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ABSTRACT

A theoretical and experimental investigation is made of a magnetized ferrite ob-
stacle in a rectangular waveguide having an additional discontinuity. The analysis is per-
formed on right cylindrical obstacles (not necessarily circular) together with discontinuities
that excite little or no field variations along the cylinder axis. The axis of the obstacle is
parallel to the electric field corresponding to the TE 10 mode of the rectangular waveguide.
The main application of the study is to the case where the discontinuity is an aperture (i.e.,
the waveguide radiates into free space) and the ferrite obstacle is placed directly in the
aperture. This composite antenna structure is shown to be capable of being electronically
scanned. The direction of the radiated beam is controlled by the magnitude of the applied
magnetic bias field. Scanning over a total range of 60° with good efficiency and reflection
characteristics is obtained experimentally at frequencies around 10 Ge/sec. The applied
magnetizing fields are less than 300 oersteds for this range of scanning. The antenna has
the novel property of being nonreciprocal, the receiving and transmitting beam patterns are
mirror images of each other. This is a new antenna and is one of only a few existing types
of single element, electronic scanning devices. The small size and weight make it suitable
for airborne and mobile equipment. A number of possible applications of this unique antenna
are discussed.

It is shown that the theory predicting the radiation patterns applies also to a num-
ber of other devices which use cylindrical ferrites, including junction type circulators and
switches. The theoretical results substantiate the intuitive explanations of the mechanism of
operation of these devices in terms of a field displacement within the material.

The analysis of the impedance of the ferrite and waveguide discontinuity is appli-
cable to a general class of problems that may be called "dual discontinuity' boundary value
problems. The method of solution presented uses the variational technique. In addition to

the antenna problem, the method is applied to the case of a small post in combination with a

xviii



short or open circuit. This geometry is shown to be useful in a measurement technique for

permeability or permittivity of either ferrites or dielectrics.

The main contributions of the study can be summarized as follows:

1. A theoretical analysis has been made of the radiation character-
istics of a ferrite cylinder in the aperture of a rectangular wave-
guide. This analysis provides a mathematical basis for the beam
shifting property and gives insight into the mechanism involved.
This analysis is applied also to junction circulators and switches.

2. A new, single element, electronic scanning antenna has been
developed. Experiments confirmed the beam shifting properties
predicted in (1). Design of a small, light-weight antenna has
proven the practicality of such a device. A number of applica-
tions are presented.

3. A mathematical analysis of the reflection coefficient of the
structure in (1) has been made. The problem is generalized
to include obstacles having any right cylindrical shape placed
anywhere within the waveguide or aperture. The solution is
valid for the case of any z-independent discontinuity in place of
the aperture (including, of course, a matched load). The
matched load simplification predicts the behavior of a single-
pole, single-throw electronic switch. Extensions of the dual
discontinuity method to other problems are discussed.

4. 1In general, numerical results from the solution of (3) are best
obtained using a computer. For small cylinders, however,
simple formulas have been derived. Based on these results, a

method of measurement of the ferrite properties is described.

Xix






CHAPTER 1

INTRODUCTION

When an electromagnetic wave encounters a change in the medium through which
it is propagating, a change in its characteristics occurs. The wave may be attenuated,
shifted in phase, or its direction of propagation may be altered. Any or all of these effects
may occur. They depend on either the physical properties of the medium, such as size and
shape; or upon such electrical properties as permittivity, permeability, or conductivity.
Quantitatively relating these changes in propagation to material properties forms a large
part of the science of electromagnetic field theory. In practice, devices based on these in-
teractions find numerous applications in electronics equipment.

A particularly interesting material from the viewpoint of electromagnetic propa-
gation is that called ferrite. A familiar form of ferrite is magnetite, which was the first
known magnetic material. Measurements of its properties were performed before this
century. 1 However, little use was made of the material until the 1940's. Since that time,
ferrite materials have been used extensively in applications such as magnetic cores in coils
and transformers where their high permeability is utilized. In these devices the permea-
bility is isotropic, that is, the permeability is independent of the direction of the magnetic
and electric fields and can be written as a scalar. Since 1952, a number of ferrite devices
have been developed in the microwave region by using the anisotropic properties of ferrites.
In the anisotropic case, the permeability is different for different directions of the magnetic

field and must be written as a tensor of the form. 2

b -k 0



The anisotropy is brought about by applying a dc magnetic bias field to the ferrite. In the
tensor just above, the bias is applied in the z-direction and y and k are functions of the
magnitude of this field. When the static field is reduced to zero, k becomes zero and u
becomes equal to Mo For zero bias field the material thus becomes isotropic. The values
of u and k also depend on the frequency of the varying field and on the magnetization.

In particular applications, the ferrite, in conjunction with some waveguiding
structure, exhibits such first-order properties as reciprocal or nonreciprocal phase shift,
resonance absorption, field displacement, and Faraday rotation which can be traced to the
permeability tensor. Examples of microwave devices using these and other ferrite proper-
ties are circulators, phase shifters, isolators, limiters, amplifiers, switches, and filters.
Ferrites have conductivities on the order of 10_6mh0/ meter, so that eddy current losses
are low even at microwave frequencies. The dielectric constant is a scalar and has a value
on the order of 10. Thus, in Maxwell's equations the magnetized material can be treated as
a nonconducting body with a scalar dielectric constant and a tensor permeability.

This study is concerned with an example of the interactions between an electro-
magnetic wave and an anisotropic obstacle in conjunction with some guiding structure.
Mainly, ferrites are considerd, but the analyses can be extended to other materials.

The sections following state the specific aims of this study, review the history
and motivations leading to it, outline the methods of attack, and attempt to convey the par-

ticular significance of the results.

1.1 Statement of the Problem

Problems involving tensor properties tend to be very difficult, if not impossible,
to solve exactly. Approximate methods must often be used to obtain quantitative results.
One problem that can be solved exactly is illustrated in Fig. 1.1. A plane wave is incident
on an infinitely long, right circular, ferrite cylinder. The ferrite is magnetized along the
z-axis. Analysis of the results shows that the beam patterns depend on the value of the
applied static magnetic field, Hz, that is, the direction of the scattered energy can be con-
trolled by the magnetic bias. In addition, the direction of maximum scattering does not have
to be 0° or 1800, but can be any value of the angular coordinate ¢. Indeed, the pattern does

not even remain symmetrical. It is apparent that this novel effect might be used in several
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Fig. 1.1 A plane wave incident on an infinitely long,
magnetized, ferrite cylinder.

devices where electronic control of the direction of a propagating wave is desired. A brief,

simplified sketch will illustrate several general possibilities.

1. If the applied field is continuously varied, the beam angle
will also change directions continuously. This beam
shifting property can be used to construct a scanning an-
tenna which transmits the incident wave in any desired
direction, or receives from any given direction.

2. At one value of applied field the energy is scattered in the
forward direction so that complete transmission of the
incident wave occurs. Some other value of applied field
causes the energy to be reflected back towards the source
and very little transmission takes place. This is a de-
scription of a single-pole, single-throw (SPST) switch which
can be electronically set to "on" or "off. "

3. At one value of applied field (Hl) the incident energy is
scattered in the direction ¢1, while for some other value of

field (it turns out to be —Hl), the energy is scattered in the
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Fig. 1.2 Beam deflection required for a three port circulator.

direction -¢1. Thus a single-pole, double-throw (SPDT)
electronically activated switch can be constructed.

4. The applied field may be adjusted so that the scattered beam
angle is 60°. As shown in Fig. 1.2, energy incident at 180°
is retransmitted at 600, energy incident at 60° is retrans-
mitted at —600, and energy incident at -60° is retransmitted
at 180°. This describes a three port circulator (also called
a Y-circulator).

The generalizations above leave much to the imagination, particularly with re-
gard to detailed methods of operation and quantitative description of performance. The most
immediate questions at this point would seem to be: What can be used in place of the infinite
cylinder ? What structures can be used for the electromagnetic excitation of the ferrite or
for the reception of the energy in the wave deflected by the material? These questions do
not have unique answers. The solutions presented here utilize finite ferrite cylinders in con-

junction with suitable rectangular waveguide structures. Descriptions of the devices follow:

1. Scanning Antenna. A finite ferrite cylinder is placed in the
aperture of a rectangular waveguide as shown in Fig. 1. 3.
An electromagnet supplies the magnetic bias. The direction

of radiation is then controlled by the magnet current.



Fig. 1.3 Ferrite scanning antenna.
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Fig. 1.4 Single-pole, single-throw switch.
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Fig. 1.5 Single-pole, double-throw switch.

SPST Switch. A ferrite cylinder is placed inside a wave-
guide midway between the narrow walls as shown in Fig. 1. 4.
An electromagnet outside the waveguide is then used to acti-

vate the switch.



3. SPDT Switch. A ferrite cylinder is placed in the center of
a waveguide y-junction as in Fig. 1.5. The energy incident
from port 1 can be transmitted to port 2 or port 3 depending
on the magnetic bias.

4. Circulator. The circulator is similar to the SPDT switch
described above. In this case, however, the ports must

be evenly spaced, 120° apart.

Of course, now that conducting structures have been introduced, modifications
in the plane wave theory must be made to account for the changes. Indeed, it must even be
ascertained whether we have only modified the plane wave-infinite cylinder situation, or so
destroyed the original character of the problem that no relationship exists (with the result
that the proposed "'devices, ' based on this relationship, are in fact unrealizable).
Fortunately, as the reader has probably surmised, the devices do work.

This report is mainly concerned with the theoretical and experimental investiga-
tion of the scanning antenna. The other devices will be commented on more briefly. The
following sections relate the history and relevant literature concerning these devices, and

indicate the emphasis given to each one.

1.2 Scanning Antenna

1.2.1 Background Material. The simplest scanning antennas are obtained

merely by physically repositioning the antenna. Obvious limitations on the scanning speeds
exist because of the high mechanical torques involved. For large antennas, only the slowest
movement is possible. In addition, extreme environmental conditions produce problems
with the starting motors. The limitations on scanning speed are greatly reduced if electronic
means are used to provide the beam steering. A number of methods have been devised to ob-
tain electronic scanning. 3 A common procedure is to combine several separate radiators in
an array and control the phase of each element of the array by an electronic phase shifter
(such as a ferrite phase shifter).

Very few designs exist for single-element electronic scanners. The advantages

of size and weight inherent in this type of antenna make it highly desirable in airborne and



space vehicles. Thus, a contribution can be made in development of a practical single-
element scanning antenna. Of course, single-element scanners can also be used in arrays
if small beam widths are required.

We might first consider a general method of constructing a single-element,
electronic-scanning antenna. Some material may be placed in or near the radiating struc-
ture and the properties of this material controlled by some electronic means. Several

possible materials are:

1. Ferroelectrics. The dielectric constant is controlled by an
applied voltage.

2. Plasmas. The values of the components of the tensor permittiv-
ity are controlled by a voltage or by a magnetic bias field.

3. Ferrites. The values of the components of the tensor
permeability are controlled by the magnitude or direction

of the applied magnetic field.

The designs reported to date all use ferrite materials. In 1956, Angelakos and
Korman4 constructed a rectangular waveguide aperture completely filled with ferrite. By
applying various dc magnetic fields, the radiated beam could be changed. The published
results showed that relatively high applied fields were required and large reflections were
obtained, limiting the efficiency of the device. The amplitude of the radiated wave appeared
to drop sharply in the regions where the most beam shift occurred. The radiation patterns

of this antenna were studied theoretically by Tyras and Held. 5 The quasi-TE, , and

10
qua.si-TE20 modes were assumed to exist in the aperture and the radiation field was derived
from these using the Huygen principle. Another single-element, electronic-scanning an-
tenna was reported by Wheeler. 6 This antenna consisted of a ferrite sphere in the aperture
of a circular waveguide. The basic mode of operation produced a conical scan. Instead of
varying the amplitude of the applied magnetic field, its direction was changed. A combina-
tion of permanent magnet and electromagnet produced the rotating field. Englebrecht7 in-
vestigated a related antenna, consisting of a ferrite post biased to ferromagnetic resonance

placed just outside a waveguide at the focus of a parabolic reflector. Since the absorption

at resonance depends on the direction of circular polarization in the received wave, some



selectivity in the signals reflected by the parabola was obtained. The performance charac-
teristics of this device have not been published. The need for the reflector makes this a
much larger antenna than the others described above.

1.2.2 Method of Analysis. The prime objective and accomplishment of this

study is the development, design and theoretical treatment of the new antenna proposed in
Fig. 1.3. This antenna differs from those described in the preceding section in physical
structure, theoretical basis, and performance. Experiments, reported in Chapter V, show
that continuous beam shifting using low applied fields can be efficiently obtained. The
mathematical analysis of the antenna is divided into two parts: (1) an explanation of the
radiation properties and (2) an analysis of the input impedance. In Chapter II, a simplified
scattering approach is used to explain how the beam-shifting occurs in terms of the ferrite
properties. Predictions of the beam shift are made and compared with experiment. In
Chapters IIl and IV, an analysis of the input impedance is made. This analysis constitutes
the major mathematical contribution of the study. The analysis is generalized to the extent
that the ferrite cylinder may be anywhere within the waveguide or extending partially out of
it and the material need not be circular. The variational technique, an approximate method
of solution based on the integral equations which describe the problem, is used to derive the
reflection coefficient. In the formulation, the integrations involved are most easily per-
formed for right circular cylinders.

1t is informative to discuss the nature of the discontinuity in the waveguide.
The reflections may be thought of as resulting from two discontinuities (1) the open aperture
and (2) the anisotropic ferrite obstacle. These two discontinuities are superimposed in a
complex way, particularly if they are close enough so that the higher order modes excited
by each can interact. The solution for the impedance when the ferrite is absent and the
aperture alone is considered has been solved previously8 and may be considered known.
It will be shown that this knowledge can be applied to devise a formulation where the indi-
vidual effects of the two discontinuities are separated a great deal. The problem is then in
a class that might well be termed a "'dual discontinuity'' boundary value problem. The
method of solution presented here may then be used as a model for a number of problems

characterized by a "dual discontinuity. " For example, the problem of a cylindrical ferrite
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or dielectric in a rectangular waveguide terminated in a short or open circuit can be solved
easily using this method. This geometry can be used in a method of measurement of ferrite
and dielectric properties as outlined in Chapter III. This generalization of the method is

suggested as an accomplishment of the study.

1.3 Single-Pole, Single-Throw Switch

Experiments showing the performance of the switch are reported briefly in

Chapter V. No great emphasis is placed on the device as other means of achieving the

equivalent result are known. The theory of this SPST switch, consisting essentially of
finding the reflection coefficient of the magnetized ferrite post in a matched rectangular
waveguide, is interesting in itself and not difficult to obtain directly from the analysis de-
scribed in Section 1.2.2. Several persons have obtained solutions and formulations to
various degrees of approximation for the post in a matched rectangular waveguide.

Berk and Epstein9 found the reflection coefficient for the case of a thin rod that
was not near the waveguide walls. Nikol'skii10 used an imaging technique and a few terms
of the series representation for the fields in the ferrite and in the waveguide to solve for
the reflection and transmission coefficients. Hauser11 has obtained a more general formu-
lation than those described above. He derived a variational expression for an obstacle with
tensor permeability and permittivity in a matched waveguide. The obstacle had no restric-
tion on size, shape or position in the waveguide. In the paper, no evaluation of the varia-
tional expression was made. As will be illustrated in the variational problems in this re-
port, the formulation gives the desired quantity (e.g., the reflection coefficient) in terms
of the ratio of several integrals. These integrals involve the field distributions within the
obstacle and are not simple to evaluate explicitly.

