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ABSTRACT

An augmented Lagrangian function with essentially quadratic penalty terms is
proposed as a merit function for performing line search in sequential quadratic
programming methods. Convergence of the stepsize to unity is established thus
eliminating occurence of the Maratos Effect. Global convergence issues are also
discussed. An inexact line search routine based on the Goldstein termination

criteria, together with numerical experiments are presented.
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1. Introduction

Sequential quadratic programming (SQP) methods have been used extensively for
solving nonlinear constrained optimization problems. An SQP method requires three basic
steps. At the beginning of each iteration, a quadratic programming approximation to the

original nonlinear problem, at the current estimate of the solution X, is performed. The

quadratic subproblem is then solved to obtain a search direction d,, emanating from x,.. At
the second step, a line search along d, is performed to reduce the value of an appropriate
merit function and thus obtain a better estimate X, , ;. Finally, an approximation of the

Hessian of the Lagrangian function at x, ; is computed using first-order information and a

variable metric formula, in preparation for the next iteration.

These methods have several desirable features. In particular, SQP methods with
appropriate merit functions are globally convergent (see, e.g., Han [7]). Locally, close to
the problem solution, if unity step sizes are accepted by the line search routine, Q-
superlinear convergence is achieved (Han [8], Powel [13]). Only first order information is
needed and the methods perform equally well for both equality and inequality constrained
models.

An unfavorable characteristic of SQP methods, when they employ nonsmooth merit
functions, is the so-called Maratos Effect. As the solution of the problem is approached,
the step length calculated by the line search routine may not converge to unity and the
superlinear convergence may be destroyed (see, Maratos [10], Chamberlain [2]). Several
remedies have been developed to deal with the Maratos Effect. Chamberlain et al.[3],
developed a watchdog technique, while Mayne & Polak [11], Gabay [6] and Fukushima
[5], developed a line search strategy along a curved direction that tends to follow the
constraint surface. Differentiable merit functions have also been used as merit functions,

see, e.g., Di Pillo & Grippo [4]. Schittkowski [19], Powell & Yuan [16], and Rustem
3



[17], devised differentiable merit functions and developed line search procedures that
accept unit step sizes, when approaching the solution.

Continuous penalty functions deserving more careful consideration are those with
second derivatives increasing as the feasible set is approached. In a previous investigation

(Papadakis & Papalambros [12]), we examined the use of the merit function

m(x,c) = f(x) + ¢ ¥ nj(x) gj(x) (1.1)
J ‘

where f(x) is the function to be minimized, gj(x) is the constraint function of the jth

violated constraint, ¢ an appropriate penalty coefficient and

1 if 1g;(x)l > 1
1 - In3g;(x) otherwise.

) = |
A line search algorithm based on this merit fiunction, local convergence analysis and
numerical results are discussed in the cited reference. Those promising results motivated
further study of this type of merit functions.

In the present article we consider a line search algorithm based on essentially
quadratic penalty functions, first proposed by Kort & Bertsekas [9]. In the next section,
we discuss the basic reasons favoring the use of essentially quadratic functions in the
context of SQP methods. We then establish local convergence of the stepsize to unity, and

we analyze the global convergence problem. We discuss an algorithmic implementation

and illustrate the behavior of the method using two simple examples.
2. Motivation
Consider the nonlinear constrained optimization problem

minimize  f(x)

subjectto  g(x) < 0, (2.1)



where xisin R® and f, g = [gl,..., gm]T are twice continuously differentiable functions.
The quadratic programming approximation at X, (which is the current estimate of the

solution x" at the beginning of the kth iteration) has the form
. 1.7
minimize dk B d + Vfllg d (2.2a)
; T
subject to g + ng dk <90 (2.2b)

where dy is the direction of search emanating from X, , and ka, ng denote the gradients

of f, g evaluated at X, Matrix Bk is a positive definite approximation to the Hessian of the

Lagrangian function
L(x,\) = f(x) + A*T g(x) (2.3)

at the location x, A = [7»’{ ..,X:n]T being the Lagrange multiplier vector at the
solution of Eq. (2.1).
Solving the problem in Eq.(2.2) gives the direction of search d, and multipliers A,

= [Aq,.....,A,]T corresponding to the linearized constraints. The next iterate x, , ; is given
1 m P g k+1

where oy is selected so that an appropriate merit function is decreased. Finally, the
Hessian approximation B, ; is computed with a variable metric formula (Powell [14]),
using function and gradient values at Xy, Xy .1 and the values of the multiplier vector lk as

. . &
an approximation to A.".



