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INTRODUCTION AND SUMMARY

Methods of homing guidance to be used in navigating interceptors to
interception have been widely studied. Because of the complexity of the
problem, it has generally been desirable to make use of two basic simpli-
fying assumptions:

1. Both the target and the interceptor have constant speed.

2, The interceptdr has a speed advantage over its target.

The mathematical models obtained with the aid of these restrictions
have a desirable tractability and are often reasonably good approxima-
tions to the true situation. However, in order to attain results which are
useful in certain important cases, both of these simplifying assumptions
must be abandoned. To give one of the many examples which lead to this
conclusion: the nature of certain interceptions can easily be such that a
very short time is available to the defense; such interceptions frequently
require the interceptor to accelerate all or nearly all of the way.!

In this report, techniques for navigating in the presence of longi-
tudinal accelerations of the target and interceptor are developed.

1.1 PROPORTIONAL NAVIGATION

Homing guidance systems generally use proportional navigation, in
which the rate of rotation of the interceptor heading, _(Q), is made pro-
portional to the rate of rotation of the line of sight, (B):

0 =KB. (1.1-1)
It is shown in Section II that in the presence of continuous and moderately

large longitudinal acceleration of either the target or the interceptor, con-
ventional proportional navigation becomes impracticable.

1Classified applications of the theory developed in this paper can be
found in the following SECRET University of Michigan Reports:
UMR-91 and UMR-111.
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1.2 GUIDANCE CRITERIA

A guidance criterion is defined herein as that rate of rotation of the
target-to-interceptor line of sight which would result in a straight-line
path. Such a path is always available to the interceptor if interception is
possible. For interception with a speed disadvantage there are ordinarily
two such paths, but all of the following can be made to refer to either path.

In this paper, the guidance criterion is denoted by B4. For example,
the guidance criterion for the constant-speed case is simply Bd = 0. An
integral equation giving the guidance criterion for arbitrary behavior of
target and interceptor speeds is derived, and it is shown that this equa-
tion can be written in closed form (Sec. III). The resulting equations are
dependent upon the time remaining until interception, but in practical cases
this time is not generally a known quantity. Certain approximations, how-
ever, can be made in terms of available quantities; in this paper approxi-
mations for constant target and constant interceptor accelerations are
derived.

1.3 NAVIGATION CONSTANT

The proportionality factor, K, (Eq. 1.1-1) is usually taken to be a
constant, but it has been observed frequently that it may be necessary to
program the value of K during the course of an interception. The results
of the present study (Sec. 4.1) strongly imply that in the presence of longi-
tudinal accelerations and a speed disadvantage, the navigation constant,

K, should be replaced by: .
2
) Rk1
1 Vmcos(e - B)

K (1.3-1)
where kl is a constant.

1.4 NAVIGATION TECHNIQUE

It was stated above that for a constant-speed interceptor and a con-
stant-velocity target, the exact guidance criterion is ;30 = 0. The inter-
ceptor measures the rate of rotation of the target-to-interceptor line of
sight. Whenever this rate departs from zero (implying the presence of
longitudinal or lateral accelerations) a correction of heading proportional
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to the departure is called for, This correction is achieved by means of
the guidance equation:

0 = KB. (1.4-1)
Similarly, if the target or interceptor is not expected to have constant

speed, the interceptor may be guided along an approximately straight-
line course by:

6=K (- pa) (1.4-2)
(Sec. 4.4). The special case of Equation (1.4-2) in which Bd = 0 and K;
is constant is simply Equation (1. 4-1), the ordinary proportional navi-

gation equation.

1.5 THE CONSTANT-SPEED ANALOGY

When the navigation factor, Kl’ is chosen as above, the rate of ro-
tation of the line of sight can be obtained explicitly as a function of the
relative range. For correct guidance criteria this rate is shown to be
independent of the assumed behavior of the interceptor and target speeds
(Sec. 3.3). The correct guidance criterion is generally not available to
the interceptor. The effect of an error in the selection of bd is also
shown to be independent of the type of guidance used (Sec. 4.5).