In this study, a slightly different and simpler variational expression is derived
for the reflection coefficient of a right cylindrical (but not necessarily circular) ferrite ob-
stacle of arbitrary size placed anywhere in the waveguide. The result is then explicitly

evaluated for a circular cylinder.

1.4 Circulator and Single-Pole, Double-Throw Switch

The SPDT switch and the three-port circulator are closely allied and may be

. . . . . . 12
considered as one device. This device was first introduced several years ago "~ and has
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been greatly refined since then using empirical techniques. The theory has been slower in
its development. Auld13 investigated the general properties of symmetrical junction cir-
culators from the viewpoint of their scattering matrices. What is still needed to comple-
ment Auld's study is a theory relating the properties of the material in the junction (the
ferrite cylinder for the case of interest here) to the specified performance. A theory both
intuitively satisfying and mathematically manageable is desired. Many attempts have been
made to derive such a theory, * but the goal has been elusive because of the complexity of
the structure. In several of the published theories, assumptions have been made regarding
the circulator mechanism and then suitable equations have been derived to verify the mathe-
matical possibility of the original assumptions. The result is that there are now several
theories (not necessarily exclusive) that agree (to some extent) with various experiments.
The most successful analysis to date appears to be Bosma's investigation of the strip-line
version of the Y-circulator. 14 This approximate solution appears to be valid and is applied
to UHF circulators. To the author's knowledge, there is as yet no theory equivalent to
Bosma's for the waveguide version of the Y-circulator.

Since a complete theory is not yet available, it is reasonable, interesting, and
informative, to point out the existing relationship between the junction circulator and the
infinite ferrite cylinder problem. An explanation of the circulator mechanism based on this

problem is presented in Chapter IL

1.5 Summary

In this study the main concern is the ferrite scanning antenna consisting of a
ferrite post in the aperture of a rectangular waveguide. Chapters II through IV deal with
the theoretical analysis, while Chapter V presents experiments verifying the practicality
of the device. Several other devices using cylindrical ferrites are also considered in the

text, including the junction type circulator and an electronic reflection type switch.

*
See Bosma14 for a summary of the papers.



CHAPTER II

RADIATION FROM A FERRITE CYLINDER

The idea for a scanning device utilizing a ferrite cylinder arose from a study
of the scattering of plane waves in free space by an infinitely long, ferrite cylinder. In
this chapter, we will show the details of the infinite cylinder problem that motivated the
scanning antenna application. In addition to finding the radiation patterns by methods found
in the works of N’1kol'skii15 and Eggimann, 16 the scattering cross section and differential
scattering cross section will be derived. Numerical results will then be presented and
analyzed. The original derivation will then be suitably altered to provide an approximate
solution for the radiation characteristics of the scanning antenna made up of a magnetized

ferrite cylinder placed in the aperture of a rectangular waveguide.

2.1 Scattering from an Infinite Ferrite Cylinder with Plane Wave Incidence

A plane wave is incident on an infinitely long ferrite cylinder as shown in Fig.
1.1. The electric field vector is polarized parallel to the cylinder axis and the wave is in-
cident normal to the axis. Since the plane wave has no z-dependence, none of the scattered
fields have a z-dependence and the problem is essentially two dimensional. Due to symme-

try, the electric fields have only a z-component.

Wave Equation

Maxwell's equations are (assuming el wt time dependence)

|
&l

VxE = - 55 = -jwuoﬁﬁ (2.1a)
vxH = %:Q = jweoeﬁ (2. 1b)
v-D =0 (2. 1c)
V:B =0 (2.1d)

11
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where the ferrite permeability tensor” is given by

uo-jk 0
po=lik po0
0 0 M,
From (2. 1a)
H=-—o 0] vxE
jwp
where
v ik 0
—-.-1 1
(] == |-k &w O
b -k 2 )2
0 0 £-
“Z

Since E = Ezgz’ we then obtain from (2. 3)

— -1 'jk )
H= —— VE_,
jou (W -K)L-p -

or in rectangular coordinates,

-1 oE JE
H = ———— Z g Z
X jep (-1 My 7! ax}

1 aEZ aEZ
Hy: )]kay+pax:l

. 2 2
jop (b7 -k

From (2. 1b)

*Appendix C gives a discussion of the evaluation of the components y and k.

. 3)

(2.5)

(2.6a)

(2. 6b)
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In this last equation, put in the quantities Hx and Hy from (2. 6a, 2.6b) to obtain the wave

equation,
v? E, + k22 E =0 inside the material (2.8a)
v? E, + ko2 E, =0 outside the material (2. 8b)
where
2 2
2 _ 2 U -k
k2 = w uoeoe( m )
2
- ko ot
2 2
ko = WopES
v oo,
ox’ oy

the two dimensional Laplacian operator. This is the >quation the electric fields must
satisfy. The solution for outward travelling waves is a series of Hankel functions with

argument kor. If (2.3) is expanded in cylindrical coordinates we get,

1 [~ aEZ . aEz
H, = — [k +%——¢— (2.9a)
wi (u™-k") L
i ) oE
1 . z k z
H = -jl + = ] (2. 9pb)
0] wﬂo(ﬂz &) L or r d¢
Incident Fields
The incident plane wave is given by,
. jlwt-k_x)
E;“C = e 0 (2. 10)

This can be expanded in cylindrical coordinates in a series of Bessel functions. Omitting

the time dependence

(2.11a)
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Then, substituting (2. 11a) in (2. 9a) and (2. 9b) gives the remaining field components.

. © J(kr) -in(g +3)
ge o Ly pmony 2 (2. 11b)
r CL)[JO N0 Ir
. m
. . -in(g +5)
inc _ -j . 2
T ) k, Ji(k 1) e (2. 11¢)

O N=-0

The incident electric field satisfies the wave equation (2. 8b) in the region outside the

ferrite, where u and e are both unity.

Internal Fields

The electric field inside the ferrite can be written as a solution to (2. 8a).

int
E =
Z

-in(p + )
aan(kzr) e (2. 12a)
0]

I 8

n

Then the magnetic fields are obtained from (2. 9a) and (2. 9b).

. m
i 3 I 1 -ing +5)
gt o 1Y G lkkator) + M k)| e 27 (2.12p)
r 2 2 n| 2% n"%2 T In'Kg
wi (b -k )n=-c0 | ]
. m
i j S [ 1 -inlg +5)
int _ -j ' nk 5
H¢ = Z a, uszn(kzr) + 3 Jn(kzr) e (2.12¢)
wMO(M -k*) n=—0 | ]

Scattered Fields

The scattered electric field representing outward going waves can be written,

T
e -in(g +5)
scat _ s ,(2) 2
EZ = Z a Hn (kor) e (2. 13a)
n=-o
so that
® -in(g +5)
gseat _ 1 Z S0y 2)(k r)e 2 (2. 13b)
r Wi nr n ‘o
0 n=-
gseat _ -1 io S @ik rye oo +g) (2. 13c)
) T owu 3 %o o} :



15

where

e)

= J_- jN_, the Hankel function.
n n n

Nn is the Neumann function.

Boundary Conditions

The boundary conditions are continuity of the tangential electric and magnetic

fields at the ferrite surface.

Escat + Emc _ Emt atr = R
Z Z z
scat inc int

H H = H atr = R
o] [0 @

Application of these conditions gives the equations for the unknown coefficients.

2
H' )(koR) ai -J (R)a = -J (k R)

K, (2) S k,
— H'""(k R)|a” + Da_ = —J'(k R)
wp o n o n n“n Wi, “no
where
1 : nk
Dn - 2 .2 l:ukZ Jn(kZR) "R Jn(sz):\
wi (B -K")

Solving (2. 15) for a and ars1 and using the recursion formula

' =1 -
Zn(z) Tz Zn(z) Zn+1

(z)
to remove the derivatives of the Bessel functions gives

(2)
Hn+1(koR) Jn+1(koR)

1k R) - I,kR) 3 ( R)

2 J. (koR
€ |t__n_ (1 N _lg) ) Jn+1(k2R)j| o H§1+)1(koR) n( 2 )
e [KoR V7 #7 I (kpR) | KR H?)(kOR)

(2. 14a)

(2. 14b)

(2. 15a)

(2. 15b)

(2. 16a)
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- € [L (1 N k) _ Jn+1(kZR)‘| _.n . Jn+1(koR)
kR J n(szT kOR J n(kOR) J n(koR)

(2. 16Db)

2 2
[y ) HEgR) Pk R)
Hogr (KR Vw0 I (kR) | kR 12 R)

Far Field Approximations

In the far field we can expand the Hankel function for kor >> 1, kor >> Infi. 17

-jk r+j2£+j17—
2 o o) 2 4

Then the scattered electric field (2. 13a) can be written

-jk r + jE 0 .
scat 2 J 0 4 s -
. = -7 € Z a e Ing (2.17)
(0] n=-ao

E

This equation is valid only if the series converges quickly enough so that terms
with Inl| on the order of, or bigger than, kor can be neglected. The rate of convergence of
this series depends greatly on the term koR’ where R is the cylinder radius. In general,
more terms are required for large values of kOR than for small values. For the data used

in this report kOR was on the order of one or less and only terms with In| £ 5 were required.

Scattering Cross Section

To obtain some measure of the total effect of the ferrite on the field a scattering
cross section (o) can be defined:
The cross section is the ratio of the rate of energy scattered
to the rate of energy per unit area incident on the object.
For the two dimensional problem the energies are defined as the energy per
unit axial length of the cylinder. The geometrical cross section of the cylinder is 2R.

The Poynting vector

N - % Re(E x fi*) (2. 18)

gives the time average rate of incident energy per unit area. For the incident plane wave

with unit amplitude (2. 10) we obtain



I ™
(]

(2.19)

DO =
=

inc

The total rate of energy scattered by the cylinder is obtained by integrating the

Poynting far zone vector involving the scattered fields (2. 17) over a surrounding surface.

Thus,
2m 1 /%o scat|?
Poat = 3 |2 |E52) v (2. 20)
0 0
The cross section is then given by
P 27 2
_ “scat _ scat
0= o = f ‘vEZ ' rdg . (2.21)
inc o

A value of ¢ = 2R means the scazcterer removes energy from an area equal to its own physical
dimensions. If 0 > 2R, the scatterer "appears' larger to the incoming wave than its actual

size while for o < 2R the scatterer appears smaller. In the far field, (2.17) can be used for
scat -jng

EZ . Using orthogonality of the functions e

results in

2

4 X S
o= ) lan 2. 22)
n=-0o

(0]

For the case of a very small cylinder (kOR << 1, koR << 1), the coefficients
a.rs1 can be simplified using the power series expansions for the Bessel functions. Only the
terms with n=0, n=t 1 are important for this case because ai decreases as (kOR)ZI1 forn>1

as seen from the values of the coefficients given below.

s —jﬂ(kOR)2
3.0 = _T—— (6—1) (2233.)
1 k
2n 1+=)-
a's > n(koR) [“eff ( “) :l
0 n!(n-l)!22n 1 (1 + E) +1 (2. 23D)
Heft H

where n is always positive. Using these coefficients the cross section is found to be

2

o = % (& Ry Rl:(e-l)Z + (Zi&) " (Z:;i)] (2.24)
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The cross section varies as the inverse cube of the wavelength. This variation is similar

to that for the metal cylinder, where the cross section is18
_ 37° 3
0 = (kOR) R

The differential scattering cross section gives the angular distribution of energy

in space. It is defined as

lim Nr d¢

olg)dde = o T (2.25)
inc
For the present case this gives
. € 2
lim 1 o ‘Escat r
r—o 2 o zZ
o(g) = (2.286)
1 /%
2.[ Ky
. scat|? .
Using (2. 17) for EZ , gives
0 0 .
2 s s, -jp(n-£)
o(g) = T Z Z a_ aﬂ* e (2.27)
0 n=-0 f{=-w
For the small cylinder (koR << 1, sz << 1), we use the terms through +1 and the
approximations (2. 23) for the coefficients to obtain,
7k R)’R 2 2
_ o] 2 u-k-1 L+k-1
olg) = 8 {(6—1) * (u-k+1) * (,u+k+1)
1-u+k  1-p-k
- 2(6"1)(1+u—k * 1+u+k) cos ¢
1-pu+kyr1l-pu-k
2(1+u—k)(1+u+k) cos 2¢} (2.28)

It is noted that for the small cylinder the energy distribution is even in the angle ¢. That is,

the beam pattern is symmetrical. Thus, even though Eicat(gb) # E;cat(_¢) in (2. 17), (since
2 2

ail # asl), we still have 'E;cat(gb)' = ‘Ezcat(-qs)l . This is because of the pure imagi-

nary character of ai, ai 1 Thus the asymmetries noted for scattering by a ferrite cylinder
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occur only for cylinders where koR and/or sz are not small compared to unity.
For the pure dielectric (4 = 1, k = 0), small cylinder, the scattering is isotropic
since

’IT(kOR)3 R(e-1)

o(g) = 3

(2.29)

is a constant independent of the angular position.

A normalized cross section can be defined as the cross section divided by the

geometrical cross section. That is,
0 =35 (2.30)

This parameter is useful in comparing the relative effectiveness of cylinders with different
radii. Similar to the remarks for ¢ given above, we have %, greater, equal to, or less than
unity, depending on whether the cylinder scatters energy from an area greater than, equal

to, or less than its physical size.

Numerical Results

The far field scattering patterns were computed from (2. 17) for a typical ferrite.
In Appendix C the values of the components of the permeability tensor are found for this ma-
terial. Figures 2.1 and 2. 2 show several patterns and the effects of varying the internal
magnetic field and the radius. The frequency is 10 Ge¢/sec for the curves shown. Each
curve has been normalized to have a peak value of unity. The asymmetry and dependence of
the patterns on internal magnetic field is the basis for the scanning property of the post.
Several patterns are shown for various values of dielectric constant and saturation magneti-
zation in Figs. 2.3 and 2.4. These variations correspond to a change in the material used.
The characteristics revealed in Figs. 2. 1-2.4 are summarized in Fig. 2.5 and Fig. 2. 6.
In Fig. 2.5 the beam angle is plotted as a function of internal magnetic field, radius, dielec-
tric constant and saturation magnetization. In Fig. 2.6 the normalized scattering cross
section is plotted as a function of the same variables. Figure 2. 6(b) shows the inverse cube

dependence of the cross section on the wavelength as predicted by (2. 24) for small cylinders.
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Fig. 2.1.(a) Far field scattering patterns, showing variations with
internal field. € =13, koR =.7. Internal field in
oersteds, a =0, b =2.5, ¢ =5, d = 100.
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Fig. 2.1.(b) Far field scattering patterns, showing variations with
internal field. € =13, koR =.7. Internal field in
oersteds, a = 500, b = 1500, ¢ = 2000, d = 2400.
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Fig. 2.2. (a) Far field scattering patterns showing variations with
koR (i.e., variations with radius). Internal field =
200 oersteds, € = 13.



Relative Power

23

- 180 -90 0 90

¢ (Degrees)

Fig. 2.2. (b) Far field scattering patterns showing variations with
k,R (i.e., variations with radius). Internal field =
200 oersteds, € = 13.
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Far field scattering patterns showing variations with dielectric
constant. Internal field = 200 oersteds, koR =.1T.
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Fig. 2.4. Far field scattering patterns showing variations with
saturation magnetization (47Mg). Internal field = 200
oersteds, kgR =.7. € =13.
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Fig. 2.5.(c) Beam angle vs. dielectric constant. The points
show the values obtained from a computer analysis.
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Fig. 2.5.(d) Beam angle vs. saturation magnetization (4nMg). The
points show the values obtained from a computer analysis.
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Fig. 2.6.(b) Normalized scattering cross section vs. kgR. The
points show the values obtained from a computer analysis.
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Fig. 2.6.(c) Normalized scattering cross section vs. dielectric constant.
The points show the values obtained from a computer analysis.



