings. A necessary condition for Ry to be finite in rank is
that it be non-trivial, i.e. at least two different strings are contained in
some class. This necessary condition produces strong constraints on the form

of the symbol matrices of such probabilistic machines.

Definition 1.3: The reduction relation Ry is given by

¥
x Rp y iff Ey(x) = EA(y) & EA(XZ) = EA(yz) Yz e ) VIeS
If 2, contains A, a semigroup identity, the definition reduces to
*
X Ry y iff Ep(xz) = Ep(yz) z ¢ L,VlesS .
*
Rp is a congruence relation on 2. because of the reflexivity, transitivity
and symmetry of "=" and the substitution property in its definition.
In order to discuss congruence relations between stochastic matrices
which may not be generated by strings of symbol matrices a matrix congruence

analogous to Rp will be defined.

Definition l.L4: The matrix reduction relation BM between n x n stochastic

matrices B and B':
B Ry B' iff IBF = IB'F' and there exist machines
*
A and A' such that IBA(z)F = IB'A'(z)F' for all I e S, for all z € 2

Hence two strings x and y which are in the same class of the relation

Rp will have equal expectations from any initial state of the machine and

12



will continue to have equal expectations for any finite input continuation z.
As far as expectation of output is concerned, the behavior of the machine A

is the same after either string x or string y. Returning to Example 1.1, we
can interpret x and y as program segments which produce the same final output
code and from which any continuation will give the same output code, If in-
termediate outputs are suppressed, x and y in Rp can be regarded as equivalent

microprograms in the machine A,

1.3 CONSTRUCTION OF THE QUOTIENT MACHINE

Definition 1.5: The equivalence class of x' of R, a congruence relation, is

given by
Rx'] = {x:xRx'")
It is a well known result [10] of automata theory that given a right
*
congruence relation R on , one can construct a quotient automaton with no

output T(R)

™MR) = <a, S, M>
where
a = R[A]
S = (RIx]:xeX)

M is a function from S x 2, into S such that

MR[x],0) = Rlxo]l xe Z*; cE L

*
Definition 1.6: Iet B C)2 . A congruence R refines B if

XRy=Sxef iff yep .

15



Theorem 1.1  (Nerode)
*
Let B be a subset of ). . B is the behavior of a finite (deterministic)
automaton A = < T(R), % > over 2, where«” = {R[x] : x € B} iff there exists

a right congruence relation R of finite rank which refines B.

Theorem 1.2

If the congruence relation Rp has finite rank, then for any A there is
a finite deterministic automaton A' such that the tapes accepted by A' are
T(A,N) .

Proof: Iet B = T(A,A) = {x : Ep(x) > A}, Note that Ry refines B i.e.
Xx Rp y = x e T(A,\) iff y € T(A,\). If Rp has finite rank, by definition
{Rplx]} has a finite number of members. Using theorem 1.1 we construct

™Rp) = <a, s, M> and

A <a, 8, M, & > which accepts T(A,)\)
Q. L. D.

Definition 1.7: rpA(x) is the response of A to input string x. If A is

deterministic, rpp(x) is the state of A after an input of x. If A is probabil-
istic, rpp(x) is a random variable teking on values which are states.

We use the above construction to give a sufficient condition for the re-
duction of a probabilistic sequential machine into an expectation equivalent
firite deterministic machine whose output function is either a comnstant C(s)

. . R . R .
for each state s or a random device 0,(s) with expectation E(0,(s)) = C(s).

Theorem 1.3
The reduction relation Rp defined by a probabilistic machine A has

finite rank if and only if there exists a finite deterministic machine A'

1h



with a deterministic output 0, such that 0,,(rp,. (%)) = Ey(x) vx ¢ Z%
Proof: (sufficiency) By theorem 1.1 let A" = < a, S, M, ¢ > where b
is the empty set. Note any congruence R refines é vacuously. We attach an
output function OA' to elements of S.
0pi(8) = Ep(x) s = Rplx] .
For a deterministic machine, M is extended to M* which operates on

strings rather than symbols by

M(s,0) = Ms,o0) sesS gel
* *
M (s,0x) = M*(M*(s,c),x) X €l
*
We note that M (a,x) = rpA,(x) so we need show only that rpA,(x)

= Rplx]. Iet x = ijip...ip for iy e 25 § = 1,2,...,m.
rp, (x) = M(z,x) = M(M(s,i1),1iz...1p)
= M*(M (a,1i1),ip...1p)
= M (M(RplAl,11) ,ie..iy)
= MY(Rplaiil,is...ip)

= MY(MRpliil,12),15..0im)

v e > @

= Rpliiiz...ip] = Rplx]
Hence the constructed sequential machine is A' =< a, S, M, Opr >
(necessity)
Given A" = <a, S, M, Op' > such that

*
Ep(x)  vx e L

Opr(rpar(x))

*
E (xz) vz e L

A

0,:(7p,, (x2))
Iet rpA,(x) =8, xe Zﬁ

Define

Sy Ry 8y iff x Rpy

15



Let n' be the cardinality of S — finite,

rank Ry rank Ry

rank Ry < n'
Hence rank Rp is finite. Q.E.D.
R
Instead of the deterministic function O,t, a random device OA.(S) such that

E(OE,(S)) = EA(x) could have been used in the construction .
1.4 THE PARTITION OF THE SET OF ACCESSIBLE STATE DISTRIBUTIONS INDUCED BY Rp

*
Definition 1.8: V(A) = {IA(x) : x € 2, } — the set of all stochastic vectors

which can occur as distributions over the states of A, We sometimes call

V(A) the "state vectors accessible in A".

Definition 1.9: A set of vectors V = {vi,Vs,...} is convex if for any finite

set of indices I c¢j > O andi{j ci = 1 +:{: civi € V. The convex closure of a
iel iel
set of vectors V, written V+ ={v' : v =zEjCiVi and:{: ci = Ll and ¢ > 0 and
iel iel

v; € v}.

Theorem 1.k
If Rp has finite rank r, there exists a partition II = (II1,...,II.) on

V(A) and an integer valued function g(1l,m) such that
TI3A(0) = TIg(i,g) 1 = l,...,T5 o€ 2,
Proof: We use Rp to induce an equivalence on the set of stochastic
vectors accessible by the machine.
Since Ry is of finite rank, we form a set of an arbitrary distinct rep-

resentative from each congruence class, S8y Xj,...,Xpy where xj # X

16



i=1,2,...,r; j<i.

Define IIj = U {1A(x) )
X € RF[XJ']

We show that (II ,...,II.) is a partition of V(A)

r
Let W= [ II;
i=1

TA(x') € W =2TA(x'") e V(A)

IA(x') e V() ==x'c¢ Rplx ] for some k = 1,...,r
=>-TA(x') € II} for some k = 1,...,r
= TA(x') € W
Hence
n
W o= U II; = V(&)
i=1
We show

suppose that

where

IA(y) € II; =>y e Rplxi] =y Rp x4
IA(y) € II3 =y € Rplxj] =¥ Ry x;
Hence we get
Y Bp x; =»xy Rg ¥y Dby symmetry
and transitivity of Ry gives

Xi Ry X3 = Xi € RF[XJ]

17



But since X5 and Xj are representatives and there is only one represen-

tative from each class

which is a contradiction.
Finally we show there exists an integer valued function g(i,s) such that

IIg(i,c) ge L

HiA< O')

]

vy € TI; =V, IA(w,)  for some w; € Zﬁ
vih(o) = IA(w )A(o) = IA(wyo) e IT;
for some j as has been shown above
Vo € II; =»vo = IA(wp) for some ws € Z*
voA(o) = TIA(wso) € 15
since elements of Ry have the substitution property, i.e.
Wy RF X, =pPW10 RF X0 o€ %
W2 Rp X =» W20 Rp %0 0 € X
X;0 1s an element of a class with representative X3 for some j and de-

pends only on x; and g. So there is a function g(l,m) such that

glio) = §J oel Q.E.D.