Consider now an augmented Lagrangian - type of merit function with the quadratic
term replaced by an "essentially quadratic" penalty function (Bertsekas 1982). Let us
define

m(x, A, ¢, p) = f(x) + ATg(x) + c P(p, g(x)) (2.5)
where

P(p, g(x)) = ;ﬁj | 8j() %3 + 7 gj(x)? 2.6)
with

J = {jlg®>0) @.7)

andp = [py, ..., Pyl pj€ (1, 2] and ¢ > 0. Function P(p, g(x)) is continuously

differentiable and strictly convex with respect to g(x), and

P(p,0) =0 (2.8)
VP(p,0) = 0.

From Eq.(2.6) we may easily verify that V2P is not continuously differentiable. In fact,
for any pj€ (1, 2], V2P tends to infinity as gj(x), j € I, tend to zero. The use of
augmented Lagrangian functions of the form in Eq.(2.5) with pj€ (1, 2] 1s discussed by
Bertsekas in [1]. It is noted there, that multiplier methods based on essentially quadratic
penalty functions, even with a finite penalty coefficient, are superlinearly convergent.
However, a significant disadvantage of these methods is that the essentially quadratic terms
may produce ill-conditioned unconstrained problems and the superlinear convergence may
not be achieved.

The purpose of using the penalty function described by Eq.(2.6) as a merit function
in SQP methods, is to provide strong and differentiable representation of the remaining

infeasibility, as the solution of the problem is approached. It has been observed that the



Maratos Effect usually occurs in the vicinity of x”*, when the gradients Vf(x) and Vg(x)
are almost linearly dependent and almost orthogonal to the direction of search. In that
respect, this phenomenon resembles the instability of line search algorithms for
unconstrained optimization emerging when the direction of search and the gradient of the

objective are almost orthogonal. A feature of SQP methods which enhances significantly

the appearance of the Maratos Effect is that, as x” is approached, d, lies almost entirely in

the null space of Vg(x, ). During the late stages of the process, the direction d, is given

approximately by a quasi-Newton step, minimizing the quadratic approximation of the
Lagrangian function. Thus, the use of function P(p, g(x)) in Eq.(2.5) amplifies the role

of the existing infeasibility in the line search, while the "orthogonality" of dy, Ve(x,)

tends to eliminate the effect of ill-conditioning mentioned before.
3. Convergence Analysis
To insure the existence of a point x , ; satisfying the descent condition
my (0) > my(a), (3.1)

where my (o) denotes the merit function defined by Eqgs.(2.5) to (2.7) evaluated at (x +

ady, Ay, ¢, Py)s @ € (0, 1], we impose the sign restriction

mi((O) < 0. (3.2)

From Eq.(2.5) to (2.7) we have

m(0) = VfTdy + M Vg, dy + ¢ VP dy (3.3)

where



B = g Pil + g(xp > 0. (3.5)
Also, from the first order necessary conditions for optimality of problem Eq.(2.2) we have

From Eqgs.(3.4) and (2.2b) we obtain

VP;I(‘dk < '?Bj gj(xk) <0, (3.7)

Finally, from Eqs.(3.3) and (3.7), and given B > 0, we have

m(0) < - d, By d; + o 3 Bjgitx) < 0. (3.8)

which is satisfied for any cx > 0.

Next we examine the behavior of function mg(a) as Xk tends to be a stationary

point of problem (2.1). As it will be shown in this section, a particularly good choice of

the components of vector pk is

pi = {1 - [+ 8+ Vejdilej/ [gjlngj + Vegjdi]l  if gj(xi) € (0.1) (34
! 2 otherwise

Let us also define

Y = (Pj- D gjPi-2+1 >0. (3.10)



An important consequence of the selection described by Eq. (3.9) is that the merit function

mg(Q) can be very easily convexified. In fact we have:

Lemma 3.1. If we keep the penalty coefficient fixed at any positive value c, there exists a

certain iteration K such that the function my(ct), k > K, is convex.

Proof: We may assume without loss of generality that as dx — 0 there exists a sufficiently
large k such that the activity of the constraint set remains invariant (the set J defined by Eq.