Normalized Cross Section

33

8 |-
6 —
4 —
N Internal field = 200 oersteds, koR =.7, € =13.
9
0 | | | 1 | 1
0 800 1600 2400

Saturation Magnetization (Gauss)

Fig. 2. 6.(d) Normalized scattering cross section vs. saturation
magnetization (47Mg). The points show the values
obtained from a computer analysis.
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For the parameters used in the preceding curves, the following properties are noted:

1. The beam pattern is in general asymmetric about ¢ = 0.

2. The energy is scattered mainly in the forward direction.

3. The beam angle is highly dependent on the internal field, the
radius, the dielectric constant and the saturation magnetization.

4. The normalized cross section is, in general, greater than unity.
This means the cylinder "appears' larger to the incoming wave

than its geometrical size.

The major deviations from these characteristics occur when the post is small
(kOR << 1). For these cases the pattern is symmetric as predicted by the equation for the

differential cross section (2.28). In addition, since the curves in Fig. 2.2 were plotted for

u =.95, k =.6, we obtain from (2. 28)
7k R’R

o(g) = —%— [(e-1)% +.231+.465-.532(c-1) cos ¢-.208 cos 2¢].

Since € = 13, the dominant term is the first one and the pattern is nearly isotropic as shown
in the figure, for kOR =.005.

The preceding curves and discussion should give some insight into the behavior
of the fields scattered from a ferrite cylinder. It should also give the motivation for the
application of a ferrite post to electronic scanning. The scattered beam is electronically
controllable and the ferrite is electrically large enough to be significant in a practical appli-
cation. The major problem, obtaining a realizable feeding system for a finite ferrite sample
while still maintaining a structure similar to the plane wave—infinite cylinder situation, is
solved by placing the ferrite post in the aperture of a rectangular waveguide. This structure

is analyzed in the following section.

*
2.2 Radiation from a Ferrite Cylinder in the Aperture of a Rectangular Waveguide

Let us now consider the radiation pattern of a ferrite post in the aperture of a
rectangular guide with an infinite flange as shown in Fig. 2.7. The TE 10 mode is incident

on the post. This is a very complex geometry made up of a discontinuity caused by the

* . 19
This analysis was published by the author earlier in a condensed form.
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Fig. 2.7. Ferrite post in aperture of waveguide
with infinite ground plane.

ferrite obstacle and a discontinuity caused by the open aperture. An exact analysis of the
fields radiated from this structure is prohibitive. A simple approximate solution is pre-
sented here which neglects the effects of the waveguide side walls on the scattered fields,
so that two solutions of the type shown in Section 2. 1 can be superimposed to obtain predic-
tions of the beam shifting property. The derivation of the solution and the validity of the

method are discussed in the next section.

2.2.1 Formal Solution. A slight modification in the analysis presented in the

preceding section can be made to account for the difference in the excitation field. Instead
of a plane wave, the TE 10 waveguide mode is now incident on the post. Since the fields

have no z-dependence in this mode, since the waves reflected from the aperture in the ab-
sence of an obstacle have very little z—dependence,* and since the post is cylindrical, we
will assume no z-variations in any of the resulting fields. This is probably a very good
assumption inside the waveguide and in a region close to the (z = b/2) plane in free space.
Elsewhere in the free space region the approximation is invalid. Thus, the solution given
here will be used to provide only the radiation pattern in the (z = b/2) plane. In particular,
the direction of radiation, or beam angle, is desired. The analysis to be given applies more

precisely to either of the cases illustrated in Fig. 2.8. In the first part of the figure, an

*See Appendix B for a discussion of the waves reflected by the open waveguide.
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Fig. 2.8. Structures to which the analysis in the text applies.

infinite number of waveguides, all fed by identical signals, are arrange so that the radiated
fields have no z-dependence. In Fig. 2.8(b), the rectangular waveguide radiates into a
parallel plate structure, so that again no z-dependent fields are present. Obviously, from
a consideration of Fig. 2.8(a), the z-variations in the radiated fields can be neglected in the
region close to the (z = b/2) plane even when several radiators are removed from the ends
so that the number of waveguides is not infinite. If, as in the present case, this argument
is extended until all but one of the radiators are removed, only a comparison between ex-
periment and theory can provide a justification for the procedure. As this is the case in

verifying any theory, no further argument is presented at this point.
Incident Fields

The electric field for the incident wave is,

. -jﬁlx+ jwt
E = cos - e (2.31)
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where

Bl =a/ k02 - (77/3)2

By taking (2. 31) for the incident wave, we have neglected the wave reflected by the open

aperture. This reflected wave is small in the case of an aperture without a ferrite obstacle,

i. e., the aperture has a low VSWR by itself. This is a minor approximation compared to

others made in the analysis of this section. Now (2.31) can be rewritten as the sum of two

plane waves diverging at an angle . Omitting the ert term,

inc 1 -jko(y sin a + X cos a)
EZ =95 |e + e
where
. =1
@ = sin ~ A/A
c
A c = 2a, the cutoff wavelength in the waveguide
A = the free space wavelength.

Or, in cylindrical coordinates

=
I
DO =

-jk r cos (¢ - a)
e + e

Expanding into a series of Bessel functions gives
BN~ Y oos (na) 3 (k1) o-in(g + 7/2)

Using (2.9a) and (2. 9b) gives the magnetic field components.

. 0 J &kr) .

gioe _ 1 Z n cos (na) no e-Jn(¢ +7/2)
r “Ho n=o r

gine o ol io k cos (ne) J'(k r) e"jn(‘b +1/2)
¢ wu o n‘ o

0O Nn=-o0

-jko(-y sin @ + X cos a)]

-jk r cos (¢ + a)]

(2.32)

(2. 33)

(2. 34a)

(2. 34b)

(2. 34c¢)



38

Internal Fields

The wave equation (2. 8) is still valid if we assume no z-dependences exist, so

that the fields inside the ferrite can be written,

int 0 r
E;n = ) a_ cos (na) J (k,r) e ing + 7/2) (2. 35a)
n=-o0
int 1 S -] 2
H;n = '——ﬁ _Z: a.n COoSs (na) [kszIH(kzr) + "r'lig" Jn(kzr)] € Jn(¢ * n/ ) (2' 35b)
w,uo(u -k° ) n=-w
. 0
-j nk -j 2
H;nt = —-—-—-—————J Z an Ccos (na) [“sz;l(k2r) + 'r— Jn(kzr)] € ]n(¢ * N/ ) (2' 350)

wp (B* -K*) n=-w

The cos (na) term was introduced for convenience and could have been absorbed in the co-

efficients (an).

Scattered Fields

The scattered field can be written as

©
scat _ s (2) -in(g + 7/2)
EZ = Z a_ cos (na) Hn (kor) e (2. 36a)
n=-o
(2)
0 H¥(k r) .
Hscat " Z a® n cos (na) £ _° e—]n(¢ +1/2) (2. 36Db)
r Wi n r
0 n=-©
scat -j L s (2) -in(g + 7/2)
H = o Z a_ ko cos (na) HY (kor) e (2. 36¢)
0 o n=w

Boundary Conditions

The boundary conditions, continuity of Ez and H at the ferrite boundary, are

]
Escat L, ginc _ Elnt at r = R (2.37a)
zZ Z Z
scat inc int
H gint _ g tr =R 2.37b
o T H o 2T (2-370)

and in addition, the tangential component of the electric field must be zero on the waveguide

scat

walls. Since E;nc is already zero at the walls, then EZ must be identically zero on these
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metal boundaries. That is,

E =0 at y =+ a/2. (2.38)

In general, additional fields must be added to the scattered fields (2. 36) to satisfy this condi-
tion. These are sometimes referred to as the image fields and are quite difficult to calcu-
late for the geometry considered. However, referring to the beam patterns in Fig. 2.1 for
the infinite cylinder with plane wave incidence, we notice several cases where most of the
energy is scattered into the region x > 0 (-90o < o< 900). For these cases E;cat is zero
(or almost zero) everywhere in the region x < 0. A similar result may be expected in the
present case. When most of the energy is scattered in the forward direction, E;cat is zero
everywhere in the waveguide, the boundary condition (2. 38) is satisfied and the image fields
are zero and can be neglected. Since we are mainly interested in explaining the behavior of
the structure when it actually does radiate efficiently into free space, the limitation of our
results to cases where the image fields can be neglected is not too great.

Applying the conditions (2. 37) at the ferrite boundary gives the unknown coeffi-

cients. These are identical with those given in (2. 16).

(2)
Hn+1(k R) _ Jn+1(koR)
12 (k_R) Il R) 7 ( R)
a = (2.39a)
n i ] @) T K, R)
€ n (1 N E) _ Jn+1(k2R) _n Hn+1(koR) n*2
Ber R #1 R | RGR T @) g)
- € i n (1 . k) Jn+1(k2R)ﬂ _h Jn+1(koR)
s ueff thR u Jn(sz) koR Jn(koR) Jn(koR)
a = @) 2 (2. 39b)
e [ n (1 N k) Jn+1(k2R)— _.n Hn+1(k0R) Hn (koR)
Hogr | KR JnkoR) | kR Hflz)(koR)

As before, (2.17), in the far-field we can write

-jik r+ijr/4 .
gSeat _ / 2 e ° Z a> cos ng e I1? (2. 40)
Z 7k r n
0 n=-o
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Small Ferrite Radius

For the case of koR << 1and sz << 1, the coefficients can be simplified as

in Section 2. 1. They are, using only positive values of n.

s _ . 0
a = -l (2.41a)
1 k
k. R)2" [—’u (1= p) - 1]
S . 0 eff
a =] 55 T X (2.41b)
nl(n-1)12 = (123)+1
Hett H
The power density in the scattered field is
€ 2
N =g [2 |ESe 2. 42)
u Z
o)
Using (2. 40) then gives
€ ) 0 ) )
1 [0 2 S Sy -jng _+jlg
N = 2 | T Z E a_ag* cos (na) cos (La) e e (2. 43)
0 0 n=w {=-00

where * denotes the complex conjugate,

Using only the terms through the indices + 1, since ai is proportional to (kOR)zn, we obtain

2 2 2

2
Cos a

Eo 1 i S ‘ s 2 ‘ S
N = — a + |a cos“a + |a
Ho nkor o 1 -1

s s j s S -j s s -j
+aa*cosae3¢+aa *cosae]¢+a a*cosczewj
01 o -1 1%

+ a%a®
1

\/ 60/“0 {las

Tk r o]
o)

* cos® a e-ngs + as as* cos a em +a° as* cos® a e]2¢
1 -1%0 -171

2 2 2

cos® a

2 S
Cos a+ |a

* ‘al -1

where, Re( ) indicates the real part.

Now, using (2. 41) for the coefficients gives
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e /u ‘lfz(l{R)4 2 2
_ o "o o 2 u-k-1 w+k-1 2
N = K T 16 {(e—l) +[(u-k+1) +(u+k+1)} cos a

-k-1 pupu+k-1
-k+1+u+k+1) cos ¢

+ 2(e-1) cos a (Z

. z(ﬁji;})(ﬁji;})coszac'oszq,} . 44)

For the small post, the beam pattern is symmetric. Because of this, the small
post cannot be used for beam shifting. Of course, the small post produces so much back-
scatter that the theory neglecting the side walls is not valid. It is not expected that the side
walls would produce any asymmetries so that beam shifting with the small post is unlikely.
In Section 2. 1 the normalized cross section for small posts was shown to be less than unity.

Thus the small post actually has little effect on the total radiated field.

2.2.2 Numerical Results. Several patterns computed from (2. 40) are shown in

Fig. 2.9. The values of 1 and k were obtained as discussed in Appendix C. The frequency
is 10 Ge/sec. This figure shows the effect of varying the external field. Figure 2.9(a) uses
values of the components of the permeability tensor calculated for the unsaturated case.
Figure 2. 9(b) uses the components obtained from the usual formulas applied when the materi-
al is magnetically saturated. Figure 2. 10 shows the effects of a change in the product koR

corresponding to a change in radius or frequency.

Two plots of the beam angle vs. the external field are shown in Fig. 2. 11 for a
frequency of 10 Ge/sec. Both theoretical and experimental curves are shown. In the ex-
perimental data the double points mean that a secondary peak exists. In Fig. 2.11(a),
agreement between theory and experiment is good at fields below 400 oersteds. Just above
400 oersteds, the theory predicts larger scan angles than are observed. In this region the
side walls of the waveguide (neglected in the theory) are affecting the pattern. This was ob-
served by the large measured reflections between 400 and 1800 oersteds. It is also seen

from the theoretical far field patterns in Fig. 2.9. For example, for 500 oersteds much of

the energy in the beam is directed back into the waveguide (- 180° < ¢ < —900, 90°< o< 1800),
so that our assumptions no longer hold. At higher fields, Fig. 2.9(b) shows that even though

the peak in the pattern comes near to zero degrees, the beam has broadened so that much of
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Fig. 2.9. (a) Far field scattering patterns showing variations with
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180



Relative Power

43

1.0
0.5
0 ! 1 | I 1 | 1
- 180 -90 0 90 180

¢ (Degrees)

Fig. 2.9. (b) Far field scattering patterns showing variations with
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the energy is reflected back into the waveguide and again the simple model is insufficient to
predict the observed result. This is confirmed by impedance measurements described in
Chapter V, Sections 5.2 and 5.3. In Fig. 2. 11(b) the correlation over the range of fields
tested was better. It is concluded that the theory is valid when it predicts scattering in the
forward direction with very little backscattering. Further analysis and discussion of the
experimental data is given in Chapter V.

These last figures confirm the intuitive notion that the beam shift can be ex-
plained by the asymmetric scattering from an infinite cylinder. In addition, the theory and
experiment agree in the region where the device is useful as a scanning antenna.

A mathematical basis now exists for the observed asymmetry in the far fields.
The origin of this property can be investigated by calculating the fields inside the ferrite
using (2.35) and (2. 39). The results are shown in Fig. 2. 12 for a particular set of param-
eters. The field displacement within the material is vividly shown. The contours of con-
stant electric field intensity and phase are given. The two peaks in the electric field are
approximately 180° out of phase and the line connecting them is at a 14° angle. This cor-
responds to the far field beam pattern, also shown in the figure, with a peak at 14°. On
the basis of these data it is advanced that energy is directed by the mechanism of field dis-
placement.

2.2.3 Application to Circulators. A three port junction type circulator was

described in Chapter I. Its operation can be explained in terms of the asymmetrical
scattering of radiation from a ferrite cylinder. For example, Fig. 2.9(a) shows a set of
parameters that would provide a scattering angle of about 60°. An external field of 500
oersteds would redirect the field to the required port where the metallic boundary would
then further guide the wave.

It is not to be assumed that this is the only mode possible or the only explana-
tion. As shown experimentally by Davies, 20 several modes of operation exist which pro-
duce circulation. Little is known about the various modes although Bosma's article14 does
examine some of them for the UHF stripline circulator. The optimum mode of operation
has not yet been established.

