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Absract. In this paper we consider the method of conditionally-minimax nonlinear
filtering (CMNF) of processes in nonlinear stochastic dynamic discrete-time systems.
In order to compare CMNF with the optimal nonlinear filter (ONF), we also derive
a special numerical algorithm which is based on the theory of spline approximation.
This algorithm allows us to calculate the best mean-square estimate of the system
state-vector. The results of numerical experiments with CMNF, ONF and the ex-
tended Kalman filter (EKF) show the favorable properties of the derived CMNF
algorithm.

Key Words. Optimal nonlinear filtering, conditionally-minimax filtering, extended
Kalman filter, spline approximation.

1 Introduction.

The problem of nonlinear state estimation is a very important part of the general
control problem for systems with incomplete data. It is well-known that the problem
of nonlinear filtering may be reformulated as the problem of solving the stochas-
tic functional equations for the conditional distribution of the system state given
all observations (Liptser, Shiryayev,1977) , (Davis,Marcus, 1981). So the estimation
problem in the general case is infinite-dimensional. Its complete solution is practically
impossible. '

Recently various authors tried to determine nonlinear system properties that provide
provide the finite-dimensionality of the optimal estimator (Sawitzki, 1981) , (Benes,
1981), ( Wong, 1983) , (Daum, 1986) , (Tam, Wong and Yau, 1990). The investiga-
tions show that a finite-dimensional optimal nonlinear filter is not typical, and even
in very simple cases may not take place ( Hazewinkel,Markus and Sussan, 1983).
That is why we support the idea of obtaining the finite-dimensional estimators by
means of appropriate approximations of the optimal nonlinear infinite-dimensional
estimation algorithms. Some of these approximations are well-known and widely
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used: the linearized and the extended Kalman filters, the second order filter and oth-
ers ( Sage,Melsa, 1972). Their practical utilization shows that they often obtain very
unpleasant properties, i.e. give a seriously biased estimate which usually diverges.
So it is important to continue efforts to obtain the finite-dimensional nonlinear filters
which provide an estimate with improved properties.

In this paper we consider two different approaches for finite-dimensional nonlinear
filtering. The first approach is based on the idea of a local conditional optimiza-
tion of the filter structure given the class of admissible filters. This idea was first
realized by V.S. Pugachev (Pugachev, 1979) , (Pugachev and Sinitsyn, 1990), who
derived the conditionally-optimal nonlinear filter. To utilize this method one needs
to know the joint characteristic function of the system state and the estimate vectors.
This function may be obtained by solving the special functional equation, which is
nonrandom but rather complicated. It takes substantional effort to obtain the de-
sired solution (Raol,Sinha 1987). Using the idea of the conditionally-optimal filter
we derive the conditionally-minimax filter (CMNF') which may be determined with-
out information about the above-mentioned characteristic function by some a priori
information (Pankov, 1990).

The second method is based on spline approximation of the conditional system state
density given an observation process. We call this method the optimal nonlinear fil-
ter (ONF) because it may be shown that the ONF provides the optimal ( in a mean
square sense ) estimate approximation with the desired accuracy.

In order to test properties of the obtained algorithms we compare the CMNF and the
ONF with the extended Kalman filter (EKF). The corresponding computer simula-
tion results are also considered in this paper.

2 CMNEF algorithm.

We shall use the following notations: E{z} - the mathematical expectation of z ;
cov{z,y} - the covariance of z and y ; P(m,S) - the set of random vectors with
E{z} = m, cov{z,z} < §; A* - the pseudoinverse matrix with respect to 4 ;
y = col(zy,...,z,) if y is a vector-column of the form y = col(zt,...,zI)T ; ||z]| =
(zTWz)'/? for some weight matrix W : W =WT | W > 0.

Let us consider the following discrete-time stochastic dynamic observation model:

Yn = ¢(yn—17wn), n=12,..; y=n, (1)
Zn = ¢(yn, vn)

where y, € RP is a state vector; w, € R? is a vector of random disturbances; n € R?

is a vector of initial conditions; 2z, € R™ is a vector of observations ; v, € R" is a

vector of random observation errors, and ¢,(y,w) and ¥,(y,v) are known nonlinear

functions.

