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In this paper, we discuss the Frenkel excitons in disordered molecular crystals. Most of our results 
can be generalized to cover electrons and phonons in other disordered systems as well. In particular, the 
relationship among the exact Green's function, the CPA (coherent potential approximation) Green's 
function, and the method of moments is discussed. It is emphasized that, despite its complicated form, 
the exact Green's function not only yields correct moments for the spectral density function and the over­
all density-of-states function but also leads to the CPA Green's function if certain terms are modified. Both 
the exact and the CPA self-energies are expanded with the aid of generating functions. This enables us 
to demonstrate both systemmatically and analytically how the latter is derived from the former and what 
exactly the approximations are. A better understanding of the CPA is thus obtained. Specifically, it is 
shown that the exact self-energy is wave vector and branch independent in the first five terms of its ex­
pansion in powers of Z-l (reciprocal energy). A comparison with a similar expansion of the CPA self­
energy indicates that the CPA self-energy is exact to the Z-5 power. Consequently, the spectral density 
function and the over-all density-of-states functions determined from the CPA method have the correct 
seven and eight lower moments, respectively. Analytical expressions for these lower moments are also 
given for future applications. 

I. INTRODUCTION tain more than one molecule per unit cell, Hong and 
Robinson12a have extended Yonezawa and Matsubara's 

Perfect solids are characterized by the translational formulation to such systems involving multiple­
invariance of the lattice. When such invariance is de- branched exciton bands. Within the limit of the re­
stroyed by the introduction of foreign atoms or mole- stricted Frenkel exciton case,t3 they have shown that 
cules, a disordered system is formed, the physical- the statistical averaging can be performed to obtain 
chemical-biological properties of which can no longer the exact mixed-crystal Green's function. Furthermore, 
be handled with the help of group theory. In the last in the spirit of CPA, the mixed-crystal density-of­
decade, various techniquesl have been devised and states functions and the optical spectra can be calcu­
applied to the electronic (or phonon) states of dis- lated from the following information: (i) The over-all 
ordered systems. These include the moment trace density-of-states function of the corresponding pure 
method,2 the negative factor counting method,3 the crystal (including all the branches) and (ii) the loca­
phase theory,4 and last, but not least, the Green's func- tion of all the Davydov components (the k=O states). 
tion method.' This theory was applied to the lB2u exciton states of 

Formally, a complete analysis of disordered systems heavily doped isotopic mixed crystals of naphthalene. 
is possible through the application of the Green's func- Using the pure crystal density-of-states function ob­
tion method. Following the pioneering work of Lax5 tained experimentally from the hot-band spectroscopyl4 
on the multiple scattering formalism, Yonezawa and and the known Davydov components of naphthalene, 
Matsubara6 recently carried out a most extensive anal- they have satisfactorily accounted for most of the fea­
ysis of the random lattice problem, using the Green's tures observed in a parallel experimental study.12b 
function method. They obtained a complete expansion In this paper, we shall deal specifically with restricted 
of the disorder-perturbed Green's function which con- Frenkel-Davydov excitons in heavily doped mixed 
tained, in principle, all the information of a disordered crystals, although, as will be seen, most of our results 
binary system with arbitrary composition and energy and conclusions are valid for electrons and phonons in 
separation. Due to difliculties involved in the factoring simple lattices as well. First, the relationship between 
of the expansion terms, a closed form proved to be the Green's function and the moments is discussed. In 
inaccessible. Rather, Onodera and Toyozawa7 attempted doing so, we attempt to show the consistency between 
to use an approximation which really amounted to the exact self-energy obtained by Hong and Robinsonl2 

assuming a k-independent self-energy in a model calcu- and the method of moments. It is stressed that, while 
lation on electrons and excitons. Such approximation we can always obtain moments from the exact Green's 
was also independently proposed by TaylorS for pho- function, the reverse is apparently not true. Second, 
nons and by Soven9 for alloys, the latter called it the higher expansion terms of the exact self-energy are ob­
Coherent Potential Approximation (CPA). In recent tained, using the recipe by Velicky et al. It is found 
papers by Velicky et al.lO and by Soven,ll the validity that the expansion of the exact self-energy is k independ­
and the range of applicability of such an approximation ent and branch independent up to Z-S exactly. The 
were further exposed. first eight moments of the spectral density and those 

In the related field of Frenkel-Davydov excitons in of the over-all density-of-states function are calculated 
disordered molecular crystals, which frequently COll- (to be compared later on with our computer-simulated 
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results). A comparison with a similar expansion of the 
CPA self-energy leads to the conclusion that, for the 
over-all density-of-states function, the CPA results are 
correct up to (and including) the seventh moment. 
On the other hand, the CPA optical spectra are correct 
only up to (and including) the sixth moment. Finally, 
the relationship between the exact self-energy and the 
CPA self-energy is discussed from a more analytical 
point of view. This is done by comparing the various 
sca ttering routes (or diagrams) in vol ved in both cases 
and exploring the relationships among them. A trans­
formation of parameter from concentration to 
w( =Cll-CA ) facilitates the expansion of the CPA self­
energy and its comparison to the exact self-energy. 