These facts imply that, to a good approximation, a variable-speed
interception may be studied in terms of an appropriately chosen constant-
speed case. A case in which both target and interceptor are subject to
constant longitudinal acceleration is compared with the corresponding
constant-speed interception in Section IV. Figures 3 and 4 in Section 4.7
represent interceptor lateral acceleration and trajectory comparisons
for these cases and show good agreement.
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II

THE EFFECT OF LONGITUDINAL ACCELERATIONS
ON CONVENTIONAL GUIDANCE

It is well known that an interception can be achieved by guiding an
interceptor in such a way that the line of sight between it and its target
does not rotate. Conventional homing guidance systems make use of
this principle, reducing the rate of rotation of the line of sight to zero by
mechanizing the equation

0 = Kp, (2-1)

where 0 is the interceptor heading, K is the navigation constant, and f is
the direction of the interceptor-to-target line of sight. This method of
guidance is called proportional navigation; it is discussed in detail in
Reference 2.

If both the target and the interceptor travel at constant speed and the
target flies a straight-line path, the interceptor path defined by the non-
rotating line of sight is also a straight line. In practice, significant de-
partures from these idealized conditions are tolerable and are compen-
sated for by interceptor maneuvers. If the target or the interceptor under-
go large longitudinal accelerations, however, the lateral acceleration
capability of the interceptor may very easily be saturated in attempting
to maintain a non-rotating line of sight.

For a non-rotating line of sight,
Rp = V.sinfa - B) - V_sin(6 - p) = 0. (2-2)

The geometry and notation used in this equation are shown in Figure 1.
Differentiating Equation (2-2) with respect to time and solving for the
lateral acceleration of the interceptor, VmG, yields:

Vtsm(a - B) - Vmsm(e - B) + Vtacos(a - B)

Vmg - cos(e - B) ' (2-3)
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M, T —Interceptor, Target

B —Angle of Line of Sight
Ve V4 — Interceptor, Target Speeds

6 — Interceptor Heading Angle

o —Target Heading Angle

FIG. 1 GEOMETRICAL CONFIGURATION AND NOTATION
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Equations (2-2) and (2-3) show that, if the rate of rotation of the tar-
get-to-interceptor line of sight is to be maintained at zero, longitudinal
acceleration on the part of either the target or the interceptor leads to
lateral acceleration of the interceptor. From structural considerations,
this lateral acceleration can be sufficient to make proportional navigation
unusable.

Even if the lateral acceleration given by Equation (2-3) is only moder-
ately large, the use of proportional navigation in the presence of non-
negligible longitudinal accelerations leads to difficulties. Equation (2-1)
shows that no lateral acceleration is commanded when the rate of rotation
of the line of sight is zero; Equation (2-3) however, implies that if there
are longitudinal accelerations, continuous lateral acceleration is required
to maintain the rate of rotation of the line of sight at zero. In the deriva-
tion of Equation (2-3), the navigation technique (the actual method by which
the line of sight is maintained non-rotating) is not considered. This equa-
tion would apply only with an infinitely large navigation constant, K. If K
has any finite value, it is impossible to attain a non-rotating line of sight
under the above conditions, and the acceleration requirements on the inter-
ceptor are greater and occur later in the trajectory than those given by
Equation (2-3).
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III

GENERAL CONDITIONS FOR INTERCEPTION

A straight-line path to interception is always available to an inter-
ceptor unless interception is impossible. A guidance criterion is de-
fined to be the rate of rotation of the target-to-interceptor line of sight
which corresponds to such a path and is denoted by Bd' If the target has
a speed advantage, two such paths usually exist, but in the following it is
not necessary to distinguish between them; all of the following may be
applied to either case.

3.1 THE CONSTANT-VELOCITY CASE

In the presence of longitudinal accelerations, interception requires
a more refined guidance criterion than the usual non-rotating line of sight.
The approach used to obtain improved criteria can be demonstrated by
considering the constant-velocity case.