1.5 NECESSARY AND SUFFICIENT CONDITIONS THAT STRINGS BE IN THE SAME Rp CLASS
The relation Ry has occupied an important place in the development of
this theory. We now study the structure of the matrices of strings which are

in the same Ry class,

Definition 1.10: A relation R is non-trivial if there exist x and y in the

domain of R with x % y such that x R y.

18



Definition 1.11: The kernel of F = Kern. (F)

= {(veR:veF = 0)

where R is the set of reals.

Definition 1,12: The span of a set of vectors {vy,...,vy} is denoted by

< {Viyeeu,vr} > =

1 >
e

civi yCy; € 3}

Theorem 1.5
A necessary and sufficient condition for x and y to be in the same class
of the reduction relation Ry is:
(x,y)Rp<> 1 & subspace U of Kern. (F) such that

(i) UA(z) C Kern. (F) =z e Zf

U
(ii) A(x) = A(y) +| ¢ |withu; e U i=1,...,n
Un
Proof':
*
(x,y) € Rp = IA(x2)F = IA(yz)F vIeS vzel
hence
Ax)F = A(y)F
since

*
S = {(1,0,.04,0),000,(0y000,0,1)) and A € X

by linear algebra

hy
A(x) = A(y) + |. | where hy ¢ Kern. (F), i =1,2,...,n

il

multiplying by A(z)

19



we can multiply by any initial state distribution I so

h,y

. +
IA(xz)F = IA(yz)F+1I|. | A(z)F IeS
hy
But since x and y are in Rp
* +
TA(xz)F = TA(yz)F Vz e L Tes
Hence
hy
I |0 | A(z)F = 0 =>hy A(z) € Kern.(F), i =1,2,...,n.
by

Let U = < hy,een,hy >
*
We get UA(z) C Kern.(F) vz e X

Notation: we denote by A; the i'th row of the matrix A.

b

Let H = where h, € UC Kern.(F), i =1,2,...,n.

S e s 5

o]

* Mx) = Aly) +H

multiplying the equality by I on the left and F on the right we obtain
IA(X)F = IA(y)F + T * . Ies

but h.F = 0 since hy ¢ Kern.(F) i =1,...,n

IAx)F = IA(y)F
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using * again and the same argument we get

A(xz) = A(yz) + HA(z)
IA(xz)F = IA(yz)F + IHA(Z)F
= IA(yz)F
bt
since HA(z) = E where u; ¢ Kern.(F) Q.E.D.
Un

We now simplify the restriction (i) of Theorem 1.6, to symbol matrices

rather than string matrices.

Theorem 1.6

ret U =< (U, (A(x)4-A(y)1} ¢ 1 = 1,...,n for x,y such that (x,y) e Rp >

x el
then
U.-A(z) C Kern.(F) <> [V a subspace of R':
(1) UA(L) TV : vie X
(ii) VA(i) = VC Kern.(F) vi e 2]
Proof :

UA(z) C Kern.(F)

*
Let V < {uA(z); uwueU, zexl}>

]

VA(1) {uA(z)A(d); uweU zeg Zf}

= v
Congsider an arbitrary v € V. There must be some set of indexes J and con-

stants Cj such that:
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v o= 21J cjujA(zj) by definition of V.
Jed

—

Jed

Z CJ<U.JA( ZJ)F)

Jed
But
uJ-A(ZJ-)F = 0 by UA(z) C Kern.(F)
SO
vFE o= 0
Hence
V" Kern.(F)

UA(z) C V already shown

.JUA(z) C Kern.(F) Q.E.D.

Definition 1.13: A subspace V is invariant under a set of linear transforms-

tions
{ry :41=21,2,...,m} if VvT; = V i = 1,2,,..,m

Using Theorems 1.5 and 1.6, we get the following directly:

Theorem 1.7
Strings x and y are in the same class of Ry if and only if there exists
a subspace V of Kern.(F) such that
(1) V is invariant under {A(i); vi e 2}

(i1) A(x) = A(y)+H where H; ¢ V i = 1,...,n
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1.6 NECESSARY AND SUFFICIENT CONDITIONS THAT Ry BE NON-TRIVIAL
A very weak necessary condition that Ry have finite rank is that it at

least be non-trivial. From theorem 1.7 it is immediate that:

Theorem 1.8
The reduction relation Rp is non-trivial<=>¥ a subspace V of Kern.(F)
such that
(i) V is invariant under {A(i); ¥i e 2}
(i1) A(x) = A(y)+H where H; ¢ V i = 1,...,n
(ii1) x £y
Hence we now know that given strings x and y in Ry, the difference be-
tween the rows of the matrices A(x) and A(y) must be elements of a subspace
V which has special properties. Namely V must be invariant under all symbol

matrices and contained in the kernel of the output vector.

Theorem 1.9

A necessary and sufficient condition that Ry be non-trivial is that
A(i) : vi € 2 be reducible for the same change of basis to V. In other words,
there exists a linear transformation W of the state vectors S to a basis for

V such that
basis for V

=
1
1 Ay O
WoA(D)W = i :
Ao Az

—

i i i
Where O denotes a submatrix of zeros and Ay, Ao, and Az are submatrices which

for all i in ), have the same number of columns and rows.
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Proof: By theorem 1.7 and standard matrix theory [see Jacobson, ILectures
in Abstract Algebra, V., II: Linear Algebra, Van Nostrand, New York, 1952, pp.

116-1171.

Consequently, Theorem 1.9 gives us a matrix reformulation of the statement

that RF be non-trivial.

Example 1.%. We now show a probabilistic sequential machine A which illustrates

theorems 1.3 and 1.7. The method by which this example was generated will

be discussed in a latter report.

where
I = (8/1w0, 1/10, 1/10, 0, 0, 0)
0 1 o o0 0 o0 10
o 1 0 0 0 © 5
Ao)= |0 O /2 o 1/2 o0 Poo |1
O 0 o0 0 0 © 2
o o 3/ o 1/ o 1
o o o o o 1 2
o o 1/8 o 7/8 o0
o 0 o 1 o0 ©
o o0 48 o0 L4/8 o
A1) =
(1) o 0o 38 o0 5/8 0
0o 0 2/8 0 6/8 0
1 0 0o 0o 0 ©

The state diagram for A:
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where the following labeling conventions are used.

p(K) : pe[O,l]; K € 2, means probability of transition of p via symbol K.

