COMPUTER RECOGNITION OF OVERLAPPING PARTS
USING A SINGLE. CAMERA!

Parag Parikh?
Scott Berman3
C. S. George Lee?

April 1982

CENTER FOR ROBOTICS AND INTEGRATED MANUFACTURING
Robot Systems Division

COLLEGE OF ENGINEERING

THE UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN 48109

=y - T -

1 his project was supported by the Robot Systems Division of the Center for Robotics and Integrated
Manufacturing (CRIM) at The University of Michigan, Ann Arbor, Mi. Any opinions, findings, and conclusions
or recommendations expressed in this publication are those of the authors and do not necessarlly reflect
the views of The University of Michigan.

ZCurrentIy a senlor In the Department of Electrical and Computer Engineering at The University of
Michigan, Ann Arbor, MI.

3Currently a senlor In the Department of Electrical and Computer Engineering at The University of
Michigan, Ann Arbor, MI.

4Currently an Assistant Professor in the Department of Electrical and Computer Engineering at The
University of Michigan, Ann Arbor, MI.

TABLE OF CONTENTS
T INEPOAUCTION ... ccitreicreeeteeeeereeiieereeseceeesestersessorrassssssassesssssssosessssssnssassassasnens
1.1, Literature OVEIrVIBWceveiiiirieiireereanceeressiesesssresssssssssssessesssssssssssssssssnes
1.2. Overview oOf the Problemirrimenniiereeennenissosnssessesesssossssssssosssosssons
2. Problem Definition and Formulation teresreressserasersrsssnarsrasesareserrrrossoens
2.1, PHASE 1 = TraiNINgcccooeonirirrinrrceniecerecerrscssssennernseseessessasssssssssnsssassannsssssas
2.2. PHASE 2 - Object Recognitioncciereieieiiiecenesesessinssnsonersseeneesnes

2.2.1.

2.2.2.

2.2.2.1,

2.2.2.2.

Image Acquisition Stage

Edge Detection Stage ...

2.2.2.3. Border Creation

2.2.8.

2.2.4.

2.2.5.

2.2.6.

Labeling Stage
Feature Recognition Stage

Template Matching Stage

Objects Recognition and

3. Detailed Algorithmscccccevvveeeennenne.

3.1.

3.2.

3.2.1.

PHASE 1 - Trainingccccoruuue.

PHASE 2 - Object Recognition

image Acquisition Stage

Gradient Calculation

Noise Elimination

...
...
...

...
..
...

...

Reconstruction Stageccocoevvnnees

...
...
ooo

oo

14

16

19

20

20

21

21

4. Results and Conclusions

4.1.

4.2.

4.3.

3.2.2. Edge Detection Stage

3.2.2.1.

3.2.2.2.

3.2.2.3.

3.2.3. Labeling Stage

3.2.3.1.

3.2.3.2.

3.2.3.3.

3.2.4. Feature Recognition Stage
3.2.5. Template Matching Stage‘

3.2.6. Objects Recognition and Reconstruction Stage

4.2.1. Image Acquisition Stagé
4.2.2. Edge Detection Stage
4.2.3. Labeling Stage
4.2.4. Feature Recognition Stage
4.2.5. Template Matching Stage

4.2.6. Objects Recognition and Reconstruction Stage

Conclusion

PHASE 1 - Training

PHASE 2 - Object Recognition

..

Gradient Calculation

...............................

..........

.
Noise Eliminationcccoveiviviiriieinivicennenane eererensrerssarenns

Border Creation

...
...

Labeling Terminology

..

The four labeling cases

...
A labeling examplecoureerreenccessenrsressssenessneenens
...

...

oooooooooooooooooooooo

..
...
...
..
..
...
..
...
......................

.
1]

21

21

22

23

23

24

25

28

37

38

39

40

40

41

41

42

43

44

46

a7

47

6. Appendix A: Objects Usedcoccviivinineeenveccrenenenmenreneesearnneeeeeenns terensaresoeanennne
6. Appendix B: Equipment Used resestetesnaetesanseereesesaeeraesresaaeaenesaaraeertesaenses

7. Appendix C: Digitized Images

..

8. Appendix D: Edge Detected Images

9. Appendix E: Noise Eliminated Images

..

10. Appendix F: Labeled Images

..

11. Appendix G: Reconstructed images

oo

12. References

..

ABSTRACT

A method to determine the position and the orientation of two overlapping parts
using a single camera is described. The method is based on segmenting the image
and labeling its various internal and external components. Detailed algorithms for
automatic training, edge detection, picture segmentation and labeling, parts
reconstruction, and parts recognition are provided. Results are summarized at

successive stages. Advantages, limitations, and improvements are discussed.