For the target-interceptor configuration shown in Figure 1, if the
target and interceptor fly along straight-line paths at constant speed, the
following equations define an interception:

V,Tsin(a - B) = V_ Tsin(6 - B) (3.1-1)
t m
R = [V cos(® - B) - V. cos(a - ﬁ)} T (3.1-2)
m t
where T is the time remaining until interception. The following relation-

ships are obtained from the geometry and do not depend on any assump-
tions about target or missile motion:

Rp = v sin(a - B) - V_sin(e - p) (3.1-3)
R= V.cos(a - ) - V_cos(e - p). (3.1-4)

Introducing Equations (3.1-3) and (3. 1-4) in Equations (3.1-1) and
(3.1-2) gives:
RB = 0 and (3.1-5)

R+RT =0 (3.1-6)
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Equation (3. 1-5) states that the line of sight should be non-rotating--
the conventional guidance criterion. Equation (3.1-6) defines the time
remaining until interception.

3.2 GENERAL EQUATIONS

To obtain general equations analogous to Equations (3.1-1) and (3.1-2),
arbitrary target and interceptor motions are resolved into components
perpendicular to and parallel to the line of sight, and the condition that
the target and the interceptor coincide at time T is imposed; viz.,

JOT [Vtsin@ - (30> - Vmsin(e - [30> }dt =0 (3.2-1)
R = LT [Vmcos<9 - [30> - Vtcos(a - [50>] dt (3.2-2)

where B, is the initial value of B. By use of Equations (3.1-3) and (3. 1-4),
the above equations become:

fo[Rﬁcos@ B>+Rs1n<ﬁ p>] (3.2-3)

T

R + fo [Rcos(ﬁ - ﬁo) - R;’ssin(ﬁ - po> ] dt = 0. (3.2-4)
Integration yields:
Rsin(p - Bo> ' (3.2-5)
R + Rcos(p - po> "L 0. (3.2-6)
0

Expanding Rsin(p - ﬁo) and Rcos ([3 - [30) in Maclaurin series and evaluating
the above equations gives the general equations for interception; viz.,
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0= RPT + (1/2)T° [Ré + 23’3} +ulor [R<‘3 i B3> " 3R+ 3Re3];7)

0=R+RT+ (1/2)T [R - sz] +(1/6)T [----} +oee (3.2-8)

These equations are analogous to Equations (3.1-5) and (3.1-6) for arbi-
trary target and interceptor motions. The coefficients of Equations
(3.2-7) and (3. 2-8) have a direct physical interpretation. In Equation
(3.2-7) the coefficients of T, TZ/Z, T3/6, and higher powers of T are
composed of the projections perpendicular to the line of sight of target
and interceptor velocity, acceleration, third derivative, and higher de-
rivatives, respectively. Comparable relationships hold for Equation
(3.2-8) for the projections along the line of sight. Evaluation of the co-
efficients shows that if there are no target or interceptor lateral acceler-
ations, Equations (3.2-7) and (3. 2-8) may be replaced by:

oo [Vt(k)sin(o, -6) - v_Bsine - p) ] ™ t1
m
0 = TELTE (3.2-9)
k=0 '
(k) (k) K+ 1
- +2°°' [Vt cos(a - B) - v cos(0 - [3)] T
) o (k+1)! (3.2-10)

where V(k) is the kth derivative of V with respect to time. In general,
for any case in which all the derivatives of target or interceptor motion
higher than a fixed order are zero, Equations (3.2-7) and (3.2-8) become
finite sums. In the rest of this report, the target is assumed to be flying
a straight-line path, unless the contrary is stated explicitly.

3.3 GUIDANCE CRITERIA

Equations (3.2-9) and (3.2-10) will be used to derive guidance criteria;
that is, rates of rotation of the line of sight which exist along a straight-
line interceptor path. The presence of derivatives of motion in Equations
(3.2-9) and (3.2-10) makes the criteria depend directly on time-to-go.
Because time-to-go is not readily available to the interceptor, approxi-
mations to these criteria, better suited to practical guidance, will also be
derived.
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If there are no target or interceptor accelerations, the coefficients
of T% and higher powers of T in Equations (3.2-7) and (3. 2-8) are zero,
and these equations reduce to Equations (3.1-5) and (3. 1-6), the defining
equations of conventional non-rotating line-of-sight guidance.