£ : Fyp : Output of Fy occurs when the machine is in state £.
P1(Ky) P1(Ky), Po(Xz2)
0 == 0 : 1is replaced by O > 0
Po(Kz)

We note that
OORyO

since:
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A(00) = 0 1 0 0 0

0O 1 0 0 0

O o 1/2 o 1/2

0O 0 0 0 0

o o 3/ o 1/k

O 0 0 0 0

= 0 1 0 0 0

0 1 o0 0 0

o o 5/8 0o 3/8

0O 0 © 0 0
0O o0 9/16 o 7/16

0O 0 0 0 0

which gives

(A(00) - A(O))F = Jo © 0 0
0O 0 0 0
0 0 +1/8 0
0 0 0 0
0O 0 =3/16 ©
\o 0 0 0

Hence A(OO)F = A(O)F or TA(OQ)F =
Furthermore, for all P ¢ [0,1]
(o, 0, P, 0, 1-P, 0)A(0)
(0o, 0, P, 0, 1-P, O)A(1)

that is

H O OO O

H O FOOO

o 1 0

0O 1 o0

o 0 1/2

0O 0 ©
o o0 3/b

0 0 0
0 0 10
0 0 5
-1/8 o0 1
0 0 2
3/16 @ 1
0 0 2

IA(O)F for all I.

w = < {(o, 0, P,

(o, 0, P, 0, 1-P,

(O) O; P) O: l"’P:

0, 1-P, 0)} >

is invariant under the symbol matrices A(O) and A(1).

v = <{(0,0,P,0,-P, 0 >C W eand vA(O)

*
Hence for z ¢ 2,
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0 © 0 0 0 0 ‘\
0 O 0 0 0 O
o o +/8 o -1/8 o
A(00) - A(0))A(Z) =C = D
(M00) - (o)aD) =z | o0 T T
0 o -3/16 0 3/16 0]
0 o0 0 0 0 0
where C, 1s a constant depending on the string z
and
(A(00) - A(O))A(z)F = DF = 0
* A +
consequently Vz ¢ 2 VI e S
TA(OO)A(z)F = TA(O)A(z)F
or
E,(00z) = Ep(0z), which shows OORpO.

By the same method one can show that
10 RF 1 011 RF 11 olo11 Rp 11 111 Rp 11 01010 Rp O
and all strings are in the classes
Rp(A), Rplol, Rplll, Rpl11], Rplo1l, Rgploio], Rglolo1]
which means that Ry has finite rank.
We compute the expectations and construct the expectation egquivalent
deterministic machine A'., Note that the values of expectation depend on

the initial state I.

E\(A) = IANF = IF = 8.6
E,(0) = (0, 9/10, 1/20, 0, 1/20, O)F = L.6
Ep (1) = (0, 0, 3/20, 2/20, 15/20, O)F = 1.1
Ep(01) = (0, 0, 3/80, 72/80, 5/80, O)F = 1.9
Ep(10) = (0, 0, 3/20, 0, 15/20, 2/20)F = 1.1 = E,(1) (since 10Rgl)
Ep(11) = (o, 0, 9/k0, 0, 31/k0, O)F = 1.0
Ep(010) = 1.9
Ep(0101) = 9.1
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Hence the expectation equilvalent deterministic machine 1s

0

g

.6

[ =

At 8.6

O

We note that A' has 7 states while A has just 6 states. The determinis-

tic cycle 0101 appears in both machines
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2. DETERMINING WHETHER A PROBABILISTIC SEQUENTIAL MACHINE TS N-MOMENT
EQUIVALENT TO A MACHINE WITH DETERMINISTIC
SWITCHING AND RANDOM OUTPUTS
In this section the concept of expectation equivalence is generalized to
. . N . . e

N-moment equivalence. A congruence relation RF is defined which partitions
the input strings into classes whose members all produce the same expectation

. . . . e N o
and first N-1 central moments in a given machine, If Rp has finite rank, a
finite quotient machine can be constructed which is deterministic with each
state corresponding to a congruence class. Each state can be connected to a
random device having the same expectation and N-1 moments as the class repre-
sented by the state, giving a deterministic machine with random outputs. The
deterministic machine constructed is N-moment equivalent to the probabilistic
machine, After the first theorem concerning a necessary and sufficient con-

N

dition that two strings be in the same RF class, it 1is obwvious that a simple
substitution gives generalizations of the results of section 1 and they are

presented in this section without proofs.

2.1 DISTRIBUTION EQUIVALENCE: =p
The random variable structure of probabilistic sequential machines will

be investigated in this sectionm.

Definition 2.1: OX(X) = the output random variable of the machine A after

a string x has occurred as input.

The distribution of OX(X) is TA(x) and values of OZ(X) are the entries

of F.
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Definition 2.2: A and A' are distribution equivalent written AEDA' if for

Iy = {3 (IA(X)J-Fj # 0) there is a 1-1 map h between Jp and Jy, such that

IA(X)h(j) = I'A'(x)j jed,, xe Z*

L
n(y) = fy JE

Distribution equivalence corresponds to the conventional definition of equiv-
alence for discrete random variables except for random variables F, # Fj for
i# 3.

Referring back to example 0.2 note that two chemical cells are distribu-
tion equivalent if (1) We neglect those partitioned areas which have either
zero efficiency or a zero fraction of the catalyst. (2) Of the remaining
partitioned areas there is a correspondence between the partitioned areas of
one cell and the other such that corresponding areas have the same fraction
of catalyst regardless of the sequence of controls entering the cells. (3)

Corresponding partitioned areas have the same efficiencies,
2.2 MOMENTS OF THE OUTPUT RANDOM VARIABLE

Definition 2.%: Let

F = : FieR i=l)25u.|}n

call

Then the i'th central moment of OX(X) is
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W0 = B, [(0,(x) -F, ()]

A i=2,3,...

Sometimes u%(x) = By(x) will be used informally,

Theorem 2.1

i-k

G0 = ) D I Ee T 1=2,...

1
k=0

Proof: By the binominal theorem

A \ k o od-k k,i
A= m ) (050 ™ 050

A k
k=0 .,,
. . . * i-k
To compute the expectation of the discrete random variable OA(X) note
" i-X i-k
it has the same distribution as OA(X) but takes on values ¥y ...,In for
i#k
i-1
A \ | k, i *, L i-k k i i
= - + -
A =) (DRI T IE (0" + (1) ()
k=0
i-1
N k i ik, k i i
= /. (-1) <k) < IA(x)(F )EAKX) +(-1) EA(X) Q.E.D,
k=0

2.3 SPECIAL PROPERTIES OF RABIN PROBABILISTIC AUTOMATA

Definition 2.4: A Rabin probabilistic autometon [L4] is & probabilistic se-

quential machine such that F{ = 0 or Fi =1 1=1,2,...n.
We now observe that Rabin probabilistic automata have rather special

features as far as the random variable of the output is concerned,
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Corrollary 2,1: For a Rabin probabilistic automaton A

k+1 i i
+ (-1) B (%) i=2,3,.

i-1
G0 =) (DM :
k=0

Proof': Fi = 0 or 1 hence

i-k)

(F = F for i#k

and the result from Theorem 2.1.

Corrollary 2.2: If EA(X) = EA(y) for some Rabin probabilistic automaton A4,

then all central moments for x and y are equal also, i.e.

A A
wi(x) = wi(y) for i=2,3,...

Note: for i = 2 we get the variances of the outputs are equal.