(2.7) becomes independent of k), and it makes no difference if the violated constraints are

treated as equalities, see, e. g. Powell [13]. Furthermore, my(a), & € (0, 1], can be

approximated by its second order Taylor expansion

my(e) = my(0) + army0) + 702my(0), (3.11)
with
" T
mk(0) = di [VZLk + c,?[ijgjvég + [sjVZgj]] d, (3.12)
V2L = V2fi + ZK}( Vzgj. (3.13)
J

For k large and xi close enough to x*, we know that there exists a positive number T such

that for ¢' > 1 the matrix

ViLg + ¢' Y ngVgJT
J

becomes positive definite [1]. Therefore, if ¢ satisfies

¢> 1/min{yj, je J}, (3.14)



then
V2L +c3, ijgjvg'g (3.15)
J

is positive definite. Additionally, as dx — 0, Eq. (3.9) combined with Egs. (3.5) and
(3.10) result in

1

B; — o (3.16)
s oo 17
Y gjIng;j - 3.17)
Therefore, if cy satisfies Eq. (3.14) and for k large, we have
m'(0) = df [Vsz +c zJ ‘Yngngﬂ dy + O(ldyli2) > 0, (3.18)
Given that 'yj(ng dp)? = O(lldyll / lIng;l), mk(cx) is convex. o

Lemma 3.1 is based on the fact that the representation of the existing infeasibility by
P(p, g(x)) is convex with respect to g(x) and strong enough to insure convexity of mg(c),
even if ck tends to zero, provided it satisfies Eq. (3.14). Therefore, if ¢ is fixed to a certain
positive value, mg(ct) becomes convex and we do not need to guess the threshold value 1 to

achieve convexity.
Next we examine the convergence of the stepsize 0k to unity as xx — x*. We

assume that the sequences {xg}, {Bx}, {dx} are bounded, Vg(xk) has full rank and that

the matrices B are positive definite and uniformly bounded.
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Lemma 3.2. Let the above assumptions be satisfied and let the components of vector py
be selected according to Eq. (3.9). Then, for k large enough,
mk(1) < mg(0). (3.19)

Proof: From Egs. (3.3) to (3.6) we have

my(0) = dL By dy - c%‘, B; Vgjdx (3.20)

Since matrices By are bounded, Eq. (3.20), may be written as

m(0) = -c % Bj Vgidi + O(ldyl2). (3.21)

To show that inequality (3.19) holds, it is sufficient to show that
m(0) + m0)2 < -m (0)/2. (3.22)

Furthermore, because of Egs. (3.12), (3.20), and Lemma 3.1, it is enough to have

Taking into account Egs. (3.15) and (3.21), Eq. (3.23) becomes

g[yj(vgjdkﬁ + BiVgidk] + O(ldgli2) = 0. (3.24)

We examine next the inequality
h(pj) = ¥jVgjdk + Bj =20, je J, (3.25)

where ¥, Bj are given by Eqs. (3.5) and (3.10) respectively. We have

11



h'(p) = gfi 2 ing;[g;Ingj + Vgjdi (2 + (pj- 1) Ingj)] (3.26)
Therefore, if p; satisfies the inequality
I<pj< &, G =1-gj/Vgidx-2/Ing; , (3.27)

function h(p;) is convex. Moreover,

h'(1) <0,

h(2) = 2(gj+ Vgjdy) < 0, (3.28)
and for dg small enough,

h(1) = 1+g+ Vgjdg> 0. (3.29)

From the above we conclude that Eq. (3.25) treated as equality, has only one solution in

the interval [1, Cj]. The first Newton iteration for solving Eq. (3.25) results in

pj = 1- [1 +gj+ ngdk]gj/ [gjlngj + ngdk], (3.30)

Because of the geometry of function h(p;) discussed before, p; given by Eq. (3.30)

satisfies Eq. (3.25) as strict inequality and for k large enough Eq. (3.23) and thus Eq.
(3.19) becomes valid °

Lemma 3.2 guarantees the acceptance of unity stepsize as dx — 0. Moreover, from

Eq. (3.22) we have

12



my(1) - mk(0) < -c X (Vg dy)2 + O(lldyliy2 (3.31)

and because of Eq. (3.17)

my(1) - m(0) < -c O(lldill / llngl) + O(lldgli2) (3.32)

Therefore, although the terms O(lldy/12) depend on ¢ (see also Eq. (3.23)), small values of ¢
are enough to insure validity of Eq. (3.32). In fact, from Egs. (3.23), (3.31) and (3.32)

we may conclude that small values of the penalty parameter ¢ are enough to compensate for

the effect of the Hessian approximations ( By converges to V2ZL(x*, A*) on the tangent

plane only) and eliminate the effect of the constraint curvature. Finally, from Eq. (3.30) we

may also conclude that as dg— 0, pj — 1, and the penalty function P(py, &) tends

uniformly to the absolute value penalty function while differentiability is maintained.