For the more general cases, multiplication of Equation (3. 2-9) by
R gives:

N1 %sina - p) - Vi Msin@ - p) | K +1 (3,31

T
0 (k+1)!

where N is the greater of p and q, which are respectively the orders of
the highest ordered non-zero derivatives of target and interceptor veloci-
ties. It is easy to prove by mathematical induction that

k
R [Vt (k)sin(a -B) -V (k)sin(e - ﬁ)] = —d—k <R2B>
dt
k-2
, al (k-j-1) (k-j-1)
- sin(8 - a) Z ——J <Vm Vi - V.V, > (3.3-2)

i=0 dt

Substituting Equation (3. 3-2) into Equation (3. 3-1):

N
gk+l)' k+l_ﬁ Rﬁ)—sm(@ Q)Z(k+1)' e+l

a’ (k-j-1) (k-j-1) )
jzz(; " (vmvt AN . (3.3-3)

ptgtl
. 1 i
B =—s C.T (3.3-4)

10
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where the coefficients C, are constant. That is, in general, with a
finite number of non—vanlishing derivatives of both target and interceptor
speeds, the guidance criterion which gives rise to a straight-line inter-
ceptor path is a polynomial in T whose coefficients are inversely pro-
portional to the square of the target-to-interceptor range.

The solution given by Equation (3. 3-4) is not a practical guidance
criterion because it would require continuous computation of the range
and the time-to-go. Criteria which do not involve this shortcoming are
derived below for the constant-acceleration case. Such criteria proba-
bly provide sufficient improvement over proportional navigation to make
guidance in the presence of longitudinal accelerations feasible.

In the constant-acceleration case, Equation (3. 3-4) becomes:

2
B = cgg—. (3. 3-5)

Equation (3. 3-5) is the exact guidance criterion when the second and
higher derivatives of velocity are zero. To use this equation in homing
guidance, it is necessary to compute T. In order to eliminate this com-
putation, it is desirable to obtain an approximation to the exact guidance
criterion which uses measurable quantities. The quantity R/T is the mean

2
closing speed over the remainder of the flight. Therefore, ITLZ can be
approximated as:

2
—-7 -~ RRf (3. 3-6)
T
where Rf is the final closing rate, a constant during the course of a

straight-line interception. Substituting Equation (3. 3-6) in Equation (3. 3-5):

'ﬁz—rg—-z—cnz_'
RRf R

(3.3-7)

which is an approximation to the guidance criterion (Eq. 3. 3-5) for the

11
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constant acceleration case. The constant C' can be evaluated as follows:
Differentiating Equation (3.1-3) and substituting Equation (3. 1-4) with the
condition that target and interceptor lateral accelerations are zero yields:

Rf +2Rp = V,sinla - B) - V_sin(e - p) . (3. 3-8)
Evaluating Equation (3. 3-8) at interception (R = 0) yields:

. Vtsin(a - B)f - Vmsin(g - ﬁ)f C! (3 3 9)
Be = 2R i .
S Re
Vmsm(e - B)f

_ Visin(a - B)s -

1
C 2

(3.3-10)

The usability of Equations (3.3-7) and (3. 3-10) is illustrated in Figure
2 by a numerical example. The target was assumed to fly a straight-line
path with constant deceleration of 133 ft/sec?, while the missile was sub-
jected to a constant acceleration of 67 ft/sec? and required to fly a straight
line. The target speed varied from 3000 to 1000 ft/sec, and the inter-
geptor spped varied from 500 to 1500 ft/sec. Figure 2 shows the actual
B and C/R as functions of time. It is seen that these quantities are in very
good agreement; the maximum error involved in using Equation (3. 3-7)
over a full 15-second period is about 4 per cent. That is, if instead of a
straight-line course the interceptor had flown a course defined by the
approximate guidance criterion of Equation (3.3-7), it would have required
virtually no lateral acceleration.