We have attempted in this paper to lay down some 
of the theoretical background necessary for a later 
publicationl5 on random lattice calculations. It is hoped 
that these investigations will add to our understanding 
of the electronic states in heavily doped mixed molec­
ular crystals in particular and those of disordered sys­
tems in general. 

II. THE EXACT GREEN'S FUNCTION 
AND MOMENTS 

Among the various techniques that have been devel­
oped for disordered systems, the phase theory stood out 
as the only technique that dealt directly with eigen­
functions. However, it was exactly this fundamental 
way of approach that prohibited its adaption for two­
and three-dimensional systems. Since the numerical 
technique of Dean3 will be discussed in a later publica­
tion from this laboratory,15 we should discuss here the 
Green's function method and the method of moments 
as applied to heavily doped mixed molecular crystals 
and other more general aspects. 

One of the earlier attempts to tackle the problem of 
disordered solids was made by Domb et al.2 who tried 
the method of moments (or the moment trace method). 
Since the moments of the density-of-states function 
can be evaluated analytically, a method was proposed 
by Domb et al.,2 which involved the expansion of the 
density-of-states function in terms of polynomials such 
as Legendre polynomials and subsequent determination 

of expansion coefficients from the known lower mo­
ments (all told, 20 moments were used in calculations 
by Domb et al.). Due to the fact that smooth, well­
behaved polynomials were used, the resulting density­
of-states function failed to bear out the irregular nature 
of the exact solutions.16 It would seem that moments 
can best be used to check the results based on other 
methods rather than to evaluate the actual distribu­
tion of eigenvalues. 

An alternative approach which has recently gained 
a considerable amount of popularity is the Green's 
function method. For molecular crystals of nontrivial 
interchange symmetries17 Hong and Robinsonl2 have 
shown that, within the restricted Frenkel-Davydov 
limit, the exact self-energies (and hence the Green's 
function) can be diagonalized with the basis set that 
also diagonalizes the pure crystal Hamiltonian. This is 
due to the fact that crystal symmetries "appear" to 
be restored when impurities are randomly situated. 
For example, for molecular crystals with an interchange 
group of order two (such as naphthalene) the basis 
set is: 

I k, j)= ,V-I /2[L: exp(ik·R,,) - ( -1) j L: exp(ik·Rjl)], 
{3 

(1) 

where j= 1, 2 designate the two branches (note the 
relation to Ref. 12: I k, 1)= I k+) and I k, 2)= Ilr») 
and R" and R{3 are the displacement vectors for trans­
lationally equivalent and interchange equivalent mole­
cules, respectively. Since interchange symmetries were 
incorporated into the wavefunctions of all the k states, 
the selection rules for the exciton-impurity scattering 
can be simply decomposed into two parts, one associ­
ated with the translational symmetry of the crystal 
and the other associated with one of the interchange 
symmetries of the crystal. For nonsymmorphic (or 
symmorphic, with more than one molecule per primi­
tive unit cell) crystals, this decomposition is only valid 
in case of short-range interactions.ls 

The exciton self-energy was obtained by Hong and 
Robinsonl2a as: 

~(k, j) = ;),.2P2( CB ) L: L: X-l(G(k', j') )+;),.3P3 \ CB ) L: L: L: L: N-2(G(k', j') ) (G(k", j") ) 
.i' k' P i" kI kif 

+;),.4P4 ( Cll ) L: L: L: L: L: L: ;Y-3(G(k', j') ) (G(k", j") )(G(k'", j'") ) 
jt iff i"' k' kIf kill 

+ ;),.4p22 ( CB) L: L: L: L: L: L: ~Y-25(k-k' +k" - k'") (G(k', j) ) (G(k"j") ) (G(k'", j'") )+. • . (2) 
if i" i'" k' kif kill 

and 

(G(k, j) )= [E- e- e(k, j) - ~ (k, j) ]-l, (3) 

where ;)"=eB-e,1 and ;Y is the total number of molecules. e=C.4eA+CBeB is the weighted mean of excitation 
energies eA and eli. Component A was taken to be the major constituent. We have explicitly included L:j to 
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denote the summation over all branches. Notice that 
~(k, 1) = ~(k+) and ~(k, 2) = ~(Ir-), where 

~(k+) =laa(k) +la/l(k) , 

~(Ir-) =laa(k) - la/l(k). (4) 

Here laa and la/l are the modulated sums of transla­
tionally equivalent and interchange equivalent inter­
actions, respectively.!9 The Pn(CB ) are polynomials ob­
tained by Yonezawa and Matsubara.6 They are, indeed, 
the probability functions for different scattering routes. 
For reasons which will become clear later, we have re­
written these polynomials as Yl~W), where W=CB-CA , 

as shown in Appendix A. The 0 can be considered as 
representing the selection rules. Mathematically it can 
be conveniently written as12.20 