Corrollary 2.3: If two Rabin probabilistic automaton A and A' are expectation

equivalent then

A A *
ui(x) = Wy (X) i=2,3,... VX € L

2.4 THE CONCEPT OF N-MOMENT EQUIVALENCE: =y

Even 1f two machines are expectation equivalent, the statistics of their
behavior may be so different that for many purposes we would not want to con-
sider the machines behaviorally equivalent. Returning to example 0.1, two
slot-machines can be expectation equivalent, meaning that the average payoff
is the same for both, but one can be much more desirable than the other for
a player of limited resources. For a player with limited resources might have
a far longer average time until "gambler's ruin" on one machine rather than

the other. Hence in order to lump those machines in the same class whose
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statistics of behavior are somewhat alike, we introduce the notion of N-

moment equivalence.

Definition 2.5: Probabilistic sequential machines A and A' are N-moment

equivalent, written =y, if

=]
=
—
P4
~
1}

EA,(x)

ot
=
e
tel
p
1]

' *
p? (x) 1i=2,...,N for all x in X
2.5 THE RELATIONSHIP BETWEEN =) AND =y

Theorem 2.2
For probebilistic sequential machines A and A'
A=p A" =5 A =y A' for all finite N

Proof: Distribution equivalence means there exists an h such that

Fur) = i
(IA(X))h(i) = (I'A'(X))i VXGZ*
when
(I'A'(x))iF; #0 .
Hence
) (T Ry = ) (TR
i=1 i=1
or
EA(X) = EAv(X)

which is expectation equivalence. For any finite N

N LN
n(i) (F})
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The fact that

A Al

p(x) =

. by (%)

comes from inspection of Theorem 2.1. Symbolically, we have shown
A ED Al 5>,A EN A' for any N. How close one can come to a converse to

Theorem 2.2 depends on the form of the entires of F.

Lemma 2.1 (Gantmacher [11])
Given a sequence Sg, Siy,... Of real numbers S, if one determines positive
numbers ri >0, T2 > Oyeeeyrn > 0

© > Vp > Vpolseeey V3 >0

such that the following equations hold

m
x s - ) e (3-0,12,...
(%) D /. rJV§ (p = 0,1,2, )
J=1
then the solution to (*) is unique. We can apply the lemma to get the

following partial converse.

Theorem 2.3 If machines A and A' meet the following requirements (Letting

h(i) = 1 W.L.G.)

(1) (IA(X))iFi = 0 iff (I'A'(x))iFi = 0 1i=1,2,...,n0,

(ii) All states in a given machine have distinct output symbols
*
(1i1) Ey(x) = Ep(x) vx el

A Al
Hi(x) w, (%) i=2,3,...

1

Then A and A' are distribution equivalent.
Proof: We use Lemma 2,1
Since the central moments and expected values of output are equal for

* *
any string, the moments of Op(x) and Opr(x) about zero are equal for any string.
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)]
i

25 [(IA(x)) 1 such that Fy # 0]

0
Sl = EA(X) = EA:(X)

A 2 A' 2
S5 = po(x) + EA(X) = p2 (%) + EAv(X)

We discard those components whose contribution to the moment is zero and re-
label the non-zero components by the index j. Let

J

(1 : IA(x),F, £ 0)
Because of assumption (i) we also have

1 3 . 1 ! 1

g+ (i T'Ax)IF} £ 0}

Hence

N P
214 (IA(x))j(Fj) P=0,1,2,...
Jed

)P

P O’l’2’tl0

1

) (TR() (F,

Jjed

By the lemma the solution is unique.

(IA(x))

g o= (TR sed

. = F! j
FJ j jed
Hence A and A' are distribution equivalent.

Example 2.1

The condition (ii) of theorem 2.3 is a necessary condition as shown by

the following:

TA(x) .3, .2) F=F' =

i
—~
Ul
-

N Ne)

I'A' (%)

i

—~

L)
\n
-

=
-

I_l
p—
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Ep(x) IA(X)F = .5

I'A'(x)F' = .5

By, (x)

Since A and A' are Rabin automata, by Corollary 2.3
u(x) = p(x) 1=2,5...

1 1

However, A and A' have different distributions over states for the string x.

2.6 THE N-REDUCTION RELATION

N N
Definition 2.5: The N-reduction relation Rp: xRpy if for ail T in S
(By(x) = Ey(y) end uy(® = ui(y)  1=2,3,...,0]
A = bp\Y My AT = 2555000,
A A zf .

= [EA(XZ) = EA(yz) and pi(XZ) = pi(yz) vz e, 1i=2,3...,N]

The relation Rg is a congruence relation and Rp = R%. Flements in the
same congruence class of Rg have expectations and the first N-1 central

* N
moments equal. Hence the machine 2. mod Ry can have random devices attached
N

to the states (which are Rpl[x]) such that the first N-1 central moments and
expectation of each device is the same as the congruence class represented
by the state. The resulting machine has deterministic switching and random
output functions and is equivalent by =y to the probabilistic machine defin-

ing R?.

Theorem 2.4

The N-reduction relation is non-trivial iff there are strings x and y:

hy N ,
Ax) = A(y) + |. | where < {hy,...,hy} >C (~\ Kern, (F*)
hy i=1
N .
and < {hy,...,0,) > A(0) C () Kern.(F%)
i=1
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N
Proof: Suppose that Ry is non-trivial.

Ep(x) = Ea(y) x#y

&> IA(X)F = IA(y)F V¥IesS
ry
< Ax) = Aly) + |&

'3
Iy

r; € Kern.(F)

i=1,2,...n

(0 = TAG)(F) - By(x)®

= TA(y)(F?) - Ep(y)®

IA(x)(F)2 = IA(y)(FZ) ¥VIes
<> Ax) = Aly)  + ; r; € Kern.(F)

A .
For any i, p;(x) can be written as a recursive function of IA(x)(F) and

smaller powers of F, i.e,,

i-1 .
409 = meIE) ¢ ) <-1)k<§) () (F B0 + (-1) ()

k=1

Hence by induction we assume

A(x)(F) = AP (F)  k=1,0,...4-1; vI

Hence
A0 = A (FY) + 8
By = EE + e
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5 = WS TEE) - my)(E)  w

Ty .
& A(x) = Aly) + |: | where r; € Kern. (F)
n
The rest of the proof is analogous to Theorem 1.5. Q.E.D.
N

: N i
If we substitute R for Ry and () Kern.(F') for Kern.(F) the proofs of

i=1

Theorems 1.4, 1.6, 1.8, and 1.9 go through exactly as before and we state the

dual theorems which are obtained.

Theorem 1.4D

N
If Ry has finite rank r there exists a partition x = (my,...,m) on
V(A) and an integer vaelued function y(i,m) such that m;A(0) = (1, o)
)

i=1,2,...,r o€ L.

Theorem 1.6D

N

ret U=< ), (4x);-A%)1) 1=1,2,...,n> for (x,3) e Ry then
Z%

X€e

*
for any z ¢ z

a subspace of R~ such that for any i e 2,
(1) vA(i)C v

N .
(i1) VA(1) = VO | Kern.(F?)
i=1
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Theorem 1.8D

Rg is non-trivial = (V) a subspace R" such that
N .
(i)'VC:(f\ Kern. (F")

i=1

(ii) V is invariant under {A(i))}

iel
(ii1) A(x) = A(y) + H where Hj ¢ V

some H; % 0.