It is possible to derive another approximation to iid which is not as
accurate as the foregoing but which is particularly adaptable to practical
use. The coefficient of T2 in Equation (3.2-8) consists of projections of
acceleration along the line of sight. Usually this term is small; this is
equivalent to having a nearly constant closing rate. Introducing Equation
(3.1-6) into Equation (3.2-7) shows that:

[ 13

B~0. (3.3-11)

The approximation to By is obtained by setting E = 0 in Equation
(3.3-8):

12
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Vtsin(o. - B) -.Vmsin(G - B)_ bd _ (3.3-12)
2R

This equation depends only on the instantaneous values of the parame-
ters involved. Its physical interpretation becomes obvious upon multiply-
ing it by R and using Equation (3.1-3). Equation (3.3-12) then becomes:

[Vt - % Vt%]sin(a - B) = [Vm - 1/2\'rm —g—]sin(e -B). (3.3-13)

R )
If ——§-= T, this equation would be precisely the equation for a straight-
line collision course with constant longitudinal accelerations. In particu-
lar, if Equation (3.3-12) is fullfilled, a straight-line interception will
result, provided the longitudinal accelerations and closing rate remain
unchanged. This condition cannot, of course, be expected. However, it

is satisfied more and more closely as interception is approached.

In actual practice, neither the velocities nor the accelerations can be
expected to be constant. The exact equation for the guidance criterion
corresponding to an interception in which zero lateral acceleration is re-
quired of the interceptor, and in which target and interceptor undergo
arbitrary longitudinal accelerations is derived as follows:

Equation (3. 3-8) is a completely general equation, valid for arbitrary
target and interceptor motion, subject only to the restriction that there

are no lateral accelerations. Multiplying both sides of this equation by
R leads to the exact differential of R2p:

%ﬁ RZB\) =R [\'ftsin(a - B) - ifmsin(e - ;3)] . (3.3-14)

The requirement that an interception take place as imposed by integrating
Equation (3.3-14) from 0 to T, where T is the time at which interception
occurs. Or, changing variables so that the integration is over range:

0
sz = ég[vtsmm - B) - vmsin(e - p)] dar . (3.3-15)

14
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The preceding equation is an exact expression for the value of ﬁ along
a straight-line trajectory to interception. If there are only a finite
number of derivatives of the target and interceptor velocities, this equa-
tion can be integrated to give Equation (3. 3-4). Although Equation (3. 3-15)
probably does not have general applicability as a guidance criterion, it
is exact and any usable guidance criterion must be regarded as an approxi-
mation to this equation.

3.4 NAVIGATION

With the proper guidance criterion, an interceptor can, in theory, be
made to follow an approximately straight-line course to its target. To
achieve this course, the rate of change of interceptor heading is made
proportional to the difference between the actual and the desired rates of
rotation of the line of sight; that is, the following equation is mechanized:

é=K(b- Bcb. (3.4-1)

Ordinary proportional navigation, then, is just a special case of Equation
(3.4-1) in which [3d has the value of zero.

15
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Iv

ANALYTIC NAVIGATION STUDIES

4,1 MINIMUM NAVIGATION CONSTANT

The navigation constant, K, of Equation (3.4-1) must be sufficiently
large that the rate of rotation of the line of sight, B, will decrease in
absolute value with time (Ref. 1). A lower bound for the navigation con-
stant can be established by finding that value required to maintain B con-
stant. Differentiating Equation (3. 1-3) and setting B = 0 yields:

2R - zRBd = -V_cos(0 - B)& (4.1-1)

where Bd is defined by Equation (3.3-12).

Substituting Equation (3.4-1) yields:

K . = ~2R ) (4.1-2)

min V cos(8 - B)
m

For any smaller value of K, the rate of rotation of the line of sight
increases with time. For constant target and interceptor speeds and an
interceptor speed advantage this equation can be shown to contain the
result of Reference 3:

Vt
Kmin=21+—— .

v

m

If the interceptor has a speed advantage, the minimum navigation con-
stant is no larger than four; this value can serve for all approach angles
without introducing excessive sensitivity to noise.

If, on the other hand, the interceptor has a speed disadvantage, the
minimum navigation constant may be arbitrarily large. As a consequence,

16
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it is desirable to replace the navigation constant, K, by a navigation
factor, Kl’ defined as follows:
-2Rk,
K1 = lemin = . (4.1-3)
0 -
Vmcos( B)

It is clear that K; and k] cannot be constant simultaneously, except
in trivial cases. The analysis which follows is based on the assumption
that k| is constant. It is obvious that k] must be greater than or equal
to unity; on the other hand, too large a value of K; leads to excessive
acceleration.