5(p) =o(p)H[( -l)m], (5) 

where H[ ( -1) m] is the Hea viside function and m is 
the number of times excitons are scattered from one 
branch to the other. A diagrammatic representationl2 .21 

of Eq. (2) is shown in Fig. l(a). It can be seen that 
the propagator (G(k, j) ) is represented as a thick hori­
zontal line and impurities as vertices. Each vertex is 
associated with a polynomial Pn(CB ) or, equivalently, 
Yn(W) where n is the number of interaction lines con­
necting the vertex and the propagator. Notice that the 
angular bracket in Eqs. (2) and (3) indicates that the 
average Green's junction is obtained by averaging over 
all possible configurations of impurity distributions. 
On the contrary, only one such configuration is usually 
treated in the method of negative factor counting.3 The 
latter method apparently cnnverges to the former if the 
number of molecules treated becomes very large. 

To sum the expansions and get a closed form prove 
to be very difficult, although in certain limits, certain 
partial summations can be performed.20 However, im­
portant information can be obtained from the exact 
self-energy. One set of quantities which are readily ob­
tainable are various moments of the spectral density 
a(k, j) and those of the over-all density of states func-

6+&+~+ffi+~+'" 
(a) 

FrG. 1. (a) Diagrammatic representation of the expansion of 
the e,xact self-energy ~(k, j) in terms of the exact Green's 
functIon <G(~, j). See text. (b) Diagrammatic representation 
of the expansIOn of the CPA self-energy ~.(E) in terms of the 
CPA Green's function (G(k,j) ?C. See text. 

tion p(E). Using the notation of Vel icky et al.,10 we 
define 

a(k,j) =71'-1 Im(G(k,.f) 

= 2: I (n I k,j) 1
2o(E-En), (6a) 

n 

p(E) =N-I2: 2: a(k,j) = (N7I')-1 Im[Tr(G(k,j»] 
i k 

=.V-I2: a(E-En), (6b) 
n 

where I n) is an eigenstate of the mixed crystal and En is 
its eigenvalue. It is understood that we have to sub­
stitute Z=E-iO+ into Eq. (3) to obtain Eq. (6a). 
Here 0+ is a small positive quantity. Also notice that 
a(O, 1) and a(O,2) are simply the optical spectra 
(polarized parallel and perpendicular to the b axis . ' respectively, for naphthalene). The moments of 
a (k, j) and p (E) are defined as: 

Mp(k,j) =fa(k,j)EPdE, 

J.l.p(E) = fp(E) EpdE. 

They are related by the following expression: 

(7a) 

(7b) 

J.l.p(E) =N-I 2: 2: Mp(k, j). (7c) 
i k 

It is well-known1o.22 that moments are related to the 
expansion coefficients in an expansion of the true 
Green's function in powers of Z-I. We have 

Knowing the exact self-energy [Eq. (2)], and hence 
the exact Green's function [Eq. (3)], we can evaluate 
Mp(k,j) and, from Eq. (7c), J.l.p(E). This can be most 
conveniently done by first expanding (G(k, j) ) in Eq. 
(3) : 

(G(k,j) )=Z-I+[~+~(k,j)+ ~ (k,j)]Z-2 

+[~+~(k,j)+ ~ (k,j)]2Z-3+" '. (9) 

A similar expansion of ~ (k, j) takes the form of 

~(k,j) = 2: ApZ-p. (10) 
p=1 

Equations (9) and (10) are both substituted into Eq. 
(2). By comparing the coefficients on both sides, Ap's 
are determined. This process is straightforward although 
it is somewhat cumbersome. The final expressions for 
Ar,'s are more compact, if the zero of the energy scale 
is placed10 at t(~A+~B). Thus we have ~A=-A./2, 
~B=A./2, and ~= (CB-CA)A./2=wA./2. The first six 
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Ap's were obtained. Equation (10) then gives: 

~(k, j) =xy~2[Z-LEZ-2+ (J.L2(O) +E2) Z-3 

+ (J.L/O) -E3- EJ.L2(O»)Z-4+ (J.L4(0) + 2E2J.L2(O)+e4 

+xy~2J.L2(0»)Z-5+ (J.L5(O)-E5+EJ.L4(0)+t~2J.L3(O) 

-E3J.L2(O)-tE~2J.L2(0) - 2eJ.L2(0)J.L2(O»)Z-G] 

+xy~2[E W3(R,,) exp(ik·R,,) 

- (_1)iE W3(R/l) exp(ik·R/l)]Z-6+ ••• , (11) 
/l 

where W(R,,) and W(R/l) are translationally and inter­
change equivalent pairwise interactions,21 respectively, 
and 

Mo(k,j) = 1, 

M1(k,j) =E+E(k,j), 

j k 

M 2(k, j) = (~2/4) +2E"E(k, j) +E2(k, j), 

is the nth moment of the pure crystal density-of-states 
function. To conform with the notation of Velick\' et at., 
we also put CA=x, CIl=y. Our ~ is defined diff~rently 
in sign from their 0, but this is of no consequence here 
since only even powers are involved. It is noted that 
there are no k, j-dependent terms inside the first 
bracket. The first k, j-dependent term occurs with Z-6, 
which actually comes from the fourth diagram in 
Fig. 1 (a). Further discussion concerning diagrams of 
this type is reserved for later sections when the relation­
ship between the CPA Green's function and the exact 
Green's function will be discussed. 