On the basis of the patterns calculated from the infinite cylinder model, we
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postulate that one or more of the modes of circulation are caused by asymmetrical scattering
(i.e., field displacement). This model is useful because it gives an intuitively satisfying
explanation of the circulator mechanism. Field displacement similar to that in Fig. 2. 12(a)
can then be visualized for the 60° far field scattering angle required for circulator action.
This is in agreement with the general result found by Bosmat14 in his discussion of the strip-
line y-junction circulator. He presented an apprxoimate analysis that also showed the field

displacement within the ferrite causing the circulation.

2.3 Conclusions

Initially, this chapter presented an analysis of plane wave scattering from a
ferrite cylinder. Theoretical beam patterns showed the asymmetrical scattering controlled
by the static magnetic field that motivated the application to electronic scanning. Two addi-
tional properties should be stressed that were necessary for the practical realization of the
antenna. These were the single peaked characteristic patterns and the relatively large
cross sections predicted by the theory. If the patterns were isotropic, there could be no
beam shifting; while if there were more than one peak, extraneous lobes would appear in the
antenna pattern. If the cross sections were low, then it would be difficult to couple energy
from the incident wave into the ferrite. Thus, for a normalized cross section less than one
the ferrite would have little effect on the beam pattern. Although from the presentation in
the introduction the reader might have been convinced that the scanning application in the
waveguide aperture could obviously be realized, this result was actually not obvious without
the additional fortunate circumstance of these last two properties.

The physical realization of the antenna was presented as a finite ferrite post in
the aperture of a rectangular waveguide. The relationship between this structure and the
infinite cylinder problem was investigated with the result that a modification was made to
account for the change in incident field. The theory, intending to predict and explain the
antenna radiation properties in a single plane, can only be viewed as an approximation to
the actual problem. The intuitively satisfying qualitative agreement and the reasonably
satisfying quantitative agreement with the experiments make the analysis valuable. A simi-
lar field displacement within the ferrite will very likely be found even if a more exact analy-

sis is performed.



CHAPTER 1II

REFLECTION COEFFICIENT OF A FERRITE OBSTACLE
IN A WAVEGUIDE APERTURE

In addition to the radiation properties, the input impedance of the ferrite scan-
ning antenna is also required. The reflection coefficient R1 (essentially just another form
of the impedance, Z) will be calculated in this chapter. The reflection coefficient and the
impedance are related by the equation

1+R1
1-R1

Z:

The major difficulties arising in the calculation of R1 for the present configura-

tion are the following:

1. The ferrite post is characterized by a tensor permeability.
The permeability, given in (2.2), makes this an anisotropic
problem. While a scalar solution could be obtained in the
purely dielectric case, 21 a vector solution with its attendant
complexities is required here.

2. There are really two discontinuities present, the ferrite
cylinder and the open aperture. In general, the ''dual dis-
continuity' type problem has not received much attention in
the literature. The ferrite obstacle interacts not only with
the field incident from the source but also with the higher
order modes created by the aperture discontinuity. In the
method of solution used, the effects of the two discontinuites
are separated as much as possible. It is assumed that the
solution to the aperture discontinuity problem by itself is

already known. Appendix B gives this solution.

51
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Fig. 3.1. Cpylindrical ferrite obstacle in a rectangular waveguide.
The waveguide is terminated by the open aperture.
In addition to the reflection coefficient of the antenna, this chapter generalizes
the method of solution presented to include other ""dual discontinuity' problems. The de-
generate case of a ferrite post in a matched waveguide is directly obtained from the results

of the analysis and is also discussed.

3.1 The Variational Technique

For the derivation in this chapter the obstacle is assumed to lie wholly within
the waveguide as shown in Fig. 3.1. The material may be anywhere within the waveguide,
however. The case where the obstacle lies partially outside the waveguide is treated in
Appendix E. The obstacle is cylindrical (though not necessarily circularly cylindrical).
The TE 10 waveguide mode is incident on the discontinuity. It is assumed that there is no
z-dependence in any of the fields inside the waveguide due to the symmetry of the geometri-

cal configuration and the incident wave.

A brief study of the geometry involved reveals the complexity of the problem.

Solving the differential equation and applying the boundary conditions seemed less advisable
than attempting to formulate the problem in terms of its integral equation and then applying
approximating techniques to evaluate the reflection coefficient. The variational method was
chosen as the most suitable technique for doing this. This method was applied to a number
of waveguide problems by Schwinger. 21. In particular, he solved the problem of the dielec-
tric cylinder in a matched waveguide. The technique is extended here to the case of an ani-
sotropic cylinder in a loaded waveguide. In this procedure an integral expression is found

for R, which depends on the fields within the ferrite obstacle and is stationary with respect

1

to small changes of these fields about their true value. The trial fields used can be obtained
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in several ways. An approximate solution can be used to derive the fields; an intelligent
guess can be made of the fields; or the fields can be expanded in a complete set of functions
characteristic of the obstacle and the property of stationarity applied. For example, for a
cylinder, the trials fields can be written in a Fourier-Bessel expansion with unknown co-
_efficients. The coefficients are then eliminated from the equation using the stationary
property of the variational expression. This last procedure makes best use of the varia-
tional method, but for many problems cannot be fruitfully carried out because of the com-
plexity of the results. In the problem presented here it is possible to carry out this proced-
ure without too much difficulty.

The steps taken in the derivation of the variational expression for the reflection

coefficient are:

1. Derive the wave equation.

2. Write an integral equation for the fields.

3. Derive the Green's function.

4. Find an exact expression for the reflection co-

efficient in terms of the fields.

5. Use the results of 2 and 4 to derive a variational

expression for the reflection coefficient.

3.1.1 Wave Equation. For a region containing an anisotropic body, Maxwell's

equations are:

9B
VXE = - a_t (3. la)
= 9D
VxH = W (3. 1b)
vV-D= 0 (3. 1c)
V-B= 0 (3.14)
If the constitutive equations B = 1 H, D = ¢E are used and if eI time dependence is
assumed, the first two of these equations become:
VxE = -jwu L H (3.2)
VxH = jwe €E (3.3)
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The wave equations, derived from these last two equations are then

= 2 = 2 = - =
VxVxE-ko E—ko er ]quVxme (3.4)
and
= 2 = 2 m s =
VxVXH-kO H—k0 me+]w€0Vxer (3.5)
where
o= (1+xm) (3.6a)
e = (1+yx) (3. 6b)
X, k0
Xy = jk Xm 0 (3.6¢)
0 0 X,

The reflection coefficient can be derived from either (3.4) or (3.5). We use
(3.4) here. [The derivation using (3.5) is given in Chapter IV. |
Since V -+ E =0, the substitution VxV xE =-v® E + vV - E yields for each

rectangular component of E,

2 = 2% o 2 T o_ s - T 3
v E+kO E (kO er ]quVxme) (3.7)
Now, let
= Lz = - =
J = ko er ]wroxme (3.8)
i.e., consider J as a fictitious source. Then
VE+k*E = -7 (3.9)

3.1.2 Integral Equation. Now, introduce the dyadic Green's function as a solu-

tion to

—

VG+k*G=-=T1
(0]

I'o(x-x)d(y-y) (3.10)

o=

where 6 is the Dirac delta function, and I a unit dyadic.
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Also, let G have the same boundary conditions as the electric field E.

nxG=0 onthe waveguide walls, (see Appendix A for

a summary of dyadic operations) and

ol)

is continuous at the waveguide aperture.

=1

is the unit vector normal to the waveguide

walls.

The components of the Green's function can be viewed here as the electric
fields due to a line source of unit strength located at the point (Xo’ yo) in the absence of the
ferrite obstacle. For the present case, let (xo, yo) be inside the waveguide. (Appendix E
provides the extension to the case where the obstacle extends outside the waveguide. )

The solution to (3.9) can then be written,
E = | Glrir ) J(r)dv +E_ (3.11)

where Eo is the field present in the waveguide when the ferrite obstacle is absent. Eo in-
cludes the incident electric field and the field reflected from the aperture and is a solution
of the homogeneous wave equation. The letter r represents the point (x,y) while r Trepre-

sents (x ). The volume of integration encloses the obstacle as illustrated in Fig. 3. 2.

0’ Yo
The volume of integration must enclose the obstacle. It may be bounded by any surface
such as the waveguide side walls and reference planes at each end of the waveguide, or a

surface just outside and enclosing the ferrite obstacle. The resulting integrations are iden-

tical since there are no sources in the region outside the ferrite.

That (3. 11) is a solution to (3. 9) can be proven by substituting (3. 11) for E into

(3.9).
vV E + k02 E = f (V2 + koz) 'G'(r‘ro) . 'j(ro) dVO + (V2 + koz) EO
= L a(x-x) By -y,) T- T(eg) v, + 0
= -J(r)

3.1.3 Green's Function. If the TEIO mode is the incident field, only a z-com-
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ponent of the electric field appears in the waveguide. Due to the symmetry of the problem,
only TEnO modes are assumed to be excited by the obstacle and aperture. Thus, J has only
a z-component, and the only component of Grequired is the aa, term.

The solution for the required component of the Green's function in (3. 10) for the

case of the perfectly matched waveguide is given by:22

nw -y |x-x
. nmy . Yo an
in—= sin—— e

0 S 0!
a a
Gzz - ngl ynab

where:

2 2 02
Yy = (nm/a) ko .

In the present case, a term must be added to this to account for the reflections
at the aperture (x=0). Since GZZ is an electric field, the total Green's function in the region

x < 0 can be written down immediately as

DY, Y X%

. Ny .
io Sll’l—a— Sln—a—- e
G =
ab
2z n=1 "n
0 ® nmy vy X

(0] nxo T 4
e sm%i e M (3.12)
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Rnrl is the reflection coefficient when the TEno mode is incident on the aperture,
and will be called the self-reflection coefficient.

an(n # m) is the coupling coefficient to the TEmo mode when the TEnO mode
is incident. Both Rnn and an are assumed to be known. (See Appendix B for their cal-
culation. )

The interpretation of (3. 12) is that the line source at (xo, yo), oriented in the z-
direction, gives rise to an infinite number of TEno modes. Each of these modes, upon re-
flection at the aperture, excites an infinite number of TEmo modes. In deriving the Green's

function, the ferrite post has not yet been introduced into the waveguide.

Reciprocity is given by22
a(rlro) = G(r 1) (3.13)

where ~ means transpose.

In the present case, GZZ must satisfy
Gzz(rlro) - Gzz(ro‘r)
Using this relation in (3. 12) gives:

mn _  nm (3. 14)

This is a useful relationship relating the coupling coefficients.

3.1.4 Reflection Coefficient. Eo , the field in the waveguide when the ferrite

obstacle is absent, can be written

VX X nry ¥ |-
E =|sinWe + Z R, sin2 ¢ a (3.15)
o] a n=1 1n a Z

The electric field E, the field in the waveguide with the obstacle present, can be

written

= Ty S nwy )=
E = [sm— e + HEI Rrl sin—= e ilaz (3.16)
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The first term is the incident electric field. The Rln terms are assumed known (see
Appendix B). R1 is the reflection coefficient of the combined ferrite and aperture with the
TE10 mode incident and is the desired quantity. R1 is referred to the plane x = 0, although
the ferrite obstacle may be anywhere in the waveguide.

Now, assume only the TE10 mode propagates in the waveguide (all other modes

being beyond cutoff), and evaluate (3. 11) for the electric field as x~-. The result is

1 — -
L = R+ b7, JE (&) T av, (3.17)

This is the desired quantity. The reflection coefficient of a ferrite obstacle and
aperture is given by the reflection coefficient of the aperture alone plus an integral of the
field present when the ferrite is absent and the field present with the ferrite. In Appendix E
it is shown that this equation is valid even if the ferrite obstacle extends partly outside the
aperture into the free space region.

Consideration of the manner in which (3. 17) was derived shows that it is valid
for a ferrite obstacle with any additional discontinuity at x = 0 that excites only TEno modes.
The simplest case, of course, occurs when the waveguide is terminated at X = 0 with a

matched load so that all the coefficients (Rnn’ an) are zero.

3.1.5 Variational Formulation for the Reflection Coefficient. An exact ex-

pression for R, is given by (3. 17). In order to solve for it, however, the fields inside the
ferrite obstacle would be required. In principle these could be found from the integral equa-

tion (3. 11), but this is a difficult problem. Thus, an expression for R, is sought which is

1

stationary with respect to small changes in the true value of the fields.

Let Ez, H2 be the fields present when the direction of the dc magnetic field is

reversed. For this case the permeability tensor is given by

Xm ik 0
sz = | -jk Xm 0 (3.18)
0 0 Xy
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The wave equation for these fields is

vV E 5 (3.19)

where

32 = ko2 Xe-E-Z - jwuo vV x ;{mz ﬁz (3.20)

The steps taken to obtain (3. 17) for the reflection coefficient are repeated to obtain

Ey = J Glr|r) - Jylx ) dv + E (3.21)

and

) _ 1 = LT
R = Ry + abr, / Eo(r) - Jylr ) dv (3.22)

This is the reflection coefficient obtained when the dc magnetic field is reversed. It will
now be shown that R(lz) = Rl’ i. e., the reflection coefficient is unchanged when the bias
field is reversed. (This statement agrees with the more general results given by Harrington

and Villeneuve. 23) Multiply (3. 11) by ‘TZ and (3.21) by J and integrate over the volume dv.

This gives
JE @) - Ty@ dv = [E(r)- Tyr)av- [ [ Jo(r) - a(r‘ro) - E(ro) dv_ dv (3.23a)
JE@- I av = [Eyr)- Jr)av- [ [ 3x)- G(r|r,) - Iz(ro) dv, dv (3. 23b)

Interchanging the variables of integration, and using reciprocity (3. 13) shows that,

ff :I_z(r) . a(rlro) . 3(1'0) dvo dv

~

f f 32(1'0) . a(rlro) . I(r) dvo dv

1t

[ Tty Glr|r,) - Ty(r.) dv, dv (3.24)

Thus, the double integral terms in (3. 23a) and (3. 23b) are equal. Expanding the single inte-

gral term in (3.23a) gives

il . T e 2 _—l— _‘ —0 v "
fE(r) Jz(r) dv = fko er E2 dv ]wpofE VxxmzH

2dv
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Using the identity A-VxB=B-V XA - V- A xB on the second term gives

[E- VX)_{m ﬁzdv = f)?mz-ﬁz- VxEdv-fV-(—xi’m ﬁz)dv

2

The divergence theorem then shows that

jv-(Exi{mz

where n is the outward normal to the surface ds (see Fig. 3.2). The integral is zero over

the surfaces outside the ferrite since ;(.m is zero in these regions. The integral is zero

over the top and bottom walls where n = + a—z, since + 'é.'z - E x ;{m H, = 0 (recalling that

9 2

E has only a z-component). Thus,

m, m, 2’
= j;{mgﬁz (-ja)uoﬁﬁ) dv
Now
T By B = iy, BH = BT, - 7
= ﬁzﬁ Zmﬁ - ﬁﬁ2 ;mﬁ - I"zﬁz ;{mﬁ
Thus
;(.mzﬁz- VxE = ;{mﬁ. VXEZ

Then

. 25)
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Thus proving that
JE -Tyav = JE - Tav (3.26)

and, by (3.22) and (3. 17)

@) _
R;” = Ry (3.27)

To form the variational expression, multiply (3. 11) through by J 2 and integrate over the

volume dv.