2 introduction RSD-TR-6-82

1. Introduction

The use of computer vision to recognize overlapping objects and the use of
computer-based robots to acquire, orient, and transport these objects will
revolutionize manufacturing technology as we know it today. The bin-picking
application, where robots are called upon to remove randomly scattered parts from a
bin and place them on a conveyor with the proper orientation, will significantly
improve and economize many manufacturing processes. Equipping the robot with

"sight'' and the ability to recognize overlapping objects is a first step in solving the

bin-picking problem.

1.1. Literature Overview

In the last few years, many image processing techniques have been applied to
the recognition of non-overlapping objects. The most successful of these use
histogram techniques for finding local features such as holes, curves, and corners
[8]; chain-encoding, gradient analysis, and Laplacian derivatives for locating edges
and boundaries [9,10]; line-thining, line-merging, tracking, smoothing, and filtering
techniques for image enhancement and sharpening [9,10]; and maximal cliques [4],
template matching, edge-cues [11], and local feature cues [6] for recognizing the

object, its position, and its orientation.

In fact, one system that not only determines the position and orientation of
non-overlapping objects, but also passes that information to a PUMA robot for
acquisition and transportation, has already been developed at The University of
Michigan's Robotics Research Laboratory [12]. The basic method employed by this
system is to compare previously taught parameters such as the area, the
perimeter, the ratio of perimeter squared divided by area, etc. and a radial template

with similar parameters calculated in real time.

RSD-TR-6-82 Introduction 3

Although this system and others like it, have been successful in the
recognition of non-overlapping parts, they show severe limitations when attempting
to recognize overlapping parts. The major problem is in distinguishing the image as

two overlapping objects rather than one object, i.e. segmenting the image.

Nevertheless, some success in solving the bin-picking problem has been
achieved. A group at the University of Rhode Island has developed a three-step
method to acquire and orient overlapping parts in a bin [7,8]. First, using grey-
scale computer vision techniques, they approximate the location of any one object.
Second, using sensory feedback from a vacuum gripper, they make the robot pick
up the object and transport it to a "orientation bin". Finally, using a non-
overlapping objects algorithm, they orient the part and transport it to its final
destination. Notice, however, that the algorithm will not necessarily acquire the
topmost object. In fact, the initial acquisition by the robot is completely at random.
While this may be sufficient for some applications, other applications require the

recognition of overlapping objects in their overlapping state.

1.2. Overview of the Problem

The objective of this research project is to develop an algorithm using grey-
scale computer vision techniques to recognize overlapping objects in their
overlapping state. More specifically, the task is to detect the outside boundaries
of the objects, construct both the overlapping edges and the hidden edges, and
determine the position and the orientation of the top object and then the bottom
object. The purpose of this report is to present an algorithm that accomplishes this
task for two specific overlapping parts (see Appendix A). But more importantly, the
purpose is to clarify and describe the various techniques used so that they may aid

future research projects on this topic.

4 Introduction RSD~-TR-6-82

The particular techniques examined include: 1) training 2) image acquisition 3)

edge detection 4) labeling 5) feature recognition 6) template matching and 7)

objects recognition and reconstruction.

2. Problem Definition and Formulation

The task of determining the position and orientation of overlapping objects was
divided into two phases. The first phase involved training the computer to recognize
each object in its non-overlapping state. The second phase involved the actual
recognition and reconstruction of the objects in their overlapping state. This

second phase was divided into six stages as follows:

(1) image acquisition

(2) edge detection

(3) labeling

(4) feature recognition

(5) template matching

(6) objects recognition and reconstruction

The remainder of this section discusses the two phases and elaborates on the
purpose, the function, and the methods involved. Detailed algorithms are omitted
here for simplicity, but provided in the next section for completeness. Figure 1

shows the overall flow of the vision system.

2.1. PHASE 1 - Training

The first phase in the system is to train the computer and teach it the
characteristics of each individual object in all of its non-overlapping stable states.
This is an absolute necessity if the computer is to recognize and reconstruct the
objects in an overlapping state when only partial information is available.
Essentially, this phase is nothing more than automatically creating a "'model" of the
object. it should contain information about the set of local features that best

describes the object. The procedure is to run a modified version of the same

RSD-TR-6-82 Problem Definition and Formulation 6

]
{ASE 1 Training;—ﬁ LIBRARY i——u‘
FOSITION

Feature / OF
3 2 Recognrtlon/ OBJECTS
LABELED

IMAGE

Template ORIENTATION
, Matching OF
Image OBJECIS
:quisition7 ZLabeling; l
| 4 ecognition & / TOF
i)] Reconstruction OBJECT?