4. Global Convergence

The exponent vector py and the form of the merit function defined in the last

section depend on the location x. Although the analysis we performed so far ensures the

existence of X, ;, such that Eq. (3.1) is valid and unity stepsize becomes acceptable at the

end of the process, it may arise questions concerning the global convergence of the

algorithm. The penalty coefficient may be kept constant but the global descent condition

mg(Xk) > mg (X, ;) > my (Xpp1) >myp, 1 (Xpy0) > 4.1)

may not be valid. Note that in Eq. (4.1), function my(.) is evaluated with A = Ag, p = px,

k=01,....
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One means to achieve a consistent measure of the progress of the algorithm, is to
establish a correspondence between the sequence in Eq. (4.1) and the associated sequence

of values of the absolute value merit function defined by

ma(X) = f(X) + ca Pa(g(X)), 4.2)
where the set J is defined by Eq. (2.7), and
Pa(g(x) = 3 gx), 4.3)
(4.4)

Cy > ma}x (7»}(, 2.

It is known that if c, satisfies Eq. (4.4), and my(.) is used as the objective of the line search

algorithm so that

ma(Xk) > Ma(Xy, () >-. ., (4.5)

then the SQP method is globally convergent (Han [7]).

Next we define the sets

L = {jlgjx) > 0, gj(xy,p) > 0}

{J18j(xi) > 0, gj(xy,p) < 0} (4.6)

<
I

N = {jlgjxx) <0, 8j(Xg,p) > 0}

Let us first assume that L T° M # (. Inequality (3.1) implies (4.5), if

ca[Pa(gx) - Pa(gy,)] 2 ¢ [P(px. gK) - P(px, g+ ]+ Kg[gk - 8k+1] (4.7)

14



If x, ., satisfies
Pa(gy) > Pa(gy,y) (4.8)

then ¢, can be selected so that both Eqs.(4.7) and (4.4) are valid for any iteration. Let o be

a stepsize satisfying the local descent condition (3.1) and small enough so that Eq. (4.7)

may be approximated by

a2
dEZ[angj(Xk) + - Vzgj(xk)dk] + 3 gjx) +
L 7

o - o)
dg%‘[(ak - aj) Vgj(xk + ajdg) + (———k—T‘])——Vzgj(xk +ajdg)dg | < 0, (4.9)
where o j € N, is the steplength with
gj(xk + ajdgx) = 0. (4.10)

From the definition Eq. (4.6) we also have

Vej(xidy < - gj(xk) < 0,je L, (4.11)

and

Vgj(xk + oy dp)dg > 0,j € N. (4.12)

Furthermore, o satisfies Eq. (3.1) and since my (o) behaves like a quadratic form, for

any o€ (0, og], we have
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mk(oc) < mk(ock). (4.13)

The cardinality of set NV is an increasing function of o. Because of Eq. (4.13) we may
select a stepsize 'y € (0, ax] such that the local descent condition (3.1) is valid and the
contribution of set N in Eq. (4.9) becomes small. Moreover, from Eq. (4.13) the terms
contributed by the sets L, M in (4.9) are negative and bounded away from zero. Because
of the definition of set M and Eq. (4.11) we may always select a steplength such that Eq.
(4.9) and consequently Eq. (4.8) is valid.

Thecase L T'M =@, N # () may be treated in a similar way. We only note that in

this case we may select o such that

fe1-fe <0, (4.14)

and Eq. (4.5) becomes valid. Moreover, as xy approaches x*, the sets M, N become

empty and from Eq. (4.9) we may immediately conclude that Eq. (4.5) does not prevent
unity stepsize to be accepted by the line search routine, and so superlinear convergence may

be achieved.

Finally, we note that to check if {x}, k =0, 1,...} is globally convergent, we only

need additional constraint and objective function evaluations. The stepsize oy may be

reduced until inequalities (4.8) or (4.14) become valid, while local descent with respect to

my (o) is always satisfied. Since the line search algorithm can be considered as a closed

map on a compact set, global convergence can be achieved.

S. The Algorithmic Implementation and Numerical Results

An inexact line search algorithm was developed using the Goldstein's termination

criterion. At the ith iteration of the line search algorithm, a stepsize ay j is accepted if

16



Bk(ok,i) 2 mg(ogi) = (o), (5.1)
where
By(ok) = mg(0) + gm'(0) oy, (5.2)

Tk(og) = m(0) + (1- &) m(0) o (5.3)

with exe (0,2) and a1 = 1.