JE - Tyav = [E-Tyav- [ [ T,x)- G(r|r )~ J(r ) dv_ dv

Next, divide this expression by (3. 17) and (3. 22) and invert to give

1
aby1

o “2

JE, -Tav [E

[

dv

R, -R

1 (3.28)

= JE- 3—2 dv - ffiz(r)‘ —G(I‘Iro)‘ —J-(ro) dv v

This is an expression for R1 - R11 which is stationary with respect to variations
in the functional form of E and E_z. We can let OE and GEZ be these variations. Then, if we

denote Ec and ECz as the correct values of E and EZ’ we obtain E = Ec + OF and EZ = ECZ +

éﬁz. Since J and 32 are functions of E and EZ’ they have variations (corresponding to

changes in E and Ez) which we may write as 6J and 6J2 The proof of stationarity follows:

In (3.28) let E, J be constant and let E,, = E.

9 + éiz (or equivalently, 32 =Jo +

2 2

6:]_2). Then, we obtain

5(Ry - Ry)) [JE- Tyav- [ [ T,0r)- Glr|r)- Tir ) av_ av]

+ Ry -R) [JE- 0T, dv- [ [ oT,0r) - Grr )+ I(r ) dv, dv]

1
aby1

fﬁo-jdvf_E_o-GT dv = 0

Using (3. 17) gives
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C‘)(R1 - Rll) [_f E- 32 dv - fj jz(r) . é(rlro) . I(ro) dv0 dV]

+ Ry =Ry [J 67, € - J G@r|r)- T av -E)av] =0 (3.29)

The integrand of the second term is zero by (3.11). The multiplier of C‘)(R1 - Rll) is just

f 32(1“) . [E(r) - f G(rlro) . :I—(ro) dvo] dv

which, by (3.11) and (3. 17) is equal to

f Jz(r) . EO dv = aby1 (R1 - Rll)
This is zero only if Rl = Rll'
Thus (5(R1 - Rll) is zero (except for the case R, = Rll)’ and R, - Ry is stationary with

respect to changes in EZ (or Jz).

Similarly we can let E (or J) vary in (3.28). Using (3.25) results in

<3(R1 - Rll) [] E - :1-2 dv - ]f .Tz(r) . —G(rir

| o) . j(ro) dv0 dv]

By an argument similar to that used in deriving (3. 34) and (3. 29) we obtain
5(R, - R, ) [f E-Jydv- [ [ Jyr): Glr|r,)- T(r ) dv, dv]
+ (Ry - Ryy) {j 6J - [Ez - fG(riro)~ Jolr ) dv, - Eo]dv} = 0 (3.30)

The integrand of the second term is zero by (3.21). Thus, R1 - R, as given by (3. 28) is

11
stationary with respect to changes in E (or J).

Hauser11 derived a variational equation comparable to (3. 28) but with several
differences. He obtained an expression for the reflection coefficient of an anisotropic ob-
stacle of arbitrary shape but in a matched waveguide (i. e., with no additional discontinuity

such as the aperture). Also in his variational expression, instead of using the fields pre-

sent when the static magnetic field was reversed, he used the adjoint fields. The most
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important practical difference between the two formulations was Hauser's explicit inclusion
of the magnetic fields. In (3.28) Eo’ E, J, 32 and G each have only a single component.
Thus (3. 28) can be easily reduced to a scalar equation. On the other hand Hauser's equa-
tion contains the magnetic field (which has two components) and the magnetic Green's func-
tion (a dyadic with four nonzero components as shown in Chapter IV). Products of these

terms are much more difficult to manipulate than the simple dot products in (3. 28).

3.2 Evaluation of Reflection Coefficient

The variational expression (3. 28) is still a formidable equation from which to
obtain numerical results. The usefulness of any expression is dependent on the amount of
information that can be obtained from it. If (3.28) could not be simplified it might be of
little use. Fortunately, for the special cases to be treated, the equation can be reduced to
simpler forms, the variational property can be applied and numerical results obtained.

We will first reduce the volume integrals of (3.28) to line integrals.

From (3.9)

and we know that

Multiply the first equation by Eo and the second by E and subtract

E -VVE-E-V'E =-E -J
0 0 (6]

Since Eo’ E and J have only a z-component, this can be written as the scalar equation
E VVE-EV'E_= -E J
0 o 0

Then use the identity u v - A-v. UA - Vu- Aon

=
4”
5]

il

)

o
<
q
&

and

to obtain
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Integrate over dv, and use the divergence theorem to obtain the first term in the numerator

of (3.28).

on-Jdv=j'(EVEO-EOVE)-Eds (3.31)

where n is the outward normal to the surface. The surface of integration is outside the

ferrite obstacle (see Fig. 3. 3).

Similarly, the second term in the numberator of (3.28) is
on-szv=f(E2VEO-EOVE2)-nds (3.32)

A similar derivation also reduces the denominator of (3.28) to a line integral as

follows. Start with (3.9) and (3. 10) in their scalar forms.
V E +k?E = -J(r)
o) o)

2 e~ _ 1 _ - - - -
Vo G+k0 G = b<5(x xo) 5(y yo) = O(r ro)

o=

Multiply the first equation by G, the second by E(ro), subtract, and cancel common factors

to obtain
v -[EV G-GV E] = GJ-% E(_)0(r-r)
o) o] o] b o] o]
Now, integrate over dv0 and use the divergence theorem to obtain
| [E(ro) v, G-GV, E(ro)] cmds, = [ Glr|r)Ir,) av - E() (3.33)

where the closed surface of integration is just outside the ferrite obstacle.

Let v be defined such that
vir) = [ Glr|r) I )dv -E = [ (EV G-GV E)- nds (3.34)
From (3. 11), it is then seen that
v = -E (3.35)
so that v satisfies

Vv o+ kozv =0 (3.36)
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From (3. 19) we have
V'E, + K °E, =
)

2 9 = Iy

Performing manipulations similar to those used in deriving (3.31), we obtain the desired

simplification
JE- 32 av- | [ Tz(r) . 5(r|ro) . T(ro) dv_ dv
= -/ By Vv - VWE,) - nds (3.37)
where E2 and v are again taken just outside the ferrite surface.
We now have that

-1 _ _
aby, [/ ®VE - E VE)- nas][[ @,VE_ - E_VE,) 1 ads]

Ry -Ryy = (3. 38)
/ (Ey Vv - VVEy) - nds

where

v=/ EV G-GV E) nds_

So far the obstacle considered has been cylindrical, but not necessarily circular.
The above equations are most easily integrated when circular cylinders are considered.
These are the types of objects of greatest concern in this study. We now consider the circu-
lar cylinder with center at x = -d, y = ¢ as shown in Fig. 3.3. For this cylinder n :Er for
the curved surface, and + Ez for the top and bottom surface. Since E and EO are independent
of z, VE_ - Ez = VE - Ez = 0, and there is no contribution from these terms. For n :Er the
integration is over the surface ds = rdgdz. The dz integration gives only the constant factor

b which eventually cancels out of the equation for R1 - Rll' The integrals to be evaluated

are then

27 an IE

(E_F - Eo—a-r—) R dg (2. 39a)
0]
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Fig. 3.3. Right cylindrical ferrite obstacle in rectangular wave-
guide. The waveguide aperture is located at x = 0.

27 o, o,
c{ Ey—— - E =" |Rdo (3. 39D)
27 JE
- ov 2
27 0G(r|r ) oE(r )
v=b/ |Ecr)——2-G|r)——|Rdg (3. 39d)
o 0 aro o] aro 0 ’

where R is the radius of the cylinder.
The fields to be used in these integrals are those just outside the ferrite. It is more con-
venient to use the fields inside the obstacle. Using continuity of E, Eo’ and H¢ at the ferrite

boundary, and the equation

. _9E
jou Hy = o
outside the ferrite, we obtain
2w/ OE, OE 27 int %Bq int
c{ ETr_ - Eo?? Rdg = Of E - - quOEOH¢ >Rd¢ (3.40a)
27 aEO 8E2 27 int BEO int
({ EzTr_ - Eo_a'r_ Rdg = c{ E2 Tl quoE0H¢2> Rdg (3.40b)

21/ 5y By 2T/ int av int
({ <E25 - v~5r—> Rdg = ({ <E2 i ]wuovH¢2> R d¢ (3..40c)
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(3. 40d)

2m
v=b]

<Emt£ - jou G H"‘t> R dg_
(0]

aro o
It is important to note

where the integrals are now taken just ingide the ferrite surface.
here that 9E/0r is not continuous at the surface of the ferrite.

We have now reduced (3. 38) to

27 int OEq int 21( int OB int
- jwu E H™ |Rdg ({ E, “zTF‘Jw“oEngaz >Rd¢

1
—i?{ or 0 0 ¢
R,.-R = 27 . .
1 11 - int ov . int
bg (EZ ﬁ—]wuovH%)qu&

We will next expand the internal fields in a series of functions characteristic of
The co-

These functions will have coefficients undetermined as yet.

the circular cylinder.
efficients will be eliminated from the evaluation later by using the stationary property. The

expansions for the internal fields can be taken as [from (2. 12)].

. 0 .
gint _ y a_J_(kyr) o-in(e + 1/2) (3.41a)
n:_
) : 0 .
Hmt _ -] ' a e-]n(¢ +71/2) [“kZ J;l(kzr) + I;‘_k Jn(kzr)] (3. 41b)
? wy (u* - K*) n=-o
. [e 0] .
E;nt = ) al(qz) J (kyr) e7In(® + 7/2) (3.41c)
n:—
gt _ -] Y a® e T e g ) - 2Ky o)) (6.410)

¢2 wuo(u2 - k*) n=-w
The [an,a( )] coefficients are not yet known. It is repeated here that Ez and _ﬁz were defined

such that
(3. 42a)

(3. 42b)

=
-
5
AI-F
z
I
e
o
z
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so that

a®k) = a (k) (3. 43)

To perform the integrations in (3. 40a through 3. 40d), we use the following

lemma proved by Schwinger. 21

Lemma: If U(x',y') = U(r,¢) is any solution of the two-dimensional source free wave equa-

tion, V> U + k02 U = 0, inside a circle of radius Ro’ then for any r < R0

27 . .
. Of Ulr,0) ™ do = ()™ 7_(k r) &™P U(0) (3. 44)

jmD

where e is an operator defined by

} m
+jmD - m 1 d .0
e = (cos D+ jsin D) = [——-jko (—ax' + ]W)

and where eJmD U(0) means eJmD U(x',y') evaluated at the center of the circle and where

(x',y') are coordinates referred to the center of the circle.
Since (3. 44) holds for any r < Ro’ differentiating with respect to r gives the

second required equation

aU(r, ¢)

27 .
1 jme _m . jmD
__217({ 22,0 ¢ do = ()7 k J (kr)e

PP U(0) (3. 45)

The lemma can be applied directly to (3. 40a, 3.40b, 3. 40c), since EO and v are
both solutions of the two-dimensional source free wave equation. Using (3. 41a) through

(3.41c), in (3. 40a, 3.40c) results in

21 i OBg int
g <E 55 - Jon, B Hy R dg

[o0]
_ -jnD ,
= n:Z_oo a_ 21R {e EO(O)} {ko J (,R) I (k R)

1
uz_kz

[ukz T (k,R) + -“f% Jn(sz)} Jn(kOR)} (3. 46)
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and

2T/ int ov int (@) -inD
({ <E2 - Jon v H2¢>Rd¢ = ) a] 271R|:e v(O)] {ko 3 (&yR) J' (k_R)

[e0] .
[ukz J! (KyR) - % Jn(kZR)} Jn(kOR)} = ) af) Bflz) ¢ %D y(0) (3. 47)

T n=-m

Similarly for (3. 40b), we find

2m int an int
J (B —=2-jwu E_H' )R dg
2 or
0 2
We note that

The evaluation of v (3. 40d) is more complicated since G is not a solution to the free space

wave equation but is a solution of
2 2 1 _ _
V' G + k0 G = - 5 d(x XO) S(y yo)

The Green's function is made up of contributions from a source point inside the waveguide
plus contributions from an infinite number of images lying outside the waveguide walls. In
fact G could have been derived originally by the method of images, beginning with the two-
dimensional free space Green's function24

9 - —
By 7 - Ty
4]

H(()z) is the Hankel function and is equal to

Hf)z)(z) = J (2) - IN (@)
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(Xo’ —Za+yo) *3

LU iyl

(x,¥,) A’

T Yy=2
(xo, 2a- yo) 02

y=0

(xo, 2a+yo) 4

Fig. 3.4. Image points for the rectangular waveguide.

The coordinate system is shown in Fig. 3.4 along with the image points. ng)/lij and -NO/4
satisfy the same equation as G (except for the 1/b term) while J0 satisfies the homogeneous
wave equation. Since we want to remove the singularity from G in order to be able to apply

the lemma, we only need to remove the term —NO/4. Let

—No/4 = Gy g,
The Green's function can then be written as the free space Green's function (Gf s ) plus the
image terms (Gi)’ i.e.,
bG = Gf.s. + G1 (3.48)
where Gf s and Gi are solutions of
2 2 = - - 6(y - 3.4
v Gf. s. © ko Gf.s. 0(x Xo) (v yo) (3. 49a)
vV’G, +k*G, =0 (3. 49b)
i o i

inside the waveguide, since all the image source points lie outside the waveguide.
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Then (3. 40d) becomes

27 ., 0G .
v = f (Emt f.s. _ jwllo Gf . Hmt> Rd¢0

o aro o)
27 ., 0G, .
+ f <Emt—§}-1- - jou G, H;“t> R dg_ (3.50)
(0] (0]

where

~ _No(kol; - ;ol)
. s. 4

© jn(p -9 )
= 0{
[0 0]

J kDN k) r >

Jn(koro) Nn(kor) ro <r (3.51)

The first integration on the right in (3. 50) can be performed directly. The second term can

now be integrated using the lemma since Gi satisfies the required conditions. The result is

0 -jeD,
v(r) = E_Z_w a, 211R|:e Gi(rIO)] k, J,(,R) I} ( R)
1 | , tk
S [ukz Jy&yR) + 7 J ﬂ(sz)] Jﬁ(kOR)}
1 X -1 -jtg
-2 gziw a, 2nR()" J,(k ) e k, J,(kyR) N} (k_R)
1 . ¢k
Y [ukz TykyR) + 7 Jﬂ(sz)} Nﬁ(koR)}
0 -jﬂD0
= Z a, B, e Gi(rIO)
{=-00
S Silg -0
+ 0 a,C, I,k ) e () (3.52)
{=-00

where e_JﬂDo operates on the (ro) coordinates.

Now (3. 47) can be written

-jnD -jeD . .
5% al?) 13(2){;;1113!Z e el o G,(010) + a,()7" ¢, &P [e'““’ Jﬁ(kor)]}(3.53)

n
n=-o0 {=-00
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It can be shown that

-inD| -jeg g
e [e Jﬁ(kor)} = (j) é-nﬂ

where 6_ is the Kronecker delta

nf

6-n£ = L £ = -n
= 0, £ £ -n
Thus (3.53) becomes
& & . -i¢D
' ! (2) (2) -jnD o} (2) (2) ¢
néwﬂ%w[an a, B~/ B e e G,(010) + 2™ a,B* C (-1)"6_ (3. 54)

We then have

or

Yy R ST T
R.-R = - (3.56)
1 711 o0 o0
Z Z a(z)a Tr
{ "nf
n=-00 {=-0
where
-jnD
a Bn e EO(O) (3.57a)
o2 - B2 -inDg (g (3.57b)
n n o)
. i{D
_ 5@) inD "% ¢ ()
I’nﬁ = Bn Bﬂe e Gi(OIO) + (-1) Bn CQ 6—nﬂ (3.57¢)

For any given set of parameters, these last three terms are known constants.
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_j -j4D
InD 70 4 010)

The not so trivial matter of evaluating the operations e_]nD EO(O) and e i

is treated in Appendix D.