It is now a simple matter to calculate Mp(k, j). 
Equation (11) is substituted into Eq. (9) and the 
final expression is compared with Eq. (8). In this way, 
we find that: 

Ma(k, j) = (E~2/ 4) + (1l2/2+E2) . E(k, j) +3e· e2 (k, j) +E3(k, j), 

M4(k, j) = (1l4/16) +xy~2J.L2(O)+E~2. E(k, j) + (3112/4+3E2) 'E2(k, j) +4e· e3(k, j) +e4 (k, j), 

Ms(k, j) = (E~4/16) +xyeIl2J.L2(0)+xy~2J.L3(0)+[(3~4/16) + (e2~2/2) +2xy~2J.L2(0)}e(k, j) 

+[(ge~2/4) +e3}e2(k, j) + (1l2+6e2) .e3(k, j) +Se'e4(k, j) +e5(k, j), 

M6(k, j) = (~6/64) +xyIl2J.L/O)+2exy~2J.L3(0)+ (3xy~4J.L2(0) /4) +[(3e~4/8) +4exy~2J.L2(0)+2xy~2J.L3(0)}e(k, j) 

+[ (3~4/8) + (ge2~2/ 4) +3xy~2J.L2(0)} e2(k, j) + (4e~2+4e3) ·e3(k, j) 

+[( S~2/4) + lOe2}e4(k, j) +6e·e5 (k, j) +e6 (k, j), 

M7(k, j) = (e~6/64) + (3exy~2J.L2(O) /4) + (e2+ ~2) xy~2J.L3(O) - 2exy~2iL2(O)J.L2(O) 

+3exy~2iL4(0)+xyIl2J.L5(O)+[ (~6/16) + (3e2~4/16) + 2( 112+e2) xy~2J.L2(O)+6e:ryIl2iL3(O)+ 2xyIl2J.L/O)} e(k, j) 

+[ (18e~4/16) + (3e3~2/ 4) +gexy~2iL2(O)+3xy~2iL3(O)]. e2(k, j) +[ (1O~4j16) +6e2~2+e4+4xyIl2iL2(0)} e3(k, j) 

+[ (2Se~2/ 4) + lOe3}e4(k, j) +[ (3~2/2) + 1Se2}eS(k, j) + 7 E" e6(k, j) +e7 (k, j) 

+:rV~4[LW3(R,,) exp(ik·R,,)-(-1)'EW3(R/l) exp(ik.R/l)]. (12) 
(3 

The moments of the over-all density-of-states function peE) are found by using Eq. (7c): 

J.LO= 1, 

iLl=e, 

iL2= ~2/4+J.L2(O), 

J.L3 = (eIl2/ 4) +3eJ.L2(O)+J.L3(O), 

J.L4 = (1l4/16) + (1l2+ 2e2 ) iL2(O) + 4eiL3(O) +iL/O) , 

J.L5= (e~4/16) + (Se~2J.L2(O) /2) +[ (S~2/ 4) + Se2]iL3(O) + SeJ.L/O) +J.L5(0) , 

J.L6= (1l6/64) + (196~4+~e2112+3xyIl2iL2(0)) iL2(O) + (~e~2+ 2e3) iL3(O) + (~1l2+ge2) J.L4(O) + &iL5(0) + J.L6 (0) , 

J.L7= (e~6/64) +[ (21e~4/16) + 7 EXy~2J.L2(O)+ 7xy~2J.L3(0)]iL2(0)+[iIl4+ (21E2~2/ 4) ]iL3(O) 

+ (7eIl2+ 7e3) iL4(O) + (i-1l2+ 14e2) iL5(O) + 7eJ.L6(O)+iL7(0). ( 13) 
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The lower moments [up to M5(k, j) and tL;;J in 
Eqs. (12) and (13) agree with those given by Vel icky 
et al., using a somewhat different method which did 
not require any knowledge of the true Green's function. 
To compare with present results, we have followed the 
recipe of Velicky et al. and computed the next two 
moments, as shown in Appendix B. They too agree 
with Eqs. (12) and (13), as expected. These results 
can be regarded as a consistency check on the average 
Green's function for multiple-branched exciton bands 
derived by Hong and Robinson. This consistency indi­
cates that the Green's function is correct. A further 
point to be emphasized here is that, knowing the true 
Green's function we can always obtain the moments. 
The reverse is apparently not true. 