Let Z™ = col(zp,...,21) , i.e. Z™ is a vector of all observations up to the moment n.
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Consider the structure of the CMNF for the processes {y.} given Z". Let £,(y) and
Tn(y, 2) be some fixed nonlinear vector functions ( the choice of these functions will
be considered in a sequel ) and §,-; be the CMNF-estimate of y,_; given Z"'. Let
Yn = €n(Yn-1). Then the conditionally-minimax prediction 7, for y, takes the form:

gn = ¢*(37n), (2)
where
61(52) = argmip max E{llsn = ()11 ®)

and z; = col(yn, §n) € P(m1, 51) , D is a set of measurable functions, E||¢(7,)||* < co.
The estimate g, is a conditionally-minimax correction of §, given the new observation
Zn:

gn = gn + 117*(7rn(?7na Zn))a (4)
where
* — : o~ 2
Yavn) = argmin max E{lly. — g — $(va)II} (5)

and T3 = col(yn — §n), vn) € P(m2,52) , v = T(Yn, 2n)-

If we solve (3),(5) and find the functions ¢}(.) and ¢;(.) then equations (2),(4) will
define the recursive CMNF. It may be shown that under some rather general con-
ditions there exists a solution of (3),(5) where the corresponding optimal functions
¢x(.) and ¥}(.) are linear.

Consider the following conditions for the model (1), ,(y) and 7, (y, 2).

1) There exists C¢(w) < 00 , w € R such, that

l16(y, w)II* < C2(w)(1 + |ly||*) and E{C%(wn)} < 00 , y € RP;

2) There exists ¢ < oo , |[&x(y)II* < CE(1 + ), v € B

3.a) There exists CT < 0o : for ally € R?, 2 € R™

Iy, I < L+ [slP)

3.b) The processes {v,} is independent of {w,} and 7:

There exists Cf < 0ot |[1a(y2)[[* < C3(1+ [lyl*+ ||| ;

There exists C¥(v) < 00: |[$a(y,v)||* < C¥(1 + ||y|[?) and E{C¥(v,)} < o0

Proposition 1.Let 1),2) and 3.a) or 3.b) hold. Let also E{||5||?} < oo and
Yo = E{U}; then

¢;(y) = Foy + fa; Q/):;(V) = H,v + hy, (6)

where

F, = cov(yn,gn)cov+(gn,gn); fa= E{yn - Fn?]n}; (7)
H, = E{y, — §uvT }cov* (vn, v,); hn = —H,E{v,};

3



The estimate j,, is unbiased and has the error covariance matriz

K,=K, - Frcov(§n, yn) — Hucov(va, yn — in), (8)

where K, = coV(Yn = JnyYn — Un), and Ky, = cov(yn,y,) is the covariance matriz of
the process {yn}.

Proof of Proposition 1: see Appendix 1.

From Proposition 1 it follows that CMNF is defined by (2),(3),(6)-(8).
If we consider a dynamic system which is not general as (1), then restrictions 1)-3)
may be weakened. Let the dynamic observation system be described by the discrete-
time diffusion equation

2n = ¢n(yn) + Vn,

where {w,} , {va} are independent gaussian white noises; 7 is a gaussian vector in-
dependent of {w,} , {vs}. Model (9) is widely used in applications ( Sage,Melsa 1972).

{ Yn = an(yn—l) + b(yn—l)w"’ n= 1’2’ e Yo =15 (9)

Proposition 2.Let {yn, 2.} be described by (9) and:
1)there ezists Cp,an < 00 ¢ |lan(y)l| + [ba(y)l] < CE(L + lyl*~) ;
2)there ezists Cp < 0o : || (y)l| < CA(1 + [[y]|*);
[¥n(¥)I] < CR(L +[lyl]*~)
|l (y, 2)I| < CA(L + [lyl|*" + ||2]]*);
3)jo = E{n}.
Then the result of Proposition 1 holds.

Proof of Proposition 2: see Appendix B.