The reflection coefficient can now be evaluated from (3. 56) by any of several
means. The terms as yet unknown are the coefficients a, and a1(12)' Since (3.56) is station-
ary with respect to these coefficients we could choose as a reasonable approximation for
them the values found from the plane wave approximation in Chapter II. This procedure
would not take full advantage of the stationary property, however. A better method is to
use the stationarity of (3. 56) either to find the unknown coefficients or to solve for R1 - R11
directly. The latter procedure will be followed here. The stationarity of (3. 56) requires
that the derivative of R

1- R11 with respect to any of the coefficients must be zero. For

the present case, only the terms a, a [and a(z) a(z)] will be used. These few terms

+1 o "+1

were found to give the major contributions to the field expansions for the infinite cylinder
problem solved in Chapter II. We can thus use only these terms with a certain amount of

confidence. Taking the derivatives yields

(R-R,,) i a?r A i a®o® 20 k=0 x1 (3. 58a)
n=-1 n=-1
and
! @ 3 i}
(R-Rll)g_z_laﬂ L, + Ao sz_laﬁ @, =0 k =0, 1 (3.58b)

where A = 1/39/1

(2)]

We have six homogeneous equations in six unknowns. For a solution to exist for the [an, a
coefficients the determinant must vanish. When the determinant is set to zero, the unknown
coefficients are removed and a solution for Rl—R11 remains. Actually, either (3. 58a) or

(3.58b) alone may be used. That is, take either equation and equate the determinant to zero.

The solution for R,-R,, comes out to be the same no matter which of the above methods is

1711

used. The solution is



I Tor Iy o T o0 Tor 11
(2) (2) (2)
Aoy T Too % | A Tig % Tgo| Aoy |og Thp Tgg
Ti1 Tor 2 Tiap 2 g @1 Too1 Tyog
R.-R,, =
1711 T T T
11 01 -11
Tio Too oo
Io1 Toor Taon (3.59)
This equation is most easily evaluated using a digital computer. The results
for the case when the aperture is replaced by a matched load (i.e., R__ = R = 0) are

nn nm

shown in Fig. 3.5. This Smith Chart representation shows how the impedance of the post
varies as the static field is changed. The reference plane is at the center of the cylinder.
The values of the components of the permeability tensor were obtained as described in
Appendix C. The experimental data, also shown on the chart, agree quite well with the
theory. There appears to be a constant difference in reflection coefficient angle of a little
less than 10°. This corresponds to a shift in the reference plane of about . 022" which
might easily be attributed to experimental error. Because of the difference between
Hexternal and the measured static field Happ (as discussed in Appendix C) the Smith Chart
presentation is most suitable for comparison between theory and experiment. On the chart
only the theoretical static field, Hex , is shown. The agreement between experiment and
theory shows that the three terms of the field expansion inside the ferrite used in the sta-
tionary expression were sufficient.

The second Smith Chart (Fig. 3.6) shows the impedance of a post just inside the
waveguide, tangent to the aperture. For this case the theory and experiment are still simi-
lar but are further apart then for the matched case. This is attributed to two main causes:
(1) because of the aperture discontinuity the field distribution within the ferrite may require
more than just three terms to describe it accurately; (2) the reflection and coupling coeffi-
cients are difficult to calculate, and an infinite number of them are required in the evalua-

*
tion of (3.59). From the physical considerations, the rapid convergence of the terms in-

*
See Appendix D for the type of summation involved.
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—— Theoretical

Fig. 3.5. Impedance of a ferrite post in a matched waveguide as the
static external field (shown in oersteds) is varied. Frequency =
10 Ge/sec, diameter =.295", TT 390 ferrite, ¢ = 13.

A
Q7%
AWM

a'a ) '..0
N\

Fig. 3.6. Impedance of a ferrite post just inside the waveguide, tangent
to the aperture, as the static external field (shown in oersteds)
is varied. Frequency = 10 Gec/sec, diameter = . 295",
TT 390 ferrite, ¢ =13, d =. 148",
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volved has been assumed. For the data shown in Fig. 3. 6, the only coefficients taken into

account in the calculation were R R22 and R33 . The addition of several more coefficients

11°
would improve the result. In any case, the theoretical curve predicts the behavior of the
impedance as the static field is increased and is accurate enough to be used advantageously
to design a matching network for the post-aperture structure.

The method of improving the accuracy of the theoretical results follows straight-
forwardly (but perhaps tediously) from the procedures already performed. More terms in
the field expansion can be included in (3. 56) and the stationarity property applied again
exactly as in deriving (3.59). Also, more of the reflection and coupling coefficients (Rnn’
an) can be found (as derived in Appendix B) and used in the evaluation of the reflection
coefficient.

The next set of curves (Fig. 3.7) were plotted for a relatively small post, cen-
tered in the waveguide with respect to the side wall and placed one waveguide wavelength
away from the open aperture. The experimental and theoretical curves agree very well for
this case. The region around 2400 gauss is where ferromagnetic resonance occurs. The
high losses existing here were not accounted for in the calculation. The excellent agree-
ment for the small post can be explained in terms of the simple field structure within the
cylinder. Because of the small cross-sectional area, it is almost certain that the fields

are almost constant over the cylinder and can thus be accurately represented by the first

few terms of the Bessel function expansion (3. 41).

3.3 Reflection Coefficient for Small Posts

The reflection coefficient (3.59) can be evaluated easily for the case of small
posts. In particular for the cases where kOR << 1, kZR << 1, the Bessel functions can
be replaced by the leading term of their series expansions. The post is not necessarily
centered in the waveguide. We can neglect FIO’ I‘Ol, Fll’ F—l-l since they turn out to be

proportional to (kOR)2 . We can approximate rnﬂ by the dominant terms.

0
Cy 6, = ("B C o,
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Fig. 3.7. Impedance of a small ferrite post near a waveguide aperture.
Frequency = 10 Ge/sec, d = 1.56", diameter =.049", TT 390 ferrite,
€ =13. (a) Resistance vs. external field.

(b) Reactance vs. external field.
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Equation 3. 59 then simplifies to

0 0 2y 0 ay r—ll a 0 1"_11
2) (2) (2)
-A ay 0 FOO 2 -A 2 0 2 0 -A ay a FOO 0
1"1_1 0 a_y Fl—l a_y 0 a_y 0 0
Ri-Ryy =
o o I,
0 rOO 0
L, 0 o0 (3. 60)
Then
(2) (2) (2)
+A ay (al FOO 1"1_1) + A a (on r—ll rl-l) + A oy (oz_1 FOO 1"_11)
Ri-Ryp = T, I T (3. 61)
-11 00 1-1
or
“5)2) % 0‘521)“1 “(12) -1
R -Ryy = -A|—p— + : (3. 62)
00 -11 1-1

% % [B,ESOF BE OF
IBO Bo Co Co

ale) o B, e]DEO(O)} [B, e JD130(0)] B ejDEO(O) ¢ Pg (0)
T B, C, c

a(lz) ay B g™ID E0)][B_, D E_(0)] B Ry E_(0) e 1D E_(0)
T4 B1C €1

() 2, 2 2
ay @ . -TR kO (e-1) [EO(O)]
Too k*R°¢ 7'k R

1+ 5 !Zn( 5 )



79

(2) 2, 2 1 iD -iD
a’{ o N 7 R ko (1 - m) e EO(O) e EO(O)
- 1
-11 1+ Tk
(2) 2, 2 1 iD -jD
ey T Rk (1 - ﬁ+—k) e E (0)e EO(O)
T - 1
1-1 1+ m

where {n is the natural logarithm, y' = 1.781 and where terms in the denominator propor-
*
tional to (kOR) were omitted. Combining the terms, and using (D-1) for EO(O) and

eiJD EO(O) and taking only the first two terms of these expressions gives finally

k®?R*e¢ 'k R\/ jB.d -jp,dV
_ TR 2 0 0 1 1 . 2 TC
R1 = R11 + = {k (e-1) < - n 3 ><e +R11 e > sin” —

]aﬁl o] 2
2 2 iB,d -jB,d\?
N Wl St K 1 Blzsinzn?(:(e 1 —Rlle 1>
(u+1)* - K°
2 iy -i8,aY
-z coszlc—<e 1 +R.. e 1 > (3.63)
a a 11

This equation agrees with Berk and Epstein's result9 for the small post not
close to the side wall in a matched waveguide, and with Schwinger's solution21 for a small
dielectric post in a matched waveguide. It is likely that (3. 63) applies even for noncircular
cylinders of small cross sections (and small sides). In this case the term 7R® in (3. 63)
would be replaced by the cross-sectional area. This result was obtained by Schwinger21
for the small dielectric post in a matched waveguide.

When (3. 63) was used on the ferrite post described in Fig. 3.7, the results were
very close to those obtained using the computer program. This is about the largest radius

that can still be considered small since koR is about 1/8 and kR is a little less than 1/2.

2
In Fig. 3.8 a comparison between (3. 63) and experiment is made when the small post is
moved sideways and back and forth in the waveguide. Again very good correlation is ob-

tained for the small post.

%
This refers to Equation D-1 in Appendix D.
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Fig. 3.8. Impedance of a small ferrite post near a waveguide aperture.
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3.4 Application to Other Dual Discontinuity Problems

The reflection coefficient given by (3. 17) was derived for a cylindrical ferrite
obstacle combined with the aperture of an open-ended rectangular waveguide. Actually,
this equation is valid if any discontinuity which has no z-variation replaces the aperture.
For example, instead of the aperture we might have an iris opening into free space, an iris
opening into another waveguide, a change in width of the waveguide, a dielectric loading of
the waveguide, etc. The Green's function for all these geometries has exactly the same
form as (3. 12). The only change is in the evaluation of the reflection and coupling coeffi-
cients which must be rederived for the different discontinuities. The construction of the
stationary expression follows exactly as in Section 3. 1.5. Equation 3. 28 is then valid for
these new structures.

This method opens the way to analysis and derivation of design curves for a
number of elements such as matching devices, and filters, which consist of a dual discon-

tinuity. The restrictions on the class of problems solved are:

1. There must be no z-variation in the obstacle.
2. The problem must be entirely solvable when the ferrite

obstacle is absent in order to obtain the Green's function.

A particularly simple dual discontinuity problem is the ferrite cylinder backed
by an open or short circuit. For this case the reflection coefficients (Rnn) are all +1 for
the open circuit, and -1 for the short circuit, and the coupling coefficients (an) are all
zero. For the case of a small circular cylinder (kOR << 1, kR << 1), the results of the
analysis are given by (3. 63) with R11 taken as +1 for the open and -1 for the short. The
results when ejﬁld =1 (i. e., the obstacle is an integral number of wavelengths from the

short or open) are given by the following:

1. For the short circuit case

2 2 2
R, = 1B gh -k -lﬁlzsinzzag = ~1+ésc
1ag, (u+1) - K?

-1 +]XSC (3. 64)
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2. For the open circuit case

2 k?R*e¢ 7k R
R, = 1+l-3-—{k02 (e—1)<1— o tn—2 >4sin21;-9

1 ]aﬁl 2 2
2 2 2
s gk -1 (ﬂ) cosz(—7;—c) = 1+(3Oc
(“+1)2 _ kZ a
= 1+ X, (3. 65)
Using the standard formula for the input impedance
1+R
Z = 1
we obtain
2 + éoc 9
ZOc =75 > - (3. 66a)
oc oc
when the output is open circuited, and
sc 6sc
ZSC = 2—T >~ —2—— (3. 66b)
sc

when the output is short circuited, since 6sc and éoc are small for the small post.

We can also obtain the equivalent circuit of the post in a matched waveguide from
these equations. The T-equivalent circuit is shown in Fig. 3.9. By alternately short cir-
cuiting and open circuiting one set of terminals and measuring the input impedance at the
other pair we can obtain the values of the impedance elements. It is easy to see that

ZOC = le (3. 67a)

7%, - 72
g - 11 "12 (3. 67b)
sc le
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Fig. 3.9. T-equivalent circuit.

Solving for Z,, and Z,, - le using (3. 66) and (3. 67) gives

12 11
2 6sc
le = =- r + T (3.683,)
ocC
and
6S(.‘,

The following simplifying cases can be analyzed.

Case I, Dielectric Post, p=1, k=0

For this case

0 [¢
3 -
Thus
2117219 = 0
and
9 —jBlacscz-—
Z = = = -jX

The equivalent circuit is then as shown in Fig. 3. 10.



Fig. 3.10. Equivalent circuit of a small dielectric post in a matched waveguide.
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Fig. 3.11. Equivalent circuit of a small isotropic permeable
post with u > 1 in a matched waveguide.

Case II, Magnetic Post, €=1, k=0

2 TC

o -jB, a sec” — 2
z, = 2.5¢_ 1 2 _ R (p-Dyg g TC L x
12 0 4 2 a p+1/ 71 a (¢
o T ame(s)(D)
u+l/\a
_ . 27R® fu-1 .2 TC .
Zyy - Zrg = i (50) Bysit g = iXy

For the case u > 1 the equivalent circuit is shown in Fig. 3. 11.

Equations (3. 64) and (3. 65) can also be used to measure the permeability and
permittivity of a dielectric or ferrite. If a small post is placed an integral number of half
wavelengths from the short position, the angle of the reflection coefficient is [from (3. 64)]

X
_ -1 “sc
Qsc = tan T
This equation involves only the permeability of the material. Since 6 sc is a function of the
sample distance from the side wall, several readings can be taken to obtain the equations
necessary to determine both y and k.

For the open circuit, the angle of reflection is [from (3. 65)]
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-1
Goc = tan Xoc

This equation involves only the permittivity if the sample is centered in the waveguide with

respect to the side wall.

Measurements of the reflection coefficient angle can be very accurate since the

minimum on the slotted line will be very sharp because of the high standing wave ratio.

3.5 Conclusions

In this chapter the main theoretical work of the study was performed. A vari-
ational solution was obtained for the reflection coefficient of a ferrite post in a rectangular
waveguide terminated in an aperture radiating into free space. The results were general-
ized to the case of a noncircular cylinder combined with any z-independent discontinuity
terminating the waveguide. The results were shown to be particularly accurate for the
matched waveguide and for the small post. The results for the large post at the aperture
were accurate enough to be useful. Although possibly tedious, more precise numerical
data can be obtained by straightforwardly extending the evaluation method described in
Section 3.2. More terms in the series expansion for the internal fields can be taken and
more of the higher order reflection coefficients and coupling coefficients can be evaluated.

Possibly the most useful contribution of this chapter is the development of a
method of solving a number of problems of the ''dual discontinuity' type. An immediate
solution is obtained from this chapter for obstacles with no z-dependence. For z-dependent
obstacles a new analysis is required, but it is probable that the procedures in this chapter
can be followed with the same result of partial separation of the effects of each discontinuity.

Several examples of "dual discontinuity' problems are suggested in Section 3. 4.
The particular problem of this type where one of the obstacles is a short or an open circuit

is shown to provide a technique for the measurement of the material properties.