The following conclusions were reached: (1) ~ (k, j) 
is k independent and branch independent up to Z-5. 
(2) Up to the 7th order, the moments of the mixed 
crystal density-of-states function, the tL'P'S, are only 
functions of the tLn (O)'s, the moments of the correspond­
ing pure crystal density-of-states function. 23 The sig­
nificance of these conclusions will be discussed later in 
connection with the coherent potential approximation. 
Finally, we note that, although the present results are 
specifically for multiple-branched exciton bands with 
nontrivial interchange symmetries of order two, their 
extension to more complicated systems (such as ben­
zene) can be easily done. We might also add that the 
second term (the summation over (3) in the last bracket 
of Eq. (11) should be dropped if there is only one 
molecule per unit cell. 

III. THE CPA GREEN'S FUNCTION 
AND MOMENTS 

The CPA Green's function has been independently 
proposed by several authors,7-9 each deriving it differ­
ently. So far this is the only approximate Green's func­
tion that is amenable to either model calculations7.1O 
or actual applications.12 ,24 It has an especially simple 
form: 

than those presented by Onodera and Toyozawa.7 The 
latter authors actually expanded the CPA self-energy 
and compared the expansion with the true self-energy. 
At least for the first few terms, they were able to show 
that, if the interference scattering events were first 
treated statistically in an exact manner and then re­
placed with noninterference terms, the CPA self-energy 
was obtained. In this section, we shall perform the ex­
pansion of T.c(E) in a systematic way with the aid of a 
generating function. After some discussions on the 
moments based on the CPA Green's function, we shall 
take up in the next section the relationship between the 
scattering events included in the exact self-energy and 
those in the CPA self-energy. 

Expansion of T.c(E) in terms of (G(E» can be 
achieved by first solving the quadratic equation [Eq. 
(15)]. The only physically significant root is: 

T.c (E) =![ - (G(E) )-1 ( 1 +ws) 

+(G(E»-I(1+2ws+s2)1/2J. (17) 

For convenience, we have introduced new parameters: 
W=,CB-CA and s==t.,(G(E». The second term has 
the form of a generating function. This suggests that 
we define 

"" u(w, s) == 2-1 (l+2ws+s2) 112== 2: ql(W)SI. (18) 
1=0 

Using the standard techniques25 in deriving recursion 
formula from the generating functions, we have: 

(1-w)q{= -wlql- (l-2)ql-1, 

(l+ 1) ql+l= - (2l-1)wql- (l-2)ql-l. (19) 

The close resemblances between Eq. (18) and the 
corresponding generating function for the Legendre 
polynomials suggests that the ql'S might be related to 
the latter in a simple way. For the Legendre poly­
nomials Ll(W), we have 

"" T(w, s) == (1-2ws+S2)-1/2=. L Ll(W)SI, (20) 
1=0 

(G(k,j»c=[E-E-E(k,j)- T.c (E)J-t, (14) and hence, 

where 

T.c (E) =CACBt.,2/[(G(E) )-I+(CB-CA)t.,+ T.c (E)J 

(15) 
is the CPA self-energy and 

(G(E»= N-l L L (G(k,j) )c. (16) 
j k 

It was elaborated by Velicky et al.1° that this is 
essentially a self-consistent single-site approximation 
where interference effects due to scattering are ne­
glected.7 Since Velicky et al.10 made no references to the 
exact form of the true self-energy [Eq. (2) J, their 
arguments seem more "physical" and less "analytical" 

"" 
u(w, -s) =2-1 L (l-2ws+s2)L1(w)SI. (21) 

1=0 

By substituting Eq. (18) into Eq. (21) and comparing 
the coefficients on both sides, we find that 

ql(W) = ( -1) I[Ll(W) /2-wL1- 1(W) + LI-2(W) /2J 
= (4l- 2)-1[( -1) l+IL1(w) + (-1) lLI_2(W)]. 

(22) 

We have used the recursion formula25 for Legendre 
polynomials in the last step. From the known proper­
ties of the Legendre polynomials, it is apparent that 
in general the ql are not orthonormal; however, they 
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are either even functions or odd functions, just like the 
Legendre polynomials. 

Some of the lower qt's can be easily obtained: 

qo= 1/2, 

ql=w/2, 

q2=t(1-W2), 

q3= H _W+W3) , 

q4= 1\ (-1 +6W2-SW4) , 

qo = l6 (3w - lOw3+ 7 w5) , 

q6 = "6~( 1-lSw2+3SwL 21w6), 

q7=i2(-5w+3SwL 63w5+33w7). (23) 

The expansion of 'J:,e(E) is now a simple matter. From 
Eqs. (17) and (18), we have 

00 00 

'J:,c (E) = (G(E) )-1 L: ql(W)SI= I: ql(W) D.1(G(E) )1-1. 

(24) 

This can be represented diagrammatically as shown 
in Fig. 1 (b). To distinguish from Fig. 1 (a), we have 
used a cross (+) instead of an X. Each cross is now 
associated with ql(w) rather than FI(W). The relation­
ship between ql(W) and VI(W) will be taken up in the 
next section. Note that q2(W) and q3(W) are identical 
to V2(w) and V3 (w). The CPA Green's function is 
now represented as a double line to distinguish from 
the true Green's function represented as a thick line 
in Fig. l(a). 