Example 2,2

We extend Example 1.3 to illustrate theorems 1.4D and 1.,8D.

N 101

< {(0, 0, p, 0, -p, 0} >C( ) Kern | 5
n=1 IRS

2n

ll’l

21’1

for any finite N.

Hence we can replace the output from any state with a random device
with the same first N central moments as the probabilistic sequential machine.
By way of illustration, we compute the variances., Note that here the classes

of RF are also the classes of Rg.

A

ua() (8/10, 1/10, 1/10, 0, 0, 0) [ 100 | - (8.6)%

i

= = R

8.84
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Likewise, we get

ué(o) = 1.44
A
po(1) = .09
uB(01) = .09
ua(10) = .09
ia(11) = (0, 0, 9/40, 0, 31/k0, ©) 100‘\ - (1.0)%
25‘
1
i
1
L
= 0.0
uﬁ(o:Lo) = (o, 0, 21/320, 0, 11/320, 72/80) [100| - 3.61
25
1
L
1
I
= 0.0
pé\‘(oml) = (72/80, 0, 53/1280, 0, 75/1280, 0) 00|, - (9.1)%
25
1
i
1
I
= T7.29

Hence a machine A' which has the same expectation and variance for each
string can be constructed with deterministic switching and random output de-
vices symbolized by

S : [ e,N |

attached to states S which supply random numbers with mean e and variance N.

Lo



The machine A' is then just the machine of example 1.3 with the outputs

connected to devices such as the above.

¢11.9, O

1.9, .09

1.0, O

where is the initial state of A'.

Fig. 2.1 Machine A' which has the same expectation and variance for all

strings as probabilistic machine A of Example 1.3.

Example 2.3. Probabilistic sequential machines A and A' such that

Ep(x) = Epr(x)
and
u?(x) = u?(x) VX € Y= 2,3,0..
Ao)= (1 o o0 A1) = [3/5 1/5 1/5
/2 1/b  1/4 1/5 L4/5 0
1/ 0 3/h 4/5  1/5 0
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\
A'(0) =0 0 1\. A'(1) = |4/5 1/5 0
o 1/h  3/h ] o 45 1/5
0o 0 1 4/5  1/5 0
For both machines
Fi
F = |Fo| for F,, Fo arbitrary real numbers
Fp

Note that Rg is non-trivial since there is an invariant subspace
U = <{(1, 0, -1))>
such that
(a(0)-A'(0)]5 e U

[A(D)-A"(1)]5e U §=1,2,...n

Theorem 1.9D

N
Rp 1s non-trivial<=s>the symbol matrices A(i):1 e 2. be reducible for
the same change of basis (f)r V) i.e. ¥ a linear transformation W from the

state basis S to a basis for V such that

basis for V

30

A7 0O
wlia(i)w = L

As A3

where O denotes a block of all zeros the same size for all symbols i
N .

end VC () Kern.(F').
i=1
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%, THE NOTION OF INDISTINGUISHABILITY AS A CRITERION
OF BEHAVIORAL EQUIVALENCE

If probabilistic sequential machines A and A' are behaviorally equivalent
in an intuitive sense, taking into consideration how machines are built and
repaired, one would expect them to be interchangeableas a submachine of any
larger machine. Indistinguishability of two machines in any machine in which
they can be plugged into is a strong criterion, the ramifications of which we
shall investigate., The following example [9] illustrates how the notion of
equivalence through accepting the same set of tapes, =p, fails to meet this
indistinguishability requirement.

3.1 EXAMPLE OF TWO DISTRIBUTION EQUIVALENT MACHINES WHICH PERFORM DIFFERENTLY
AS COMPONENTS OF A MACHINE

Ay = <1y, A]_(O), Al(l)ﬂ F, >
where
o 1/2 1/2 o ol
o 0 0 1 0
Ay(0) = A (1) = (o 0 0 0 1
o 0 0 o 1
0 0 0 0O 1
0
Fi1 = 0 I, = (19 0, 0, O, O)
1
0
Ao = (I25 A2(O)5 A2(l); F2)
where Io = I, Fo = T,
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o 1/2 1/2 o0 0
0O 0 o 1/ 1/2
As(0) = As(1l) = 0O 0 0 /2 1/2
0o 0 0 0 1
0 0 0 0 1

Note that machines A; and Ao happen to be independent of the input as A,(0)

= A1(1) and A(0) = As(1l) and hence are both markov processes.

TABLE 3.1

COMPARISON OF MACHINES A; AND Ao

X Ep, (%) I14:(x) Eao(x) ToAo(x)
A 0 (1, o, 0, 0, 0) 0 (1, o, 0, 0, 0)
0orl 1/2 (0o, 1/2, 1/2, 0, 0) 1/2 (o, 1/2, 1/2, 0, 0)
00, 01, 10 or 11 1/2 (0, 0, 0, 1/2, 1/2) 1/2 (0, 0, 0, 1/2, 1/2)
all x: fg(x) 23 0 (o, 0, 0, 0, 1) 0 (o, 0, 0, 0, 1)

From the above table we see that A, and A, are distribution equivalent
as well as expectation equivalent. We later will show the existence of a ma-
chine which behaves differently with A; and A, as submachines despite the fact

that the state behaviors of A; and A, are Markov processes.

Definition 3.1. A » B denotes the machine obtained from plugging the outputs

of A into the inputs of B, subject to the provision that the inputs of B be

compatible with the outputs of A.

Definition 3.2. A and A' are tape equivalent machines, written A =p A' 1f for

some specified A; and o
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T(AJ7‘-1) = T(A':)\e) .

Definition %.3. A and A' are tape indistinguishable for a class ¢ of ma-

chines if
T(A>C ,N) = T(A'>C,))
for all A and C e C.
We may sometimes let C be a larger class than finite deterministic or

probabilistic automata.

Theorem 3.1

If probabilistic sequential machines A and A' are distribution equivalent
they are not necessarily tape-indistinguishable for the class of finite de-
terministic automata.

Proof (by example): Iet C be a finite deterministic machine which ac-
cepts Ol, 10 with probability 1 and all other types with probability 0. We

tabulate the expectation of A; » C and A, +~ C in Table 3.2.

TABLE 3.2

EXPECTATION OF A; - C AND A » C

X Ep 5C (%) E psC (x)
00 0 1/k
o1 1/2 /b
10 1/2 1/4
11 0 1/k
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Hence T(A;+C,N) # T(As>C,A\) for any A e (1/2, 0). The reason for this dif-
ference is because the conditional probabilities of output random variables

differ for A; and Ap. For example,

Prob. {0* (01) =1} =1 given 0% (1) =0
Ar Ag
While
Prob. {0* (01) = 1} = 1/2 given 0% (1) = 0O
Ao As

Theorem 3.2

For probabilistic sequential machines A and A' if for all finite de-
terministic machines C and any cutpoint A.

T(A>C,A) = T(A'->C,M\)
=> A =p A

Proof: Suppose EA(X) 4 B, ,(x) for some tape x of length k. Without
loss of generality pick EA(X) > EA.(X). Let A, be a rational such that
Ep(x) >N, > Epi(x). Let C be a deterministic machine which beginning at
time k computes the number i,-A, where i is the input at time k. Since Aq
is rational C needs only a finite number of states. C accepts the string x
iff i -A, > O, which can be done in a finite number of steps.