If my(oy 3) < Ti(0k i), 0k j+1 is calculated as the intersection of the second order
approximation of my(a) (based on mg(0), m'k(O), mg(0k i)) with Bg(o). Similarly, if
mg(Ok i) > Bx(0ik i), 0k j+1 18 selected as the intersection of the same approximation with
I'k(a). The algorithm also employs a bracketing procedure. An interval [;, Bi], v1 = 0, Bi
> 1, which contains a subset of acceptable values of oy is used. If the value of O i is such
that m(o ;) < T'(ay j), the lower bound Yj is increased by the amount §; = 6(B; - 1), ©
small. Similarly, if m(a ;) > B(0 ), then Bj is decreased by ;.

Let us discuss the performance of the above algorithm on two well known
examples, devised to test line search routines. We have chosen g = 104, ¥, =0, by = 1,
¢ =0.1. In both cases the Hessian of the Lagrangian has been approximated by using the
Broyden-Fletcher-Goldfarb-Shanno update and the value of penalty coefficient was set
equal to one. Finally, we have used the termination criteria lldill < 10-5, lig(x)ll < 10-5.

The first problem (see also Maratos [10]) is
minimize x% + x%

subjectto  (x1 + 1)2 + x22 - 4=0,
17



with solution (1, 0)T. Four different initial points and two different initial Hessian
approximations, shown in Table 1, have been examined. In all cases, fast convergence of
the stepsize to unity has been achieved.

The second problem devised by Powel [1982] is
minimize  10x} + x$ - 1)-x;
subject to x% + x22 -1=0

with solution (1,0)T. Again, the numerical results summarized in Table 2 confirm rapid
convergence of the stepsize to unity and superlinear convergence of the SQP algorithm.
Direct comparison of the results described in Tables 1 and 2 indicates that the
convergence of the stepsize to unity is nearly unaffected by the guess of B, and by the way
the sequence {By, k=0, 1, ...} converges to VZL(x*, A*) on the tangent plane. It
appears that this is due to the fact that the use of the merit function described in Section 2
emphasizes the part of the Newton iteration concerning feasibility, thus reducing the effect
of By on the line search algorithm. Besides the results presented in Tables 1 and 2,
additional tests have been carried out with penalty coefficients varying from 0.5 to 2.0. In
most of the cases, the number of iterations needed to achieve unity stepsizes was identical

to those given in Tables 1 and 2.

6. Conclusion
The purpose of this work was to examine the use of augmented Lagrangian merit
functions, with the quadratic term replaced by an essentially quadratic penalty function. The

use of essentially quadratic penalty terms emphasized the effect of the existing infeasibility
18



in the line search routine and increased the reliability of the method. The analysis of Section
3 established convergence of the stepsize to unity and gave a rational way for selecting the
exponents of the essentially quadratic functions. As the solution of the problem is
approached, the essentially quadratic terms converge to the absolute value penalty function
providing a strong differentiable representation of the remaining infeasibility. The use of
this augmented Lagrangian merit function, enhancing the role of the constraint linearization,
arrests the growth of the penalty parameter, restricts the effect of the Hessian
approximation and limits the effect of the constraint curvature on the line search routine.

In Section 4 we described a procedure that insures that the sequence{x, k=0, 1,
...}, generated by decreasing the merit function along the direction of search, is globally
convergent. This procedure is based on a parallelism between the values of the augmented
Lagrangian function and the absolute penalty value merit function and requires only
function evaluations. Numerical results on the two classical test problems were very
encouranging. Further testing on larger problems is necessary to confirm general utility of

this merit function.
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TABLE 1. Performance of the algorithm on Maratos' problem.

Xo  (0.985, 0.2) (1.002, 0.1) (0.99999, 0.2) (0,3)
By I 21 I 2I I 21 I 21
MI 4 5 3 4 4 5 7
It 1 1 1 1 1 1 3*
FE 5§ 6 4 5 5 6 12 9
GE 4 5 3 4 4 5 8 7

*For iterations 1, and 3 to 7, oy = 1 while oy < 1

TABLE 2. Perforance of the algotithm on Powell's problem.

Xo (0.8, 0.6) ©0.1,0) (50,50)
By I 201 I 201 I 201
MI 6 8 7 7 13 14
I* 1 3* 1 1 1 11%*
FE 7 10 8 8 14 15
GE 5 7 6 6 12 13

* For iterations 1, and 3 to 8, o = 1, while oy < 1
** For iterations 1 t0 9, and 11 to 14, oy = 1, while o3 < 1

Abbreviations:

MI: Major Iterations to Achieve Convergence

I*: Iteration at which stepsize converged to unity
FE: Objective and Constraint Function Evaluation
GE: Objective and Constraint Gradient Evaluation
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