It should be mentioned that the conditions of Proposition 2 allow the polynomial
growth of all functions. However in Proposition 1 the growth is only linear.
Consider some obvious types of the structural functions &,(y) and ,(y, 2).

a) én(Jn-1) = Yn-1 -linear prediction;

b) £n(9n-1) = Bn(n-1, E{wn})-prediction via dynamic system equations (1);

¢) Tu(§ns 2n) = 2n — Ya(§n, vy) - residual, where v3 = E{v, };

d) Wﬂ(gl}’ 2) = K, 07 (9, K, 8T + Ry )* (20 = (4, vp),

where K, = cov(yYn = §n,Yn — §n) , ®n = 0%(§in, v°)/ 0y,

Ry, = [09(§n, vn) /003 cov(vn.v,) [0 (§n, v0)/BvT]- transformed residual. 7, (fn, 2,) in
the given above form is used in the EKF as a correction term. The only difference
is that in the EKF instead of K, is used some random approximation ( given by the
Riccati-type equation ) of the real prediction error covariance matrix K.

There are some other types of {,(y) and 7,(y,z). In the general case we choose



€n(Jn-1) and m,(Jn, 2,) to approximate ( may be in the minimax sense ) the condi-
tional expectations E{yn|§n-1} and E{yn — §n|Jn, zn} respectively.

All unknown parameters (7) of the CMNF algorithm may be determined a priori by
a computer simulation. The corresponding algorithm for this is considered in detail
in (Pankov, 1990).

3 ONTF spline algorithm.

It is well-known that if {y,} is the second order process, then the conditional ex-
pectation y: = E{y,|Z"} minimizes the mean-square criterion J, = E{||y, — y:||*}
(Davis,Marcus 1981). The estimate y; may be calculated recursively if {y,} is the
Markov process. It may be shown that if , wy, w,, ... are independent random vectors,
E{|[7]|*} < oo and E{||#n(y,wn)||*} < ca(l + ||y||?) < 00, n > 1, then the process
{y.} has finite second-order moments and obtain the Markov property.

We assume existence of the following probability characteristics: the conditional den-
sity gn-1(y) of yn-1 given Z""! ; the transition density u(n — 1,z;n,y) of the pro-
cess {yn} ; the conditional density p,(y,z) of z, given y, = y. Denote wy,(y) the
unnormalized conditional density of y, given Z" (Davis,Marcus 1981). then as in
(Takeuchi,Akashi 1981)

wn(y) = pn(zmy)f I‘(n -1,z nay)wﬂ—l(m)dxa
{ wo(y) = po(y), v (10)

where p,(y) is the  probability density. Conditional densities g,(y) and w,(y) are
connected by the formula

n(4) = an()[ | wa(z)da]™ (1)

From (11) it follows that y;; is obtained by

Y= /RP :u.u,,(z)d:::[/ﬂJD wy(z)dz]™? (12)

We are going to use wy(y) spline approximation for the numerical treatment of
(10),(12). The spline approximation methods are widely used for solving the statisti-
cal estimation problems (Andrade Netto,Gimeno and Mendes 1978) , (Wegman, Wright
1983) , (Villalobos,Wahba 1987).

We shall conmder the case y,, € R! for simplicity. Let us consider the se%uence of par-
titions AN = {:c - of the intervals [a(™), ("] : :z:(") (" +h (m) = ()

(") = b, A( ), may be extended in the following way: x(_,v) = :1:(() ) - hg")

-"75\7;-);-1 = zgv +h§:;)z ,i1=1,2,....
To approximate wy—1(y) , wn(y) we shall use polynomial splines of degree 2m—1. The



general representation of the spline is defined in (Grebennikov, 1983) by the formula

N+p p N+p

S2m,p E [ Z a:]fH-] Sl—-m,2m ) = Z Clsl—m,Zm(m)a T € [a,b]a (13)

l=—p j=-p I=—p

where {a;;} are unknown paremeters; fi = f(z4): f(z) is functional to be approxi-
mated on [a, b]; P is an arbitrary integer number from the set {0,1,...,[(N —1)/2]} ;
{si2m(z)} is a system of B-splines.

The recursive procedure of the numerically stable determination of B-splines at the
point z € [a, ] is defined by the formula (Cox 1978):

sii(@) = [(z — )/ (zivi-1 — 2)]8ig-1(2) + [(zi1 — )/ (Tip1 — Tig1)]8i41,-1(2),

{ 3,"1(.'1:) = 17 lf T E [xiaxi-{-l], 7/ = 2, ...,2m

si1(z) =0, otherwise

Let us descrlbe the procedure of y;; determination given the spline-approximation of
wa-1(y) on ALY

N n-1 - -
wn‘l( ) gmp) Z Cl ! ?—m om\Y )? (14)
I=-p
where {s}7.} is a system of B-splines on ALY
Let us introduce the following notations

) = [+ p(n -1, Jzin, (M) (z)de;
0(") Jre xsgnm %m( )dz; (15)
n -1
= [+ (2)de.