(x) >\

x € T(B>C,A,) 1ff Eg (%) > A,

but since C is deterministic
x € T(B+C,A,) 1ff Bp(x) > Ag
hence let B = A and B = A":
x € T(A+C,N.) and x e T(A'»C, )
SO
T(AC,Ae)  # T(A'»C, )
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By logical equivalence we have shown for the class C of finite determin-

istic machines

(N(O) [T(AsC, ) = T(AC, N1 = (x) [By(x) = Byi(x) ]
Q.E.D.

By the example presented in Theorem 3.1 we know the converse is not true.

3.2 A MORE SATISFACTORY TECHNICAL NOTION OF INDISTINGUISHABILITY

The example at the beginning of this section shows that notions of ma-
chine equivalence such as =p equivalence and even distribution equivalence,
=p, break down under composition of machines.

In order to get a more satisfactory definition of behavioral equivalence,
the conditional probability structure of probabilistic sequential machines
will be explored. A stronger concept of equivalence, called indistinguishabil-
ity, based upon equality for the two machines of the probabilities of all pos-
sible output strings given all possible input strings will be formulated.
Following the development of Carlyle [6], a bound will be found for the length
of strings needed for deciding whether two machines are indistinguishable.

In what follows it is assumed thst Z* contains a string of one symbol A

so that A(A) = E, the matrix identity.

Definition 3.4. The conditional probability for a sequence of outputs y

= y1Y2...¥yp glven a string of inputs X = gi...om sterting from an initial dis-
tribution IT = (IT1,IIs,...,I1I,) in a machine A will be written

P (/%)

or if the machine involved is clear from context, just PII(y/x),
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We note that the symbols of the output alphabet are real numbers which
occur as components of the output column vector F, i.e. the output alphabet

Y can be written

n
vo= U omd .
i=1

Definition 3.5. The probability of a sequence of transitions Sil+Si2+o..+Sij
with output sequence y because of input sequence x will be written

P > . > Sij(y/x)

Sil

Definition 3.6. The conditional probability transition matrix A(yi/c) is

formed from A(g) by zeroing out all columns except those corresponding to

states with output y;. More formally,

Let
Jy_ = {J Fy = i} vy eX
1
¥i ¥i Ji
and let Q@ be the matrix with [@ ], =1 for jeJd and [@ 1 .=0
Jdsd Yj_ k}J

¥i
otherwise, Then A(y;/0) = A(0)Q * vyi €Y, o€ 2. DNote that [A(yk/g)]i’j is

is just PSi+Sj(yk/G)°

Remark 3.6: Let y e Y¥, x e 1, ¥; € Y, o € X such that fg(y) = £g(x).
Then

Alyy;/x0) = Ay/x)A(y;/0)
By definition [A(Yyi/xc)]l,m is PS£+Sm(yyi/XU)

For any state Sy
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P o, ( yy;/x0) = Py o | y/%) P, ( ¥,/0)
since transitions to different states Sy are mutually exclusive events,

n
Po s, (W3/50) = ) Pg.q (/9P g (3:/0)
k=1

using the definitions again

n

Z [A(y/x) ]ﬁ,k[A(Yi/U) ]k,m
k=1

[A(in/XU)]ﬁ’m

or in matrix form

Alyy;/x0) = My/x)A(y;/0)
Hence the conditional probability transition matrices for strings can be gen-
erated by the conditional probability transition matrices for symbols as was

the case for the transition matrices A(x).

Remark 3.7: Glven initial distribution over states Ij the probability of get-

ting output string y from input string x is just

n n
Bk = ) ) ]
S

with 8 =[] we can write

Pr(y/d) = TIA(y/0s

Remark 3.8: We note the following identity
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P?I(y/x) = ;{j Pil(yyi/xc) for all ¢ € 2,

yieY

since

}j P?I(yy [x0) = E: TIA(y/x) Ay, /0)S
yieY yi€eY

= TITA(y/x) Z{: A(yi/o)S = TIA(y/x)A(0)S
yi€¥

But for any n x n stochastic row matrix C
cs = 8
Hence

TIA(y/9)A(0)S = TIA(y/x)S = Pi(y/x)

Definition 3.7. The terminal distribution II*(y/x) for a sequence of outputs

y given inputs x

T¥(y/x) = ITA(y/x)

IIAM(y/x)s °
The i'th component of II*(y/x) 1s the probability of being in state i after
input string x has occurred and output string y has been observed.

The following identity holds whenever Pét(y/x) > 0.

PR/ = B (0PI (ri/o) vie v, oel

Definition 3.8: Machines A and A' are indistinguishable written A =1 A if

A Al * *
Prolv/x) = P (y/x) wvxel, wyevx

Hence our concept of indistinguishability for machines depends on observable

identity when both machines are started from their initial state distributions.
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Definition 3.9: Machines A and A' are k-indistinguishable if

A A m m
PII(Y/X) = PII,(y/x) xe (2), y e (Y) for m=0,1,...,k.

Definition %.10: In a machine A, two initial state distributions II and A are

indistinguishable if

A A *
P(y/x) = BE(y/x) wyeY, wyxel

Definition 3.11: 1In a machine A, two initial state distributions II and A are

k-indistinguishable if

P?ﬁ(y/X) = Pi(Y/X)
yx such that
Lg(x) <k,
vy such that
Leg(y) = Ae(x)

Checking whether the indistinguishability definition (3.8) for machines
or for initial distributions (3.10) holds using only the definitions involves
calculation of an unbounded sequence of conditional probabilities. In the
next section is shown a bound for the length of strings whose probabilities
need to be calculated. As in the deterministic machine case, if n is the
number of states, then only strings of length n-2 or less need be considered
in establishing indistinguishability.

3.3 THE RELATIONSHIP BEIWEEN THE INTUITIVE AND TECHNICAL CONCEPTS OF

INDISTINGUISHABILITY

We have yet to relate the intuitive notion of indistinguishability to
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the technical definition 3.8. In the next theorem will be shown that two ma-
chines indistinguishable in the technical sense are indeed indistinguishable
when plugged into C, any finite state probabilistic or deterministic machine.
Since C has a finite number of states, it is assumed that finite strings of
Z = C(Y*), the random variable taking on values of strings of outputs of C
given strings of inputs fram the random variable Y, depend only on finite

*
strings Y .

Theorem 3.4
Let C¥ be the class of finite state probabilistic and deterministic

sequential machines. For any C € C¥

Pz = (v /0 = Bpi(z = o(xg,) /%
if
A Al
PI‘I(yA/X): = PII'(yA'/X)

for Y, and Y

A X having the same range'yA e Y

Proof: For any fixed value yp of the output string random variable of

A, Y,

A
ph7e

ooy 0 = P/ = oy fy,)

*
since the occurence of different y, are disjoint events, for all yp e Y :
Lg(y,) = te(x).

A=C !
PII (z = C(YA)/X)

i
lav)
—
—
—~
e
=3
~
X
o
«Q
—~
N
i
(@]
Py
e
=
>
=_

Likewise
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A'>C ! C
Py (=m0 =) R 0P (2 = o, ) /)
yA,e(Y)ﬁg(X)

But since Z and A' and YA and YA, range over the same sets respectively, and

the indistinguishability of A and A', i.e.