CHAPTER IV

DERIVATION OF THE REFLECTION COEFFICIENT USING THE
MAGNETIC GREEN'S FUNCTION

The wave equations for the electric and magnetic fields were derived in

Chapter III. They are

- N - —
VxVxE—kOE —ko er ]quVxme (3.4)
and

VxVxﬁ-kozﬁ=k02)_<.m_}.1+jweOVxer (3.5)
In Chapter III, the reflection coefficient was derived using the electric field
wave equation. Since we are dealing primarily with a magnetic material, it occurs that
the obvious equation to solve would be that involving the magnetic fields. It turns out,
however, because of the symmetry in the incident field and in the discontinuity, only one
component of electric field (EZ) exists, while two components of the magnetic field are
present (HX and Hy). The derivation in Chapter III illustrated the several simplifications
possible using only Ez' In particular, the tensor Green's function (which is called the
electric Green's function) had only one component. Thus, the electric fields were used
to derive the reflection coefficient. However, there is some merit in going through the
derivation using the magnetic fields. It can be seen that this is especially true when the
material is purely magnetic (i. e., the relative dielectric constant is unity and Xe = 0),
since then the curl term can be omitted from the right hand side of (3.5). In the following
sections the derivation will be for a material with Xe £ 0, Ym # 0. In Chapter III the
motivation was discussed for a number of the steps taken. Since the procedure is very

similar in the present case the discussions will not be repeated.
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REGION | REGION 2

Fig. 4.1. Cylindrical ferrite obstacle in the aperture
of a rectangular waveguide.

4.1 The Variational Solution

As in Chapter III, the TE 0 mode is incident and the assumption of no z-depend-

1
ent fields is made. Figure 4.1 illustrates the problem which is again reduced essentially
to two dimensions. We will consider that the ferrite obstacle may extend beyond the aper-

ture a short distance.

4.1.1 Wave Equation. The wave equation for the magnetic fields (3.5) can be

written in terms of a ficticious source distribution

VxVxH-k*H =1J (4.1)
(0] m
where

- 2 = — . pu—
- .2
J k XmH+]w60Vxer (4.2)
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The solution to this equation can be written in terms of an integral of the magnetic Green's

function (G m) R

H = ﬁo + fam(riro)- ‘?m(ro) dv0 (4.3)

where the volume dv0 includes the entire ferrite obstacle, and where Ho is the total field

present when the obstacle is not there. ﬁo is a solution of

T 2 Tp _ 2 17 2 I7 _
VxVxHo-k0 HO—VH0+k0 HO—O

The magnetic Green's function (—ém) is a dyadic. It is a solution of the equation

- 2= 1= ) )
VxVxGm-kO Gm ==1 0(x xo) o(y yo) (4. 4)

o=

where T is the two-dimensional unit dyadic. The boundary conditions are the same as ﬁ,

that is,

n- -G'm = 0 on all metal walls.

Since we will be dealing with a number of dyadic equations in the following de-

velopment, a summary of the dyadic operations used is given in Appendix A for easy refer-

ence.

A proof that (4. 3) is a solution to the wave equation can be given as follows.

From (4.1)
VxVxH-k*H =7
o m

Substitution for H from (4. 3) yields

— 2 = - =
VxVxHo—kO H0 + f (VxVx—k0 )G(x,ylxo,yo) Jm(xo,yo) dvO

1 -
0+f-615(x—x0)6(y—y0)-J

it

(x,,7,) dv

m 0

i}

+ 3 (%)

W)

if the point x,y is in A

if the point x,y is not in Vo
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Thus, (4.3) is the required solution.

4.1.2 Magnetic Green's Function. The field scattered by the ferrite is just

ﬁs = f am(r’ro) . fm(ro) dv0 (4.5)

For the two-dimensional case considered here

J =Ja_ +Ja (4. 6)
m X X vy
and
- Gxx GX
G - y (4.7)
G G
yx yy
In order to identify the components of G let Jy = 0 and Jx(rl) = (1/b)6(r1 - ro).
Then

1 (= = 1 3 3
HS = —bme(rlrl) é(rl-r )a dVl = l_)f(G a_+ G_a )O(rl"ro)dvl

o’ °x XX X yx'y
HS = Gxx(r!ro) a + ny(rlro) ay
Ho = Hea_+ Hy ay (4. 8)

Gxx can be interpreted as the x-component of magnetic field due to an x-directed delta func-
tion source of strength 1/b at the point ro ny is the y-component of the magnetic field.
These are the fields resulting when the aperture discontinuity exists, but the ferrite obstacle

is not present.

Similarly, J_can be zero and Jy(rl) :(I/b)ﬁ(r1 - ro). Then

H -G a2 +G_a (4.9)
s xy “x 7 Tyy Sy

ny is then the x-component of magnetic field due to a y-directed delta function source at
the point ro- ny is the y-component of the magnetic field.
These interpretations of the components of the Green's function will be useful in

their derivation. The reciprocity theorem for the Green's function will also be helpful. It
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states that the Green's dyadic with the variables interchanged is equal to the transpose of

the original dyadic, that is, 22

r) (4. 10)

Solutions to (4. 4) for Gm are needed for four cases depending on the positions of
the source and field points. If we let Region 1 refer to the waveguide (x < 0) and Region 2

to free space (x > 0) the four cases are:

1. Both source point (ro) and field point (r) are inside the wave-
guide. Call this solution —(511. The first subscript refers to
the field point and the second to the source point.

2. The source point (ro) is in free space, and the field point (r)
is in the waveguide. Call this solution 612.

3. The source point (ro) is in the waveguide and the field point
(r) is in free space. Call this solution 621.

4. The source point (ro) and the field point (r) are both in free

space. Call this solution 622.

_Gm can thus be written as

Gm = 611 u(-x ) u(-x) + 612 u(x ) u(-x)

+ G21 u(-xo) u(x) + G22 u(xo) u(x)
where the step functions u(x), u(xo), are included to specify the region in which Enﬂ is valid.
The step functions have a value of unity when their argument is positive and zero when their

argument is negative.

Equation 4. 4 in component form becomes

-~ zx 1= )

VXVX G11 - ko G11 =% Io(x xo) o(y - yo) (4. 11a)
- 2=

VxVxG12 -ko G12 =0 (4. 11b)
-~ 2=

vVxV xG21 - ko G21 =0 (4. 11c)



- 2 1= ) )

VXVxG —k0 Gog = 1 Io(x xo) o(y yo) (4.114)
since

S(x-x)8(y-y) =0 for x £ x,y £y,
The boundary condition at the metal walls, n - G = 0, must be satisfied for each énﬁ’

Since the components of Gm represent magnetic fields, they must also satisfy

certain boundary conditions at the rectangular aperture. These are continuity of Hx and
Hy at x = 0. This condition yields

Gn(riro)’ = G

)’ (4.12a)
x=0

Gzz(r‘ro)‘ = G12(r|ro); (4. 12b)
x=0 x=0

It should be noted that if the ferrite obstacle does not extend into Region 2, then
only 511 is needed. Similarly, if the obstacle is entirely in Region 2, then only 622 is
needed. If, however, the ferrite extends into both regions then all four solutions for G must

be used. This chapter is mainly concerned with obstacles either wholly within Region 1 or

extending only a small amount (compared to a wavelength) into Region 2.

Derivation of Gll

For the two-dimensional case considered, the dyadic 611 can be written as

Gy Gy
Xy

Gll = (4. 13)
Gyy Gy
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611 is a solution of (4. 11a)

G 28 - dt1ex- -
VxVxG-k®Gy =g To(x-x)0(y-y)

where x < 0 and x0 < 0.

-éll must satisfy the boundary conditions on the waveguide walls

E-éu=o at y =0,y =a (4. 14a)

In terms of the components of 611 this is:

ny=ny=O at y =0,y =a (4. 14b)

This, of course, agrees with the interpretation of ny and ny as y-components of a mag-
netic field.
In addition, all four components must be continuous across the aperture with the

components of 321. (Since 621 represents the fields in free space due to the source in the

waveguide. )

We can break up 611 arbitrarily into two parts due to the linearity of (4. 11a).

G,, = Gy + G (4.15)

Such that G} and G satisty
vxvxGl -k G - 2 To(x-x ) o(y - y,) (4. 16a)
vxVxG) -k*Gh = 0 (4. 16b)

and where both éf‘l and ﬁﬁ satisfy the boundary condition (4. 14). Both are necessary to
satisfy the continuity condition at the aperture.

We will first derive -G.f‘l Writing (4. 16) in component form gives

& ny o GXX 2 1
WX~ oy Mo Cxx T b 0%~ %) 0y - yp) (4. 17a)
G G

Y. -k*G =0 (4. 17b)

X0y 3y” 0o Xy



G G
XX yXxX

2 ——
oyoxX a3 k, ny =0
azcxy o? Gyy 1

2 = — - -
0xdy a2 ko ny = p 0lx X,) 0y ¥o)

(4.17c)

(4.17d)

As can be seen, the equation does not separate into equations each involving only a single

component. Instead of attempting to solve this system of coupled differential equations, it

is simpler to derive _GA

11 from a potential function 61, where
aA 5. vv. G1
11~ 1 k02

Substituting this into (4. 16a) gives the equation that 23’1 must satisfy

v G

G
XX Xy

G
yXx yy
Separation of (4.19) into components yields

2 2
aGXX anx

2 1 _ _
=z + 7 +k "G, = ——BG(X Xo) o(y yo)
azcyy aZny ,
ox oy T Ko Ggx = 5 0%~ %) 0(y-y)
3 G, aZGX
2y + zy + k2 =0
X oy Xy
G < G <
Xy X ixk?c_ =0
0X ay yx

G__and G__ are zero.
Xy yx

(4.18)

(4.19)

(4.20)

(4. 21a)

(4. 21b)

(4.21c)

(4.21d)
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The boundary conditions n - 61 17 0 on the walls requires that

* Gy,

0xXdy =0 y=0a
azcyy

ny = 0 y = 0,a

(4. 22a)

(4. 22D)

To find Gxx multiply (4. 21a) through by cos %y and integrate from 0 <y < a. (Essentially,

the Fourier cosine transform is being taken. )

nwy

2 a
2 (0T 0 nmny 1 0
|:k0 - (?) +-£:lof GXXcos—-a—l—dy = - Cos 6(x-x0)
where integration by parts showed that
a aszx nmy nmyy’ a nny
J o % W = () | Gycos Tt ay
0 0
Let
2 _ /07y 2
no T (a) ko
and
2 nmy
Gn (x) =f GxxCOSTdy'
XX o}
Then
il 2 1 Yo
IR T

(4.23)

(4.24)

For x # X o(x - xo) = 0 is obtained and the solutions are waves propagating away from

the source at xo.

XX

At x = X Grl is continuous. Thus
XX
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1 X0+A 92 1 nmy, aanx(x) %o 1 nmy,
im 2 __1 ’ = .=
A»Of (a_x2 B yn) anx(x) = Tp ST T ax ) p €S Tz (4.25)
X -A X
o o}
-7y X Y. X nny
n o no _ 1 0
yncn e + ynbn e = % cos 3
Then
nry -y X
b = 1 cos Og 1O
n 2ynb a
Thus
-y X v X
no 'n
nry_ e x < X,
G (x) = cos
Dyx 2ypb a
Y.X -y X
e "0 1 X > X
o}
nmry . -y |X-x
= cos —2e n’ o (4.26)
2y,b a
Now, the inverse Fourier cosine transform is taken to obtain
S nny 7Y, ~Ypl¥ " %l
Gxx(x’ y| X, yo) = néo aby_ cos —= cos ——e (4. 27)

where

The equation for ny can be treated in a similar manner, but this time using the Fourier

sine transform. The results are:
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1 nry . "o ROV LR

sin —* sin—— ¢
abyn a a

18

G
y

y(x,Y~XO, yo) = (4 28)

n=1

We can verify the boundary conditions. It is easy to see from (4. 27) and (4. 28) that (4. 22)

is satisfied.

11 is now obtained from (4. 18). The result is
n7
A 1 (E_) nmy Ty, Yp|X - %
G11 = — T—cos—cos—a—e
XX ko ab n=1 n
1 & nmy Y5 9 (x - xo)
- Z €os —= COs —— == | T3y T % (4. 29a)
k. *ab n=1 | ol
(x_ - x) nmy . -y |x- X
GA = +—1——-—O———— T cos MY sin— 2 e n‘ 0‘ (4. 29b)
11 k *ab |% ~ %| no1 2 a a
Xy ) B
(x -x) ® nry -y _|x-x
Gﬁ = - 21 0 Z %Esinﬂcos———oe nl O' (4. 29c¢)
VX ktab |x - x| n=l
0 nry . -y _|X-X
gt oL Yy sin2Msin—Ce al* ~ %ol (4.29d)
11 2 n a a
k “ab n=1
yy o]

These components represent the fields radiated outward from the source. Gyq

XX

and Gy are the magnetic fields due to an x-directed delta function source while G and

X

y
G11 are the fields due to a y-directed source as discussed earlier. Using Maxwell's curl

equations the electric fields due to these sources can be derived. That is, use

VxH = jwe E
o)
-ro)a,
© o 2T
Z By = 'welab Z 5 sin =
n=1 JWeab 121 Th

nny
cos

—yn|x - Xol

(4. 30a)
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(xo -X) © nmy

nm -ynlx - Xo|
sin—a*y sin

e (4. 30b)

S 1
Ez = ngl En - jweoab ]xo - xT 01
The problem is now probably a little clearer. Due to the delta function sources there are an
infinite number of modes (all TEno modes here) incident on the waveguide aperture. It
should be remembered that we are now dealing with a source inside an open-ended waveguide
and that the ferrite obstacle is not present. To complete the solution the reflected modes
must be included. Each incident mode reflects (or couples) to an infinite set of modes.

Using the standard definition for the reflection coefficients, the electric field can be written:

- 1 -
For Jm(rl) 5 (‘3(r1 - ro) as
© o 2T nmy -y X-X
Ezz ZEnz’welab Zisin%zcosToe " ©
n=1 1020 121 M
0 © Ll nmy v X Y. X
wel b Z Z Rn 2 cos e P Ogin BV, M (4. 31a)
196530 121 m=1 "n
ForJ_(r )=15(r -r)a
m1" b 1 oy’
© 1 © (xo— X) 07 nmy -ynlx— x0|
E = ) E =——— ) —2 _ sin2gin e
Z —~. "n jwe ab ~ ]x -x| a
n=1 o  n=l ("o
0 © nmy . v X y X
- .wlab L L R sin—=e"%sinT o ™ (4. 31b)
19630 a1 m=1

Only TEno modes have been retained in the reflected wave. For completeness TEnm waves
should also be included but the coefficients of these waves are small and will be neglected
here. Inclusion of these modes would turn the double summation into a triple summation

making the analysis cumbersome.

Using Maxwell's curl equations with a magnetic durrent source, we can now

write éﬁ. That is, use
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where

G11 = Hx’ G11 = Hy if E from (4. 31a) is used, and
XX yX

G11 = Hx’ G11 = Hy if E from (4. 31b) is used.
yXx yy

aﬁ is thus the field due to the reflection from the open aperture.

The following important result for 511 is thus obtained.

© (M)z nry -y !x- X |
1 a nny 0 n o}
Gll(rlro) = cos — < cos —— e
XX ko2 ab n=1 "n
o 0 aror nm Y. X
+ ! Z ZR 22 cos yeymcos yoeno
k 2ab n=1 m=1 ™ "n
8(x - x ) 8(y - y,)
- u(-x) u(—xo) (4. 32a)
2
bkO
1 & (Xo - %) nm ary . "o —ynlx - X0I
Gll(r|r0) = 3T & ©0s " sin e
XX ko2 ab n=1 1% |
0 © y X nry_ y
- Ly ) an—‘;ﬂ cosﬂgi e™ sin—2e" 0] u(-x) u(-x ) (4.32b)
k02 ab n=1 m=1
1 @ (X, - %) nT . nmy Y -ynlx- Xol
Gy (r]r ) = - — sin —< cos e
11 o] k 2ab nel |x0-x| a a
yx o
nm
0 o — Y X nry .y X
+ 1 Z z R m iym sin-rr? e ™ cos AP Oilu(-x) u(-xo) (4.32c¢)
ko2 ab n=1 m=1 "™ "y
~ 1 ;3 . nmy . MY, -'yn|x- Xol
Gll(rlr ) = - 2, v, sin sin—— e
vy o koz ab n=1
<oB-) v X nry = v X
- 1 ' R ¥ sin B1Y o M i e MO u{-x) u(-x ) (4. 324)
k *ab n=1 m‘_il hm-m a °
0

The quantities u(-x) and u(-xo) are step functions having unit value for x< 0, X, < 0O andare

zero for x> 0, X, > 0. They are used to indicate that 511 is only valid when both source
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and field point are in the waveguide. The reflection coefficients er and the coupling coeffi-

cients an still need to be evaluated. Methods of doing this are derived in Appendix B.