4.2 THE KINEMATIC EQUATIONS

The navigation problem for an ideal interception in a single plane
is completely described by Equations (3. 1-3) and (3. 1-4) and by Equa-
tion (2.1-1), the steering equation.

. In the constant-speed case, the steering equation serves to reduce
B to zero, provided K is sufficiently large.

It is well known that the above set of three simultaneous differential
equations is not directly integrable. However, when K is replaced by

K, (Eq. 4.1-3), the resulting system can be integrated.

4.3 INTEGRATION OF KINEMATIC EQUATIONS

Replacing K by K, the steering equation becomes:

_ -zhk1 .
0 = B ., (4.3-1)
V cos(® - B)
m

and the kinematic equations for the constant-speed case become Equa-
tions (3.1-3), (3.1-4) and (4.3-1). Dividing Equation (3. 1-4) by Equa-
tion (3. 1-3) yields:

Vtcos(a - B) - Vmcos(O - B) .
= B (4.3-2)
R Vtsin(oz - B) - Vmsin(O - B)

R

17
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or
-R _ -Vicosla - B)B+V _cos(6 -B)B -V cos(6-B)6+V cos(e-§B)e
R Vtsin(a -B) - Vmsin(Q - B)
(4.3-3)
Substituting Equation (4.3-1) in Equation (4. 3-3) yields:
2k, - )X = d/dt(_RB) (4.3-4)

1
R RB

Integration of Equation (4.3-4) yields an explicit expression for the rate
of rotation of the line of sight in terms of the relative range; viz.,
2k -2

B =B, R/R) b (4.3-5)

The lateral acceleration, Vmé, of the interceptor is obtained immediately

from this result and from Equation (4.3-1):

. -zftkl _ 2k, -2
vV 6= - BO(R/RO) . (4.3-6)

cos(6 - B)

This equation reveals the effect of the choice of k. If this parameter
is smaller than unity, the lateral acceleration required of the interceptor
tends to infinity as the interceptor approaches interception. A value of
unity gives a constant B and hence an approximately constant lateral ac-
celeration course. If the value of k1 (Eq. 4.1-3) is greater than unity,
the lateral acceleration required of the interceptor approaches zero as
the interceptor approaches interception.

4.4 THE GENERAL CASE

Extension of the results of the preceding section to arbitrarily vary-
ing target and interceptor speeds is straightforward. The kinematic

18
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equations for this case are Equations (3.1-3), (3.1-4), and
b = KI(B ] Bd,) (4. 4-1)
where the exact expression for Bd is obtained from Equation (3.3-15).

It is easily verifiable by logarithmic differentiation that the solu-
tion to these general kinematic equations is:

ooy - - )

Equation (4.4-2) obviously reduces to Equation (4.35) when B4 = 0. The
lateral acceleration of the interceptor in the general case is:

-2Rk 2k. - 2

v_o - _*1\([3 . Bd)o(R/Ro) ! . (4.4-3)

cos(8 - B)

The analogy between Equations (4.3-5) and (4. 3-6) and Equations
(4.4-2) and (4. 4-3) suggests the study of the general navigation prob-
lem with the general guidance criterion of Equation (3.3-15) by inter-
pretation of an appropriately chosen constant-speed case. Before apply-
ing this method it is necessary to consider errors in the guidance cri-
terion. If these errors affect the validity of the analogy, the method
must be abandoned.

4.5 GUIDANCE ERROR

The derivations in the previous sections apply to perfect guidance.
Obviously, any practical guidance system must be based on the assump-
tion of reasonably well behaved derivatives of interceptor and target
velocities. It is necessary to keep in mind that the existence of "unanti-
cipated' derivatives of the velocities results in unanticipated lateral ac-
celerations (Sec. II). If a good choice of B4 is made, errors in the as-
sumed velocities give rise to relatively small lateral accelerations,
and the path of the interceptor remains nearly d straight line. When the
time remaining until interception is small, departures from the predicted
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velocity behavior can be expected to be small, and in the closing phase
of interception little or no lateral acceleration will be called for.