Then from (11) , (12) , (14) , (15) it follows that, at the knots {xfc")} and A, the
following conditions are fulfiled:

Scn)) pn mek Z Cln—l) (n (16)

I=-p

On(z
Using the values of w,.(:::}c ))glven by (16), we can define unknown parameters {C’, ")

of the spline S2m »(¥), which is an approximation of the w,(y) . The corresponding
estimate g, of the conditional expectation y is given by

2N+P C ")ol(")[zl\i-tlz C(") )]—1’

To obtain {C,(") } we shall use a special method, which was called the method of

direct approximation (Grebennikov, 1983). At the points {xﬁ")} we use the approxi-
mation conditions of the following form



S (2) = G (™) + 2 s 2], (17)

where §2[.] is a central divided difference of degree 2 of the function &(z) at the knot
z{”. The coefficients {d{"} together with {C!M} (see formula (13)) can be found
from (17) (Grebennikov, 1983).

It should be mentioned that this method of spline-approximation differs from the
standard sphne—mterpolatlon method (Ahlberg,Nilson and Walsh, 1967). The coeffi-
cients {C )} satsfy some system of linear equations, which may be solved analytically
in some particular but 1m§>ortant cases. For example, for the cubic spline defined on
the uniform partition AN le. hy (") = pm) k= 1,. ., N), it may be shown that for
l=-P,.,N+P

O = Z1/Bi1o1 +4/3 — 16y if P = 1

C™ = 1/36(@1-g + d142) — 5/18(1-1 + G141) + 3/20 i P = 2,

where & = cbn(a:£" )-

The similar formulas are valid for the five-degree spline-approximation.

Using the B-spline representation of the approximating spline allows us to organize
the effective numerical integration in (15) because {s; 2 ()} is a system of functions
with compact support. It should be mentioned that the obtained method may be
extended to the case of p > 1 by using the B-splines of the vector argument and the
corresponding direct spline-approximation (Grebennikov, 1983).

4 Numerical example.

Consider the following nonlinear dynamic observation system

Yn = yn—l(1 + (yn—l)z)—1 +0.Tw,, yo= 7, (18)
zn = 0.6y, + 0.4y2 + 0.2,

where {w,} and {v,} are independent standard gaussian white noises and 7 is a stan-
dard gaussian random variable. The model (18) satisfies the conditions of Proposition
2 with a, = 2.

For n = 1,2,...,10 this example was simulated on a computer. M = 2000 realizations
{9, }}, were obtained of the CMNF-estimate §,, {y*'}}, of the ONF-estimate y*
and {7} }}, of the EKF-estimate yZ (the EKF is described in (Sage,Melsa, 1972)).
The ONF-estimate y;; was calculated by the spline-filtering algorithm with N = 20
ya=-=03,b=3.0,p=1. The structural functions for the CMNF were taken as
follows:

€n(Gn-1) = ;- 1(1 ~( Jn-1)? )Y,
Tallin 20) = Kn®u(Ba(®)? +0.00)7 (20 — 067 — 0.4(7)?),
®, = 0.6 + 0.87n.



We have compared the following values of the mean-square errors of the above de-
scribed estimates:

J =M E:—l(yn - yn)
J. = M -1 1= l(yn yn)
M Zz—l(yn )21

where {y:}M, is a set of realizations of the process {y,} simulated in accordance
with (18). The following table shows the numerical results.

n | I | J. | JE | J. )0 | JE)gn
1 [0.261]0.278 [0.563 | 1.07 | 2.16
2 10.238 | 0.257 | 0.450 | 1.08 | 1.89
3 0236 0.253 | 0.419 | 1.07 | 1.77
4 10.224 102370392 | 1.06 | 1.75
5 10.269 |0.279 | 0.487 | 1.04 | 1.81
6 |0.224|0.238 |0.387 | 1.06 | 1.73
7 10.215]0.233 | 0.373 | 1.08 | 1.73
8 |0.227 0.244 | 0.387 | 1.07 | 1.70
9 |0.236 | 0.256 | 0.446 | 1.08 | 1.89
10 | 0.239 | 0.258 | 0.421 | 1.08 | 1.76

Table 1. Values of the mean-square criterion for the estimates of ONF , CMNF and
EKF.