GREY - Edge 7 BINARY
SCALE 7Detection /7™ INAGE
INAGE

iASE

Figure 1 Overall Flow of the Vision System

algorithm to be used on overlapping objects, but instead of recognizing local
features, such as holes, and trying to look them up in a library, it creates the library
by storing parameters like area, perimeter, length of the horizontal axis, and length

of the vertical axis of any local features that are present.

The training performed in this project concentrated primarily on the large
circular hole in the middle of the object (see Appendix A). It calculates what can
be called a "radial template” by starting from the center of the hole and computing
distances to the outer edge for every one degree increment. The purpose of this
template is not only to recognize the objects and determine which one is on top,

but also to reconstruct any hidden edges and verify the recognition.

6 Problem Definition and Formulation RSD-TR-6-82

In any event, the thing to note is that the training needs to be done only once

for each stable state of the objects used. This is a major step in automating the

system.
2.2. PHASE 2 - Object Recognition

2.2.1. Image Acquisition Stage

The images are acquired using a single Hamamatsu T.V. Camera and run
through a high-speed A/D converter as described in Appendix B. For development,

the resolution of each picture was standardized to 2566x256x8 bits.

2.2.2. Edge Detection Stage

The second stage in recognizing overlapping objects using computer vision is
to detect not only the outermost edges but also any overlapping ones. After
discussing various possibilities, an algorithm based on the gradient magnitude

calculation was finally implemented.

The most successful version of the algorithm involves three major steps. The
first step is the use of a gradient calculation to obtain a rough estimate of the
location of the edges. The second step involves distinguishing between the
actual edges and random noise, and eliminating the latter. And the third step
involves the creation of a bounding rectangle or a window around the objects to

facilitate further processing.

2.2.2.1. Gradient Calculation

The first step in the edge detection stage is to determine the location of all
possible edges using a gradient magnitude calculation. Essentially, this involves

comparing a small group of neighboring pixels around a central pixel and looking

RSD-TR-8-82 Problem Definition and Formulation 7

for sizable grey-scale intensity differences. If such differences exist, then that

particular central pixel is flagged as a possible edge.

Two different gradient algorithms were tested. The first one uses a 3x3
window while the second one uses a 5x§6 window. The 3x3 window algorithm

yielded much thinner edges, and was chosen for further processing.

The basic calculation is as follows:

gradient="AxZ + Ay?

where:

Ax = grey-scale intensity difference in horizontal direction
Ay = grey~scale intensity difference in vertical direction

By thresholding the gradient value, most edge pixels can be detected and
the image converted from grey-scale to binary. However, considerable non-edge

pixels or "noise’ pixels are also included. See Appendix D for images resulting

from this step in the process.

2.2.2.2. Noise Elimination

The second step in the edge detection stage is to eliminate any random
noise that was generated in the gradient calculation step. This is done by simply
examining the neighboring pixels around every edge pixel and turning "off"
(making a logical 0) those edge pixels that have less than a threshold number of

pixels "on" (a logical 1) around them.

2.2.2.3. Border Creation

The third and last step in the edge detection stage is to create a bounding
rectangle or window around the overlapping parts. Essentially, this involves
taking the results of the noise elimination step and calculating the minima and

maxima of the x and y coordinates where edge pixels are located.

Problem Definition and Formulation RSD-TR-6-82

The reason for drawing this window is to reduce the number of pixels that
will need subsequent processing. Instead of processing all 266x266 pixels, only
pixels that lie within the bounding rectangle or window need to be considered
further. No time needs to be wasted in processing areas where the objects do

not exist. See Appendix E for final results of the edge detection stage.

2,2.3. Labeling Stage

The third stage in the Object Recognition phase is the labeling technique.
This is essentially a modified and enhanced version of the "Run Length Coding"

algorithm described by Gerald J. Agin [2].

The major function of this stage in the recognition process is to separate the

image into its individual components by labeling each with a different integer

called a component number. For example, the leftmost image in Figure 2 is labeled
to produce the rightmost image in Figure 2, where integer (component number) 0"

is the background, '"1" is the object, and "2" is the internal hole.

The advantage of this algorithm is that only one row in the image needs to be
buffered and processed at any one time. All of the information gathered from the
processing of previous rows is stored in a relatively small data structure. Also, all
further processing can now be restricted to a subset of the original image or those

pixels that are in the window created In the previous stage.