Similar to Eq. (10), we now expand the CPA self­
energy in powers of Z-I (Z=E-iO+): 

00 

to Eq. (11) without the k- andj-dependent terms: 

'J:,e (E) =xyD.2[Z-L tZ-2+(M2(O)+t2)Z-3 

+ (M3(0)-t3-€M2(0»Z-4+ (M4(0)+2t2M2(O)+t 4 

+xyD.2M2(O» Z-5+ (M5 (0) -t5+€M4 (0) + tD.2M3(O) -t3M3(0) 

-teD.2M2 (O) - 2tM2(O)M2(0»Z-6+ • .• ]. (26) 

Notice that we have again put t(tA+eB) =0, and 
CA=x, CB=y, and also €=D.w/2. The corresponding 
moments of a(k, j) and p(E) determined from 'J:,e(E) 
are easily shown to be identical to Eqs. (12) and (13) 
except that the last term for M7(k, j) in Eq. (12) is 
absent in the new expression for the CPA. In other 
words, the over-all density-of-states function deter­
mined from CPA yields the correct first eight moments 
(up to M7). The corresponding spectral density will 
yield correctly only the first seven moments [up to 
M6(k, j)]. In the numerical calculations of Hong and 
Robinson,12 only the first two moments were checked. 
In a later publication from this laboratory,13 we shall 
assess the quality of our numerical calculations by 
comparing them with these higher moments. 

Finally, we should point out that the conclusions 
reached here are consistent with the fact that the CPA 
is a self-consistent theory, i.e., it is the best theory 
possible based on: (1) the pure crystal density-of-states 
function and (2) the energy of the k,j state in the 
pure crystal [i.e., e(k,j)]. As we have seen, as long as 
the mixed crystal properties [e.g., Mp(k,j) and Mp 
discussed hereJ can be determined solely from these 
two parameters, the CPA always yields the correct 
answers. The failure of the CPA to yield the right 
M7 (k,j), Ms, and higher moments is apparently due 
to the fact that the complete dispersion relation is now 
called for to evaluate these quantities. 

IV. THE EXACT GREEN'S FUNCTION AND THE 
'J:,e (E) = I: ApoZ-p. (25) CPA GREEN'S FUNCTION 

p=1 

Using the same techniques used in the last section, the 
Apo can be determined from equations similar to Eqs. 
(8) and (9), except that the exact Green's function 
(G(k,j» [defined in Eq. (3)J is now replaced by the 
CPA Green's function (G(k,j»e [defined in Eq. (14)]. 
It is found that the first few coefficients are identical 

To probe into the physical meanings of the CPA, 
we first examine the third and the fourth diagrams in 
Fig. 1 (a) . It was mentioned before that the k,j-depend­
ent term in Eq. (11) actually came from the fourth 
diagram. If we expand the 3rd and the 4th terms and 
examine terms up to Z-6 power, we find that 

D.4V4(W) II: I: I: I: I: I: N-3(G(k',j') )(G(k",j") )(G(k"',j"'»} 
,if i" jill k' k" k'" 

whereas 

D.4V22(W) II: I: I: I: I: I: 8(k-k'+k"-k"')N-2(G(k',j) )(G(k",j") )(G(k"',j"'»} 
P i" i"' kl k" kIf' 

= D.4V22(W) I •. , + (9txyD.2+3I-1a(0) + lSeI-l2(O)+ lOe3)Z-6 

+[I: W3 (Ra) exp(-tK·Ra) - (_l)i I: W3(R,9) exp(ik·R,9)]Z-6+ ... }. (28) 
{3 
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The first five terms (not shown) are identical. Even 
the Z-6 terms are similar except for the k, j-dependent 
term. This suggests that if we replace the scattering 
event associated with the fourth diagram with that of 
the third diagram while retaining the probability func­
tion [Ll4Y22(W)], the subsequent self-energy will be k, j 
independent. That we are indeed getting the CPA self­
energy by such an operation can be further illustrated 
by examining the relationship between q4(W) and the 
linear combination of Y4(W) and Y22(w). If we write 

(29) 

simultaneous equations for C1 and C2 can be obtained 
by comparing powers of w on both sides. The solution 
in this particular instance is simply C1 = 1, C2 = 1. We 
can illustrate the operation of replacing the braced term 
(expressing the scattering event) in Eq. (28) by that in 
Eq. (27) schematically as shown in the first row of 
Fig. 2. The fourth diagram is now replaced by the last 
one in the first row of Fig. 2. The dotted line connect­
ing the two crosses indicates the collapse of the correla­
tion, and hence the collapse of interference, between 
the two impurities. 

Notice that Eq. (29) is easily soluble because of our 
particular choice of parameter (w). If the P/s were 
written in the form suggested by Yonezawa and 
Matsubara,6 the solutions would not be so apparent. 
Furthermore, because of the dual symmetry6,7,12 of the 
problem, w appears to be a more natural parameter. 