A A
PII(YA = YA/X) = PII'(YA’ = yAv/X)
we get
A>C A'=C
PII (z = C(YA)/X) = PII' (z' = C(YA')/X)
which means A»C and A'»C are indistinguishable. Q. E.D.

Since the machine C might ignore its inputs, it is clear that the converse
to Theorem 3.4 does not hold.
Hence the criterion of indistinguishability as a submachine has lead

us to the technical definition 3.8 as a kind of behavior equivalence.
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L, TFINITE COMPLETE SETS OF INVARIANTS FOR THE BEHAVIORAL

EQUIVALENCES =p, =y, AND = AND THE REDUCTION

CONGRUENCE RELATIONS Rp AND R

The results of the previous sections involve relations defined over all
finite strings of the input alphabet. In this section are found bounds for
the length of strings necessary to consider in order to decide whether two

elements of the domains of the relations are in the same class.

Definition 4.1. A set of functions f15,...,f, is a complete set of invariants

for the relation R if for all x and y in the domain of R
XRyWQﬁbfi(x) = fi(y) i=1,...,m
We now show sets of functions which are invariants for the above rela-

N
tions. A set of functions which are invariant over RF and RF are:

f (x) = E (xz)
(4,1,2) . i for all z: fg(z) <1, for ell Ie S
f x) = X7
(A,N’Z)( ) by %2)
While for the relation =y, the set of functions below is a set of invariants:
A
A) =P X for all x and y: fg(x) = 4 <i
&y, y) (M ={v/%) v: be(x) = 4g(y) <

Likewise the set

h(x,l)(A) = EA(X) for all x: £g(x) < i
By (B - WHx) for T = 2,...,N

is a set of invariants for the relations =p and =y.

Tt is clear that for an unbounded i, the above are complete sets of in-
variants. However, in what follows a finite value of i will be found for
each of these cases. In the case of =g the bound will be the same as the
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well known Moore bound for deterministic automata but in the case of =y it
will be lower for most machines. The main tool used in finding the various

values of 1 1s the following simple lemma.

4.1 THE FUNDAMENTAL LEMMA

Lemma 4,1
Given an n-dimensional vector space V, a finite set T = (T3} where each
T; € Vx V is a linear transformation on V and some finite set of vectors

VoC V such that dim <V> = r > 1.

Define

My = Vo

My = {vg:Ty :T3eT, vge Vo)

Mk = {VO.TiL. -le . Til”..’ le € T, VO € VO}
and let

h=<g%>

Then there exists an integer J(T) such that for any Vy € Vo Vg % 0

) Iym = Iyma
-

TR L
(ii) L1 # L, for k < J('T)

(iii) J(T) < n-r

Proof: L, Ly C...C Lj C...C Ly as a consequence of the definition.

o0

The sequence {dim Lj}j=o is bounded above by n, the dimension of V. Call

J(T) the smallest index k such that Ly4p = Lx. Showing that the sequence

J(T)

{dim Lj] is strictly increasing requires that for all j+l1 < J(T)
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Ly+1 # Lyto = Ly # Ly

which is logically equivalent to

Lysp = Ly =Ly = Lyjn
Hence it is sufficient to show
Assume
W.L.G. pick
vV = VO'T:'L]_...Tj_j_l_2 € Lj+o = (Vo~Til...TiJ.+l)'TiJ_+2
But
wo= VTl Ty € Lj
o +i; 1j+l J+1
So there is a finite set of indices I = {i} of a spanning set U for Lj
U = {vg'T 5T 5...T 5 : 1 T
orTpy gy Tyg, ¢ 1€ 1]

such that ry < j and constants c3

=
]

Z.ci(v TrieeToi )
€T © O BYTTTTBRy
S0

2 Ci(VOTB%"'TB%i.Tij+l) € Lj+1

Liso C Lij+1

Now consider the sequence of dimensions
dim Ly, dim Iy,...,dim Ly(T)
since

Lk§ Igyp  for  k+l < J(T), dim Iy < dim Ip4y for k+l < J(T)
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Noting that

dim L r, dim L  + J(T) < dim LJ(T) <n
which gives

J(T) <n -1

Q.E.D.

4.2 A BOUND FOR TESTING FOR MEMBERSHIP IN

1]
H

Theorem k4.1

If A is a probabilistic sequential machine with n states, then (n-1)-
indistinguishability of initial distributions x and n' is sufficient to
guarantee indistinguishability of initial distributions x and x'.

Proof: Using lemma 4.1 let

1\
vV, = (s} = ;) and dim <V> = 1
1)
T = {Alyi/o) :y;e¥, oel)
VorTy = Alyi/o)s

by the lemma,

For any string x = ij...ipr: for r' finite, A(y/x)S can be expressed as

Aly/x)s = 24 csMy 5oy s

fo 50000 )8 (%)
T

j it
ieT . ry

Hence for initial distributions = and x'
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iel Bl Bri Ji1 JI‘i
Let
i i
Y o= YV gV 4 and x = O o
Bl Bri Ji Jri
A N A i i i i
Po(y/x) = ) oy /x) with Jta(y) = fg(x) <n-1
1T /., 1 IT -
iel
multiplying (*) by =n' gives
A \ A, i1
PII'(y/X) - > [ CiPII'(y /X )
ieT

By the assumption of (n-1)-indistinguishability for s and x'
A 1,1 A i, 1 :
PII(Y /x7) = PII'(y /x7) tg(xt) = fg(y) <n -1

Hence

Prily/o = P (y/x) Q.E.D.

4.3 EQUIVALENCE OF DISTRIBUTIONS IN ONE MACHINE

Using Lemma 4.1, we can now make effective the definition of the rela-
tions Rp and Rﬁ of Section 2. A bound will be obtained for the lengths of
strings necessary to consider to decide whether x and y are in the same con-

gruence class.

Definition 4.2: Distributions = and A are equivalent for a machine A,

*
written x r A, if 1 A(X)F = M(X)F xe L

Definition 4.%: Distributions n and A are K-equivalent for a machine A,
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K
written x 3 A, if

TIAX)F = M(X)F xel: 0 < fg(x) < X

Theorem 4,2
If A 1s a probabilistic sequential machine with n states and if 5 and
A are (n-1)-equivalent in A then g " A

*
Proof: Iet x be in 2, and let us use Lemma 4.1 with

Hence

TIA(X)F = EJ ¢ TIA(x)F  M(X)F = }j ciAA(xl)F
(n-1) -equivalence gives
So
ITA(X)F = MNA(X)F Q.E.D.
4.4 BOUNDS FOR TESTING FOR MEMBERSHIP IN =p AND RF

Definition 4.4: The abstract join of probabilistic sequential machines

A=< m,40),...A(k-1),F > with n states and A' = <\,A'(0),...A"(k-1),F'>
with n' states is the abstract n+n' state machine A@ written
s = < ,0%0),...48xk-1),5® >
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where

and
&
Fl

® and A can be embedded in the n+n' dimensional space as

n' zeroes n zeroes

e oo A,
L= (n, 6,550 A = (5,750 N

The problem of deciding whether two machines A and A' are expectation equivalent,

AA(x)F = M(X)F  vyxe o

&

is logically equivalent to deciding when s and x@ are equivalent in A®A',

i.e. whether
& &
T ATA A .