The obtained results show that the CMNF-estimate and the ONF-estimate have
practically the same accuracy, and the EKF gives a much less accurate estimate. It
should be mentioned that the algorithms CMNF and EKF require nearly the same
computation time which is significantly less than the computation time of the ONF.
This feature of the CMNF is that the optimal values F, , H, , f, and h, can be
calculated before the process of filtering itself as in the case of the linear Kalman
filter or the EKF. However, in the ONF it is necessary to integrate a complicate
enough system each time with a new coming measurement. It takes substantional
computational efforts in real time in comparison with the CMNF.

5 Appendix A.

Lemma. Let z = col(z,y) , m = E{z} = col(mz,m,) , s = cov(z,2) is an unknown
matrix which is upper bounded by the known matrix S



Then
1)

# (V) = SeySy +(ma= S Sy my) = Mot S2y Sy (y=my) = argmin max E{|le—(y)lI%);

2)E{z -2} =0, cov(z — &,z — &) < 5; — SzyS} Sz,
where & = ¢*(y) is the estimate of z given y and the upper inequality holds as an
equality in the case of s = S.

Proof. Let us denote
f(8(),p2) =E,.{llz — ¢(¥)||*, P} is a gaussian distribution with expectation m and
covariance matrix S , ¢*(y) = my + Sy S (y — my). Then it is sufficiently to prove
the following inequality

f(¢7()sp2) < £(47(),27) < F(8(.),P2) (19)

for all ¢(.) € @ , p, € P(m,S).

¢*(y) = Eps{z|y} is known to be the best mean-square estimate of = given y and from
the normal correlation theorem (Liptser,Shiryayev, 1977)it follows that the right in-
equality (19) is true.

Let p, € P(m,S) is an arbitrary distribution with the expectation m and the covari-
ance matrix s < S. It should be mentioned that

Cyz Gy

OSC=S—-3=[ Gz Cay ]

E,.{(z — ¢*(y))(z - ¢*(y))T} =8z — Szysﬁsyusﬁsyz

- + - +
SzySnyyz SEySnyyz,

Ep{(z - ¢* ()= — ¢"(4))"} = Sz = 5oy S, S0 =
Then Ep: {(z = ¢*(y))(z — ¢*(¥))"} = Ep.{(z — 6" (¥))(z = ¢*(y))"} = geg” 2 0, where
q = [Sey Sy, I]. Tt follows that
f(¢*()1p;) - f(¢‘(‘)apz) = tquch >0,
i.e. the left inequality (19) is true for all p, € P(m, S). Lemma is proved.

Proof of Proposition 1. Suppose that E||y,-1]|* < oo. Let us check that
El[ya|* < oo.
E{[l4n(y, wa)lI’} < E{C(wa)(1 + llyl*)} < E{CE(wn)}(1 + [lyl[*) for any y € R” .
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Hence E{||y.||*} = E{E{|I¢n(yn-1,wn)||2/yn—1}} < E{C2(wn)(1 + E{|lya-a|*})} <
0. we have yo = 5 and E{||n||*} < oo for all n > 0.

Let §n-1 be the CMNF estimate given Z"~'. Suppose that E{||j._1||*} < oo.
ja|l’} < oo. Consider the basic predictor g, = £u(fn-1) .
E{)17nl7} = E{lIen(Gnn) 17} < CK( 17}) < co.

From the obtained results it follows that z; = col(y,,§,) is a random vector with
a finite second order moment. Applying Lemma to z = z; with z = y, , y = §n
we obtain the result §, = Fyf, + fu , where F, = cov(yn, §n)cov (§n, 7n) , fn =
E{yn} — F,E{y.}. Then

E{||§nl |} = tr{W (FaB{gaga }Fx + 2fnE{§aF7)} + || fal? < o0.