Errors in the prediction of the velocity are reflected as errors in
the desired rate of rotation of the line of sight. Consider any error €
in Bd subject only to the restriction that € may be expressed as a power
series in R; i.e., € = EaiRl. Then the guidance equation becomes

-2Rk

6 - L (3-8, Sag) . (4.5-1)

Vmcos(o - B)

A solution to the system of equations defined by Equations (3. 1-3),
(3.1-4) and (4.5-1) is

. . i
R - By D bR) i <RD>2k -1

: : - o 1 (4.5-2)
1
RO(B B Bd 2‘ iRZ)

R
Where bi is related to a, by:

Zkla,
b. = ! (4.5-3)

Zkl-Z-i

Rearranging Equation (4.5-2) gives:

rYF) 72 i i\ /R K2
PPy " (ﬁ ” Bd) o<§"> PR ( biRo> (R—>
0. o
(4.5-4)
Comparison of this equation with Equation (4.4—2.) shows that an error

€ in Bd adds a changing bias to the variation of 8 (and of course to the
lateral acceleration) during flight.
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At the end of the flight the bias in B (the difference between the ac-
tual and the correct Bd) is just the value of the constant bg. For any

error which can be expressed as a power series in R, the terminal
k. a

value of the bias in Bis simply Similarly, the lateral acceleration

k -1°
1

always has a final value which involves only the first term of the power
series for € :

. kla
V 6=V K °

m mEl (4.5-5)

kl-l

These considerations show that the effect of an error in the guidance
criterion, as reflected in the acceleration history of the interceptor,
does not depend on the guidance criterion, but only on the error.

4.6 TARGET MANEUVER

The effect of a target maneuver may be regarded as simply the in-
troduction of an error in the value of 8. If target maneuver is con-
sidered, Equation (3.3-15) becomes

2= _.1? F/O _.:‘_[\.Itsin(a - B) - \.Imsin(O -B)+ Vt&cos(a - B)] dr
R
(4.6-1)

The error in the guidance criterion due to maneuver may be written as:

. Vt&cos(a - B)
€=—"— /) - rdr . (4.6-2)

r

In many cases, Vacos(a - B)/7 is very nearly a constant and, within

reasonable limitations, Equations (4.5-4) and (4.5-5) may be used to

interpret the effect of target maneuver on the lateral acceleration and
on the variation of 8 .

21



UNIVERSITY OF MICHIGAN

UMM-123

4.7 THE CONSTANT-SPEED ANALOGY

The results of the preceding sections make it possible to carry out
guidance studies yielding results of considerable generality, because
the solutions to the kinematic equations are, to a great extent, inde-
pendent of the target and missile longitudinal accelerations, the basis
of the guidance criterion. There are two alternative applications of
the results:

1. Ordinary proportional navigation may be studied in terms of
the suggested method of navigation; that is, for situations in
which K, can be expected to have a nearly constant value
(short-range interceptions with favorable geometry), Equa-
tion (4.3-5) may be applied to ordinary proportional naviga-
tion.

2. Interceptions under conditions of arbitrary target and inter-
ceptor longitudinal accelerations may be studied by analogy
with the constant-speed case.

Considerable caution must be used when the first alternative is to
be employed. The results can easily be misleading when K, varies
during the course of the interception. The second alternative has far
more generality; to study a given variable-speed interception, it is
only necessary to select a constant-speed case in which the mean tar-
get and interceptor speeds agree with those in the variable-speed case.
The effects of errors in the guidance criterion in the variable-speed
case have been shown to be dependent only on the guidance error (Sec.
4.5), justas in the constant-speed case. The agreement found in the
results is generally excellent. For example, Figures 3 and 4 illustrate
typical results of an application of the constant-speed analogy. In this

example, the ratio of the mean speeds of the target and the interceptor
was 1.66:1.

Two interceptions were calculated from the same initial geometry.
In the first of these, constant speeds were assigned to both the target
and the interceptor; in the second, the interceptor accelerated and the
target decelerated at constant rates. The interceptor lateral accelera-
tions are shown in Figure 3, and the trajectories are shown in Figure 4.
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The slight differences in lateral accelerations shown in Figure 3 would
be still smaller if the lateral accelerations were plotted as functions
of the relative range (R/ Ro) rather than as functions of time.
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