Hence following Caryle [6], we use Theorem 4.2 to state

Remark L4.1:

&

S~ g nin'-1 @
AgA’

&
NS ek

which gives the following theorem.

Theorem 4.3
Iet A and A' be probabilistic sequential machines having n and n' states

respectively.

Then a necessary and sufficient condition that A and A' are expectation

equivalent:
(nA(z)F = M (2)F' vz € 1 = [7A(x)F = M'(x)F' yx: fg(x) < nin'-1]
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Theorem L4.% makes the experimental determination of expectation equiva-
lence possible provided the number of states of both machines are known.
Furthermore, it gives a bound on the process of finding whether two strings
are in the same equivalence class under the reduction relation Rp of Chapter 1.

This result is summarized in the following theorem.

Theorem 4.4

Strings x and y are in the same equivalence class under the reduction
relation Ry of an n state probabilistic sequential machine A(=)E,(xz) = Ep(yz)
for all strings z: £g(z) < n-1 and all I e S.

Proof':

*
XRFy<;;>EA(XZ) = EA(yz) for all z € 2., forall Ie S
(EIAX)A(2Z) F = IA(Y) A(Z)F
Let n = IA(x) and A = IA(y)
*
(=>nA(z)F = M(2)F vz e L
By Theorem 4.2 and its obvious converse, we get
n-1

=IAx) 5 IAY)

which gives the theorem.

N
4.5 BOUNDS FOR TESTING FOR MEMBERSHIP IN = AND Rp
Definition 4.5: Np = the independence number of an n state machine A with
output vector F.
np = dim < {(FY) : i=1,2,...,n) >

It follows from vector space arguments that
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nF = #‘ {Fk . Fk }é O}

The independence number is just the dimension of the space generated by
powers of the components of the output vector F. For a Rabin automata np =1
and all central moments reduce to polynominals in what we may consider the
first "central moment" Ep(x). In general, if the independence number is
np, then for all x in 2°, the (np+l) 'st central moment A (x) reduces to a

T ’ F U-nF+]_

polynomial in the lower central moments since

A np+l
() = A (T g
where Q(x) is a polynomial in which IA(x)(Fi), i=1,...,np occur. Hence

n

A

i
by = TMH) ) ey (F)

[
i=l

+

(%)

since ny is the dimension of the space <(F1) : i = 1,2,...,0)>
U
) A (5 + o)

i=1

Theorem 4.5
Let A be a probabilistic sequential machine with output vector F and n

states. Then for any r < ny and strings x and y in L¥:

_EA(XZ) = EA(yz) 7 —EA(XZ') = EA(yz') ]
< u2(x2) = ublya) ¢ qusta) = uB(yz) >
A . vz e L | A . A vz' : £g(z') <n-r
L up(xz) = un(yz) A Lup(xz') = pe(yz') _

Proof: Using Lemma 4.1 with

Vo = (F,(FP),...,(F))

62



dim <Vb> = r <np

(T3} = {(A(d) :1ie)
for any v, € <Vb>
L
Vo'Ty = Ai)vy = > ckA(i)(Fk)
k=
Consider any string
z: fg(z) = m' finite

Then there exists a spanning set A(xi)vO with 1 € I and constants cy(v,) so

that

A(z)vy = }: ci(vb)A(xi)vo . bg(xt) <n-r
ieTl

Let vy range over the (Fi) i=12,...,r. For any sx and A\ there are constant

functions depending on (F1), c;((F1)), such that

A = ) ey () s (7
iel
M(F) =) ey () ) (7

ieI
Hence the moments about zero from x and A\ are equal if they are equal for all
strings of length < n-r. Let x = IA(x) and A = IA(y). Then we have for any
z and any initial distribution
IA(xz) (FY) = IA(yz)(FY) i=1,2,...,r
holds if and only if for i = 1,2,...,r
IA(xz')(F) = IA(yz')(FY)

for all strings z' of length less than or equal to n-r. Noting by Theorem 2.1
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that any central moment pl‘%(x) is a function of IA(x)(F),...,IA(x)(F") the

result is established. Q.E.D.

Corollary 4.5 (Bound for the relation RN to hold)

Let A be a probabilistic sequential machine with n states and with

N < np. Then le§|y<=>for all strings z': £g(z') < n-N

Ep(xz') = Ep(yz')
A A
QTHZ(XZ') = po(yz')p for all T e S
pp(xz') = pp(yz')
- i

Theorem 4.6
Let A and A' be probabilistic sequential machines having n and n' states
respectively. Then for all
r <np+ng - # &5 e vy and ¥ # 0)

and for any initial distributions x in A and A\ in A' then

— —y po— —

’EA(X) = Epi(x) Ep(x') = Eqi(x')
%p?A(X) = ué,(x) Vx € Z* > &= < ué(x') = pé'(x') yx' @ fg(x') < n+n'-r >

L&‘(x) - W' WBor) = ()

Proof: Construct Ae> = A®A' and let V, in Lemma L.1 be

n+n'

F F . & .
Vo = {{F)s.e,(prom')} np = dim <v>

{52 (FEY or FeY') and 4 £ 0 and PEYNY')

]

\.

nF+nF:-#{?:/y\eYﬂY' and 4 # 0}

il

Using Lemma 4.1 and an argument like the one in Theorem 4.4 establishes the

theoren. Q.E.D.
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L.6 DISCUSSION OF THE GENERALIZATION OF THE MOORE BOUND

Corollary 4.6

Let A and A' be n-state deterministic machines with two-valued output
alphabet Y = Y' = {1,2}. Then A and A' are indistinguishable for all strings
if they are indistinguishable for all strings of length at most 2n-2.

Proof: In Theorem 4.6 we have nF@ = 2+2«2 = 2 so that r < 2, TFor

deterministic machines, indistinguishebility reduces to Ey(x) = E,.(x) for
all x € Zf and also

B = Ep(0) Su(x) = ub (%)
Hence the right side of Theorem 4.6 gives the result. Q.E.D.

Theorem 4.6 can be regarded as a generalization of the Moore result [7]
to probabilistic machines with arbitrary rather than binary output alphabets.
Note that Moore's bound is 2n-1 since he considers the initial output as
part of the experiment. We consider the initial outputs when considering
strings of length 1 since the symbol A has identity symbol matrix,

The role of the zero output symbol in Theorem 4.6 is a significant de-
parture from Moore's deterministic results. In order to get the same result
as Moore in Corollary 4.6 it was necessary to pick a two-valued output set
{1,2) rather than {0,1} with the implicit assumption that such recoding of
output symbols cannot affect indistinguishability between deterministic ma-
chines. Without the recoding, r = 1 and the bound is one higher than the
Moore bound.

However, in the probabilistic case, a different bound for machines with

a zero output symbol than those with nonzero symbols seems reasonable. A
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zero annihilating some probabilities in the expectation and higher moments
can mask significant changes in distributions. It is clear from Theorems 1.8
and 1.8D that changes in F; from zero to nonzero can affect the kernel of F,
perhaps to the extreme of making R% of infinite rather than finite rank and
preventing the construction of an N-moment equivalent finite machine with

deterministic switching.
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