Higher-order terms can be treated in a manner sim­
ilar to the one above. In each case, simultaneous equa­
tions have been obtained and solved. Some of the 
results are shown schematically in Fig. 2. Notice that 
the coefficients obtained in this way do indeed predict 
the correct total number of distinct diagrams becom­
ing indistinguishable in the CPA. For example, in the 
second row, the last five diagrams have actuallv been 
converted from those of Fig. 3. The first four in- Fig. 3 

dfu + s(jX\ 

~ = ~ + 42~ + 14LZiID + 2SLiil1. 

~IG. 2. Diagrammatic representation of the process through 
which the CPA self-energy l:c(E) is obtained from the exact 
self-energy l: (k, j). Diagrams on the rhs which are due to the 
!nterference scatter.ing are replaced by diagrams due to non­
mt~rference sc.attermg to obtain the CPA diagrams on the Ihs. 
ThiS pr?cess .15 represe~ted diagramm~tica!ly here by joining 
the vertices With dotted Imes. The coeffiCient m front of a diagram 
shows the total number of diagrams belonging to the particular 
category. 

LtD~~Lill~ 
• 

F~G. 3. Diagrams due to the interference scattering which 
are mcluded as the last term on the rhs of the second row in 
Fig. 2. 

are k, j dependent6,20 and identical, whereas the fifth 
one is not. However, in the CPA, they are all replaced 
by the same diagram as indicated in Fig. 2. Alter­
natively, we can write: 

The analysis presented here further supports the 
original conjectures by Onodera and Toyozawa7 con­
cerning the significance of the CPA. A more systematic 
method of examining successive terms in both the ex­
pansions is made possible by the conversion of the 
parameter CB to w. In Fig. 2, the expansion terms of 
Lc(E) are examined up to the sixth power of (G(E). 
In each instance, a one-to-one correspondence between 
the diagrams included in the CPA and the exact self­
energies has been found. Although this correspondence 
has only been demonstrated for some terms but not 
proven, it is inconceivable that a more rigorous treat­
ment26 would indicate otherwise. It has been pointed 
out by Yonezawa and Matsubara6 that failure to treat 
the statistics correctly [e.g., by putting Pn(CB)--+CBn] 
could lead to erroneous results. The success of the CPA 
indicates that one should instead follow another ap­
proach, namely that of treating the statistics correctly 
first and then removing the interference terms. • 

v. CONCLUSION 

In this paper, we emphasize the important role of the 
exact self-energy. Its expression is necessarily compli­
cated because of the intrinsic complexity of the prob­
lem. Although the direct application to a real system 
seems rather elusive at the moment nevertheles~ im-, , 
portant information can be extracted from it. Not only 
the moments can be readily evaluated from it but als~ 
the CPA self-energy come~ naturally from it if certain 
terms are modified. For later uses, we have also com­
puted explicitly some lower moments of the mixed­
crystal spectral density and the over-all densitv-of­
states function. It has also been shown that the CPA 
self-energy yields the correct lowest eight moments for 
the over-all density-of-states function. 

APPENDIX A: POLYNOMIALS USED IN THE 
EXPANSION OF THE EXACT SELF-ENERGY 

The polynomials PI associated with the expansion of 
the true self-energy in terms of propagators were given 
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by Yonezawa and Matsubara6 in the following form: 

log(1-CB+CBet) = f Pl(e!)t
l 

(Al) 
1=1 I! 

These polynomials can be conveniently converted into 
functions of w( =CB-CA ) by simply rewriting Eq. 
(Al) as 

., YI(W)t l 

log{t[l-w+(1+w)e t]1 = L --. 
1=1 I! 

(A2) 

The first few functions are: 

Yl(W) = (1+w)/2, 

Y2(W) = (1-w2 )/4, 

Y3(W) = - (w+w3)/4, 

Y4(W) =H -1+4w2-3(4), 

Y5(W) =H4w-lOw3+6(5), 

Y6(W) = /6 (4-34w2+60W4-30w6) , 

Recursion formula can be obtained by partial differ- Y7(w)=/6(-34w+154w3-21Ow5+90w7). (A4) 
entiations of Eq. (A2) with respect to wand t. We have 
found that Notice that 

with and 
(A3) 

Y 2 (w) = q2(W) 

Y3(W) =q3(W). 