When the reciprocity theorem am(rl ro) =G

result

is obtained, relating the coupling coefficients.

electric Green's function.

Derivation of G12 and G21

The Green's function G

12 and G

21

Gy
XX

ol}

12

Gyy
yx

Goy
XX

o

21

GZ}I{
| ¥

m

(rolr) is used, the interesting

(4. 34)

This checks with (3. 14) derived from the

Gyy
5y

can be written in general as

(4. 35a)

(4. 35D)

From the reciprocity relationship (4. 10) we can write

Giarlry)

In component form this becomes

Gyolr|ry)
XX

= 621(r0|r)

= G21(r0| r)
X%

Gzl(r0 r)
Xy

G21(rolr)
yX
G

91To| 1)
vy

(4. 36a)

(4. 36Db)

(4. 36¢)

(4.36d)
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We will solve for 621 and then obtain 512 using these equations.

612 and 621 are solutions of the homogeneous wave equation since x # X, is true

for them both.

-~ 2 = B
VxVxGlz-kO G12 =0 (4. 11b)

. —
VxVxGy -k Gy =0 (4.11c)

621 represents magnetic fields in free space due to a source inside the wave-

guide. As before, in (4.5), we can alternately let jm be an x-directed delta function of

strength % and a y-directed delta function and then identify the components of 621 with H

and Hy' We have for the x-directed source

Gyy = Hy
XX
G.. = H

The electric field in the aperture, due to this source, is given by (4.31a) with x =0. In

Appendix B, a method of deriving the radiated fields from the aperture distribution of elec-

tric field is given. From (B-5b) and (B-7) we obtain

-jk r
n ¢ e 0 4.37
Hx=mm;50fg E &) iy —5— 46 (4.37a)
n 1 fafb 52 , e_jkor
H = - E(¢(,7]— +k dé dn (4. 37b)
y 27r(]wuoio 5 n>’ ay° o r
where
r =a/x+ (y-n)f + (2z-£)

These equations give the magnetic field in free space when the aperture distribution of elec-

tric field is En(g,n). The dummy variables of integration £ and n correspond to the z and y
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directions, respectively. We then have that

I oon
Gop = 4 Hy
XX n=1
} using (4. 31a) for En(x:O) (4. 38a)
0
G,, = ) H'
%f)lc nL:JI y

Similarly, we have for the y-directed source

- 1 _
m(rl) =3 6(r1 -r )ay
G'21 = Hx
Xy
G = H
21
yy y
So that
SE
Gy = L Hy
Xy n=1
} using (4. 31b) for En(x =0) (4. 38b)
o0
TN
G21 - Z/ Hy
yy  n=l

nw -jk r
-1 S a nmy 'n® 2 b nm R mm\ & e 00
Gig =—— L ——Ccos —=e f j sin — + Z Rom S —7 5353 T dé dn
XX anozab n=1"n oo =1 / 0%Yo o
(4. 39a)
nm -jk r
-1 SEry nmy n® 2 b oW mmn\[ o e °°
G12:-——2—— ‘/__JTCOS'—a—e ]f SIHT+ %anslnT :—2+ko)—r——-d£dn
Xy 2nk0 abn=1"n 00 =1 oy, o]
(4. 39b)
-jk r
© Yy X ab © 2 0o
Gy = 1 Y gipphmyn [ (sin®Z4+ ) R sin mm\_# e d¢ dn
2 a a -, nm a Jox oy r
yX 277k0 ab n=1 0 o m=1 / 070 o
(4.39c)

1 X nry "% 2P nm X mmrn\[ & e HoTo
Gig = —— L sin = ¢ f [ [sin 214 L R sin o\ 4k 2 d¢ dn
2 - a S a nm a 2 0 r
vy 2nk0 ab n=1 0 0 m=1 ayo o
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4.1.3 The Reflection Coefficient. We will now find an integral expression for

the reflection coefficient.
The incident electric field is again taken to be in the TE 10 mode. From (3. 15)
we have the electric field in the waveguide when the ferrite obstacle is absent.

- Y X
s nry ‘n" | —
EO = I:smz— e + Z R s1n—2—1—— e ] a, (4.40a)

Use of Maxwell's equation

_ =YX Y. X
=.—1—— -zcosﬂe 1 - 11ER os ATY o 1 a
o jw i a a 01 1n X
-y, X ) Y. X
+ I:-yl sin%}Z e 1 + 21 Yy Rln sin-rlZ—y e ]ay} (4. 40b)
n=

The magnetic fields in free space when the post is absent can be obtained from

(4.37) and (4. 40a).

2 —jkor
1 nmy " e
= — — —— d&d
Hox Zni]wuoi ({(-)f |:s1n a nZ?l Ryp S0 a ] 0xXdy r £ an
(4. 41a)
-jk r
ab 0 2 0
1 . A . nmnf| o 2| e
= - — R, sin—||—5+k déd
Hoy ﬁﬂijwuoi of 6[ [sm a & né1 1n a ] [ayz o} r sdn
(4. 41b)

Again, as in Chapter III, the electric field in the waveguide with the ferrite ob-

stacle present can be written

= X nry |-
E = [sing e + Z Rn sin-zfZ e a (4. 42a)
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The magnetic fields inside the waveguide but outside the region occupied by the ferrite are

then

ay Tt & ary ¥ |-
+|-rysing- e + Z ”n Rn sin—= e ay (4. 42b)

The quantity R1 is the reflection coefficient of the combined ferrite and aperture and is the
desired quantity. R1 is referred to the plane x = 0, although the ferrite obstacle may be

anywhere in the waveguide or extending slightly outside the aperture.

The integral equation for the fields (4. 3) is

H=H + )G (rr) T (r)dv (4.3)

In particular, the fields in the waveguide are given by

H = ﬁo + f[éu(r r)- 3m(r )u(-xo) u(-x)

For Hx we have

Hoxvo 1 0 )
+ f[Glz Jx(ro) + G12 Jy(ro)] u(xo) u(-x) dv0 (4. 43)
XX Xy

Now in (4. 43) take the limit as x—-w, using (4. 32) and (4. 39) for the Green's functions and

(4. 40), (4.41), and (4. 42) for the magnetic fields. The result is

> fﬁo(ro) ) jm(ro

W
R, = R

. 1 ) dv, (4. 44)

- —
ko aby1

This is the reflection coefficient for the case where the incident field is



The expression for the reflection coefficient derived from the magnetic Green's function can

be shown to be equal to that derived from the electric Green's function (3. 17).

4.1.4 Variational Expression. As in Chapter III, the variational expression for

the reflection coefficient can be derived by introducing the field EZ’ ﬁz, where these are the
fields if the dc magnetic bias is reversed on the ferrite. The integral equation which —ﬁz

satisfies is

EO-F . [ 3@
H2 = H0 + me(r ro) Jm (ro) dvO (4. 45)
where
=2) 2~ = . =
m - k0 sz H2 + ]wGOVXXeEz and
X, =X
m, m

2
WU _
r®) - g, - ——29~ [H(r)- 7@ ) av, (4. 46)
E;lbko 71
This is equal to R1 as proven in Chapter III (3. 27).

The variational expression is obtained by multiplying (4. 3) by jg)(r), integrating

over the volume dv, and then dividing both sides by (R1 - Rll) f 35121) . ﬁo dv. The result is

2

Wi _ _ (2 _
-nylme- HodvaEn)~ H dv
Ri-Ryy = (4. 47)
o J 35121) -Hav- [ [ jg)(r) : 5m(r r): j(ro) dv v

This is the desired stationary expression for R1 - Rll'
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4.2 Conclusions

Comparing (4. 47) with the expression (3. 28) where the electric Green's function
was used, we see that the equations appear quite similar. This similarity is deceptive for
the magnetic equation (4.47) is much more complex and difficult to solve. This is because

jm, JEIZI), ﬁ, ﬁz and ﬁo have two components each and Gm has four nonzero components.

—_— — — —_

On the other hand, the electric field formulation (3. 28) involves J, 32, E, Ey, E andG
which have only one component each. The magnetic expression is a vector formulation while
the electric expression can be immediately written as a scalar one.

Although in the example presented the formulation in terms of the electric fields
and the electric Green's function was simpler than that obtained using the corresponding
magnetic quantities, in problems where the geometry is such that E has more than one com-
ponent the magnetic formulation may be more useful. This would be particularly true if the

obstacle had a relative permittivity of unity.



CHAPTER V

EXPERIMENTAL WORK AND CONCLUSIONS

The basic aim of the experimental work was to observe and measure the asym-
metrical field patterns and the reflections produced when an electromagnetic wave is inci-
dent on a magnetized ferrite cylinder. A ferrite post placed in or near the aperture of a
rectangular waveguide was the structure used for most of the tests. This configuration was
found to have the characteristics of an electronic scanning antenna. A number of experi-
ments were performed on this structure to substantiate the theory presented in the preceding
sections and to investigate the scanning property. In addition, the experiments provided
motivation for much of the analysis and led to the design of practical working models. As in
most experimental work, new ideas emerged during the tests for the development and use of
the properties investigated. Several of the more novel and interesting ideas were tried and
the results will be reported.

Because of the complexity involved in radiation measurements and in order to
give more meaning to the test results, the test apparatus will be described before the ob-

served data are presented.

5.1 Test Apparatus

The equipment used to record the beam patterns is shown in Fig. 5.1. A block
diagram of the test circuit is shown in Fig. 5.2. The ferrite in the waveguide aperture is
shown between the electromagnet pole faces. For clarity, the magnet gap is large in the
picture but during tests the pole faces are brought near to the ferrite to produce as uniform
a field as possible. Also, during actual tests, the effects of reflections from the measuring
equipment are eliminated by placing a sheet of absorbing material around the aperture as
shown in Fig. 5.3 or by using a metal ground plane. A Hall effect probe is used to measure

the applied magnetic field.

106
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Electromagnet

Gauss Meter

Gauss Meter Probe

Receiving
Antenna

Mechanical
Sweeper

l*

Potentiometer

Fig. 5.1. Equipment for recording beam patterns.

The distance between the transmitting and receiving antennas is 17 inches. This
is more than 11 wavelengths at 8.2 Gc/sec, the largest wavelength used in any of the experi-
ments. The receiving antenna, an open-ended rectangular waveguide, is mounted on a frame
which rotates in the horizontal plane at a constant distance from the transmitter. The frame
is driven automatically by a General Radio Sweep Drive. The beam angle is measured and
recorded using a biased potentiometer attached to the moving frame. The Moseley x-y
Recorder plots the beam pattern. The range of beam angles covered is between +90° and

(¢)

-90". A directional coupler and sliding short are used to measure the magnitude of the

reflection coefficient.
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Fig. 5.3. Test set-up showing absorbing material around the aperture.

5.2 Radiation Patterns

Beam patterns for the antenna in Fig. 5.3, traced from the x-y recorder plots,
are shown in Fig. 5.4 displaying the beam directing property of the device. The labeling uf
the angular coordinate should be noted as being reversed from the plots in Chapter II for the
theoretical results. As the applied field is increased the beam is shifted away from ¢ = 0°
toward positive values of ¢. At about 300 oersteds the main lobe begins to diminish and a
new lobe appears at a negative ¢ value. Only the beam pattern is shown. The amplitudes
have been normalized. The change in VSWR as the applied field is increased is shown in
Fig. 5.5. Above about 300 oersteds the efficiency is reduced greatly because of the large

reflections. For very high fields the VSWR is improved, but in this region the ferrite ab-
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sorption losses are great because the ferrite is near ferromagnetic resonance. The peak
absorption was measured to occur at 2850 oersteds.

A comparison between the observed beam shifting and the theoretical result was
given in Chapter II. In particular, the theory predicted the beam position correctly for the
low values of applied fields. In this region the device has a low VSWR so that little interac-
tion exists between the scattered waves and the waveguide walls. Thus, the low field case
satisfies the restrictions on the theory. Above 300 oersteds however, the high measured
VSWR reveals the increasing interaction between the scattered wave and the waveguide walls.
The theory does not apply in this region so that predictions of the beam angle cannot be made.
This accounts for the separation in the theoretical and experimental curves in Fig. 2.11(a).

As predicted by the theory in Chapter II, reversing the applied bias field results
in imaging the beam pattern about ¢ = 0°. Figure 5. 6 illustrates this effect. This property
increases the range of scan angles by a factor of two.

The preceding curves show that the device operates as a beam shifting or scan-
ning antenna at low applied fields. The beam angle can be varied over a total range of about
60° before undesired lobes appear and the VSWR becomes large. The relatively low field

requirement is fortunate for two reasons.

1. Creation of large magnetic fields requires a large electromagnet.
(The electromagnet shown in the photograph, Fig. 5.1, is used
for test purposes only and a much smaller magnet can produce
the needed fields as will be shown in Section 5. 4.)

2. For fast electronic scanning, the applied magnetic field must be
varied at a very high rate. An analysis of the simplified equiva-
lent circuit of the electromagnet coil (Fig. 5.7) indicates the
large amounts of power required. The impedance of the coil is

Rst2 + w’ L2 (Rp +R) wLR *

Z =Ry +iX, = ‘ + P (5.1)
q. q- (WL)? + sz (wL)? + sz

The series resistance (RS) is very small and the parallel resist-

ance (Rp) is very high for most coils. As the frequency is in-
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Fig. 5.7. Equivalent circuit of the windings of an electromagnet.

creased from 0 cps, the equivalent resistance increases so that
large amounts of power are needed to create the required high
fields. Even when capacitance is added to the circuit to tune out
the inductive reactance, the Ri’ losses are still high. The advan-
tage in requiring only small fields (and thus small coil currents)

is apparent.

Figure 5.8 shows the beam shifting obtained when cylinders with different diam-
eters are used. The beam angle curves terminate at the value of applied field where a new

lobe appears in the pattern.

5.3 Reflection Characteristics

The impedance of the scanning antenna is shown in Fig. 5.9. The measured
applied field values are labeled on the curve. The impedance match to the waveguide is
fairly good between 0 and 175 oersteds. As proven theoretically in Chapter III, the imped-
ance will be the same for both positive and negative values of applied field. The range of
low reflection then corresponds to a total shift in the beam of 60° ( 300) as shown in Fig.

5. 4(a).
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Fig. 5.9. Measured impedance of the ferrite scanning antenna as a
function of the applied field. Frequency = 10 Ge/sec,
diameter = 295", TT 390 ferrite.

5.4 Practical Models

For many applications, such as in satellite or other airborne equipment, small
size and weight are required. To obtain a practical device, a small electromagnet was con-
structed to provide the bias field. Figure 5. 10 pictures the magnet, the waveguide, and the
ferrite cylinder. Figure 5.11 shows the assembled ante<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>