Now let us show the existence of H, and h,. Let A, = y, —§, . From Lemma it fol-
lows E{A§,} =0and K, = COV(Afn, Afn) = Kn—cov(Yn, §n)covt (Fn, 7n)cOV(§n, Yn) =
K, — Frcov(ijn, yn) where K, = cov(yn,yn).

Let condition 3.a) be fulfiled, then

E{||vall*} = E{lI7a(fn, 20)|I*} < Cr(1 + E{|[{ya-1]I*}) <

Let now 3.b) be fulfiled, then taking into account the 1ndependence of {v,} and {y»}
we have E{||z,||} = E{H'/)n(ymvn)llz} < E{C¥(va)}(1+E{||yal’}) < co . Then we
obtain E{||n(§n, 20)[1*} < CI(1 + E{||7x|]* + ||24]|?}) < 0. So if 3.a) or 3.b) take
place then E{||v,||*} < 0.

Applying Lemma to z; = col(Afn,vn) we obtain g, = §, + Hpv, + hn , Where
Hy, = cov(Afn, vn)covt (va,vn) and h, = E{A§, — Hovn} = —H,E{v,}sincey, is
unbiased.

E{llya|1”} < 3(E{|l3all*} + || Hal PE{|[val*}. + [|hal[*) < oo. Besides this E{Aj,} =
E{yn Yn} =0and K, = = cov(Agn, Afy) = K, —CoV(AGn, Vn)cov™ (vg, vn)cov(vn, Afs) =
K, — Hycov(va, Adn).

Now let n = 1, then y,—; = 5 and gjo = 2} = E{n}I> < E{In[l[* < 0o
, hence ; exists and E{||§1]|*} < co . Now the proof follows from the mathematical
induction principle.

6 Appendix B.

Proof of Proposition 2. Suppose that E{||yn—1]|¥} < 0o and E{||§n-1||¥} < oo for
all k> 1 and some n > 1. Let us show that y, and §, have the moments of arbitrary
order. We shall use the following inequality: (||z||+||y||)" < C.(||z|I"+|ly]I") ,r > 1,
C, =271 . 1t follows from the C,-inequality (Loeve,1960): (|z|+|y|)" < C,(|z|"+|y|")
and the fact that ||z|| = (zTWz)'/? = || , where & = W2z,

[1Yall* = llan(yn-1) + bn (y,,_l)w,.llk < Cill|an(yn- DIIF + [[ba(yn-1)wal[¥) <
Cr(CR)I(L + llyn-all™™)* + (1 + [lyna|*=)* wal[*] <

Dyl + [[gn-1l" + (1 + llyn-1”)llwall*¥] , where B = ank. Hence E{||jall*} <
Dr(1 + E{|lyn-1*})(1 + E{|lwa|[*}) < oo , since E{||wa||*} < 00 and y,-1 and w,

are independent.
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Gn = én(Jn-1) , then E{||7a|[*} = E{€a(n-1)II*} <
(CHFE{(1 + lgn-1ll"")*} < DA(1 + E{|[§n-1][’}) < co.
From the obtained inequalities it follows that E{||z;||*} < oo for ¥ > 1, where z; =
col(Yn, §n). Then by applying Lemma we obtain §p, = Fofin + fa , || Fal| + || fal] < 00
and E{||7a][*} < Ch(||Fal FE{|[7all*} + || £all*) < 00 .
|7 (y, 2)I[F < (C2*(1 + [lyl|*= + [12]|*")* < D3(1 + ||y|[®* + ||2]|**). Then
E{||7(§n, 2)[1*} < D3(1 + E{||gnll’*} + E{||2a||’"}) < oo since
E{||2n[°} = E{|[n(yn) + va||*} <
Con[E{|[$n(ya)]1P} + E{|Jua]|P}] <
Con(C)P"E{L + ||yal|*)P} + Cp, E{|[vnll?} <
D;(1+ E{|lyal[™}) + Co E{|[va]|P} < o0
where ¥, = a,8,; E{||va||’*} < oo since v, is a gaussian vector. Hence the vector
z3 = col(A&,,v,) has finite second-order moments and consequently H,,h, exist.
From this, the desired result follows for n > 1. Now, if n = 1, then y,—; = yo =7
and §o = E{p}. If n is a gaussian vector then E{||y||} < oo and E{ —
9oll¥} = |E{n}||¥ < oo. Now the desired result follows from the mathematical
induction principle.
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