APPENDIX B: COMPUTATION OF (H6), (87), AND MOMENTS 

In the text, various moments Mp(k, j) and }lp(E) have been obtained from an expansion of the true Green's 
function. An alternative way would be to evaluate them directly from the mixed-crystal Hamiltonian in a localized 
representation. Using the notations by Velicky et at.,t° we can write 

H=D+W, 

where D contains all the diagonal elements (taking up values of either e,1 of eB, randomly) and W contains all 
the off-diagonal elements and is the same as in the pure crystal. To get M p(k, j) and }lp(E) , we have to calculate 
(Hp), i.e., the pth power of the matrix H averaged over all the different configurations of guest-host distributions. 
(HP) can be calculated from the relation: 

(H1') = «D+ W)p)= (DP)+ (Dp-1W)+···+ (Wp). (Bl) 

The (HO) to (H6) are given in the paper by Velicky et at. The (H6) and (H7) have been calculated by us and are 
as follows: 

(H6) = (.:l6/64) +xy.:l2}lI(Ol+ 2exy.:l2}l3(Ol+txy.:l4}l2(Ol+ (ie.:l4+4exy.:l2}l2(Ol+ 2xy.:l2}l3(Ol) W 

+ (i.:l4+!e2.:l2+3xy.:l2}l2(Ol) W2+ (4e.:l2+4e3) W3+ (f.:l2+ 10e2) W4+6EW5+ W6, 

(H7) = (E.:l6 /6-1) +te.ry.:l2}l2(Ol+ (e2+ .:l2) xy.:l2}l3(Ol - 2exy.:l2}l2(Ol}l2(Ol+3exy.:l2}l4(Ol+xy.:l2}l5(Ol 

+[ (.:l6/16) + (3e2.:l4/16) + 2 (.:l2+e2) xy.:l2}l2(Ol + 6EXy.:l2}l3(Ol + 2xy.:l2}lI(Ol]W 

+[ (18E.:l-l/16) + te2.:l2+gexy.:l2}l2(Ol+3xy.:l2}l3(Ol]W2+ [ (1O.:l4/16) + 6e2.:l2+ e4+-1xy.:lz}l2(Ol]W3 

+[( ~l-e.:l2) + 10E3]W4+ (t.:l2+15e2) W5+7EW6+ W7+ X2y2.:l4W(3). (B2) 

The notation and conventions are the same as those of Velicky et at. except that .:l= -0. The latter distinction is 
not very important since only ez'en powers are involved. The expression of (H7) involves the matrix W(3l defined as 

Wi/3) = Wd. (B3) 

It is obvious that W(3):;t Hl3. Ultimately, this is the term that is responsible for the k,j-dependent term in Eq. (11). 
Some of the more cumbersome terms in Eq. (B1) are given in the following: 

(DWDWDD) = e2.:l2W2/4, 

(DDW DW D) = e2 6.2W2 / 4, 

(DWDDWD) = e26.2W2/4+xy.:l4}l2(O) /4, 

(DW DWDWD) = e4W3+ 2e2xy.:l2}l2(0)W +e2xy.:l2}la(O) +X2y2.:l4W(3l , 

(DDWDWWD) = (e26.2W3/4) + (xy.:l4}l2(0)W /4), 

(DWDDWWD) = (e26.2W3/4) + (xy.:l4}la(0) /4) 

(DWWDWW D) = e3TV4+Exy6.2( 2}l2(OlW2+}l/Ol - 2}l2(Ol}l2(Ol), 

(DW DWDWW) = e3W4+exy6.2}l2(OlW2, 

(DWDWWDW) = e3W4+Exy6.2 (}l2(OlW2+}l3(OlW) , 

(DWDWWWD)=e3W4+ Exy.:l2(}l3(OlW +}l4(0), etc. (B4) 
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In deriving these, we have used the relationship 

l1l2=f2+xy1l2. CBS) 

As pointed out by Vel icky et al.,l0 the expressions for the Mp(k,j)'s have the same structure as those of the (Hp)'s 
and can be easily obtained by a transformation to the delocalized (Bloch) representation. As expected, they are 
identical to Eq. (12) which was obtained in a somewhat different manner. The f.1.p'S can be obtained again by 
summation of Mp(k,j) over k andj. 
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We report here the use of CNDO/S wavefunctions in the calculation of oscillator strengths of singlet­
triplet transitions and the corresponding triplet radiative lifetimes induced by spin-orbit coupling. 
The starting functions for the perturbation calculations are ground and excited state functions including 
limited configuration interaction. Numerical calculations are carried through for formaldehyde and azulene. 
The importance of the calculated 0->1T'* states is discussed. 

In the past 30 years a great deal of work has been 
done to explain the strong afterglow exhibited by many 
organic molecules after excitation with ultraviolet light. 
Lewis and Kasha1 did much to advance the concept 
that this afterglow involved an electronic transition 
from the lowest triplet state to the ground state. They 
term this behavior phosphorescence. McClure was the 
first to explain the phosphorescence lifetimes of aro­
matic hydrocarbons on the basis of spin-orbit cou­
pling, soc.2 

The existence of soc in organic molecules has been 
shown to be responsible for intersystem crossing as 
well as phosphorescence. The effect of soc in organic 
systems is small enough to be treated by the Rayleigh­
Schrodinger perturbation treatment.3 The only per­
turbations required for the evaluation of the transition 
moment of a singlet-triplet transition are the perturba­
tion of the ground state by the various triplet states 
and the perturbation of the lowest triplet state by the 
various singlet states.4 For the purpose at hand the 