The general method is quite simple. First, the row to be processed is read
from the binary image resulting from the edge detection stage (Appendix E) and
scanned to determine the columns where 1 to O or O to 1 transitions occur. The
distance between any two consecutive transitions is called a segment. For
example, a row like in Figure 3 would produce transitions in columns 8, and 13, and

would result in 3 segments as shown.

RSD-TR-8-82 Problem Definition and Formulation 8

unlabeled image labeled imége

binary 1 1 integer O

'Hum = integer

1l
il

(D
]

= binary 0
u = integer 2
Figure 2 Labeling Technique
gz;;:: 1 2 3456 7 8 9 10 11 12 13 14 15 16 17
new row LOTO}(;IO[UTO[OIII].I:L]l il 10]O]O__L.OIO,

|(__ segTent ,‘r seggent)+t___seg§ent_)1

Figure 3 Determining Segments in a New Row

Second, each segment in the new row or the row being processed, called the

new segment, is processed one at a time to determine how it fits relative to

Problem Definition and Formulation RSD-TR-6-82

segments processed in previous rows. The basic idea is to perform '"connectivity
analysis’" on each new segment by comparing it to the corresponding segment in

the data structure. This corresponding segment is called the current segment. In

performing this comparison, three possible cases can arise as shown in Figure 4.
Case 1 is where the new segment is completely to the right of the current
segment. Case 2 is where the new segment is completely to the left of the

current segment. And Case 3 is where the new segment overlaps the current

segment.

Case 1 occurs when there are more entries in the data structure than
actually needed. Thus, one entry can be deleted and adjacent component
numbers merged. Figure 5 shows that the third segment in the new row (the new
segment), [XXXX], is a Case 1 when compared to the third segment in the old row
(the current segment in the data structure). Thus, the component number "0" can
be deleted from the data structure and the numbers "1" and "2" can be merged.
The merging is necessary to combine component numbers that are connected and

really part of the same "piece’ of the image.

Current Segment: XXXX
New Segment (Case 1):
XXXX

New Segment (Case 2): XXXX

New Segment (Case 3): XXXX

Figure 4 Three Cases Found in the Labeling Technique

RSD-TR-6-82 Problem Definition and Formulation 11

01d Row: 02200111100 02200222200
New ROWw: 0 0 2 2 2 2 Z[X X X X] 00 2 2 2 2 2
Before After

Figure 5 Processing Case 1

Case 2 occurs when there are less entries in the data structure than
necessary. Thus, one segment must be added to the data structure and a new
component number created. Figure 6 shows that the second segment in the new
row (the new segment), [XX], is a Case 2 when compared to the second segment
In the old row (the current segment in the data structure.). Thus, the new
segment Is added to the data structure and assigned the first available

component number. In Figure 8, for example, the new segment is assigned the

component number 2",

0ld Row: 000O0OO0O111100 000O0OO0O111100

New Row: 0 O[X X] 0 0 2 2

Before After

Figure 6 Processing Case 2

12 Problem Definition and Formulation RSD-TR-6-82

Case 3 occurs when the entries in the data structure are consistent with the
number of new segments. Nothing is added to or deleted from the data structure.
The new segment, in this case, is labeled with the same component number as Its
corresponding segment in the data structure. Figure 7 illustrates this case. The
second segment in the new row (the new segment) is labeled with the same
component number as the second segment in the old row (the current segment in

the data structure).

Notice, however, that of all three cases only Cases 2 and 3 actually process
the new segment. Case 1 simply keeps ''cleaning up" the data structure until

either a Case 2 or 3 match can be found to label that segment.

This fact is important when we consider what happens if the new row
contains less segments than the old row (the data structure). In this case, all the
new segments from the new row may be exhausted before the data structure can
be "repaired”. This is shown in Figure 8 where three Case 3's are processed, yet
two segments remain unused in the data structure (segments labeled "3" and
"0'"). The problem with this is that it results in a portion of the background being
labeled with a non-background component number (component number '"2"). In this

case, now called Case 4, repeated calls must be made to Case 1 (with merging

01d Row: 0001111000 0001111000
New Row: 0 O[X X X] 00111
Before After

Figure 7 Processing Case 3

RSD-TR-6-82 Problem Definition and Formulation 13

suppressed) until the number of segments in the new row agrees with the number
of segments in the old row. Furthermore, the last segment in the new row must be
forced to the background, component number 0", no matter what the data
structure says. This was one of the major modifications made to Agin's "Run

Length Coding” algorithm [2].

Another problem that arose involved the background number. ldeally, the
background number sﬁould be labeled with the component number "0'". However,
because of the merging that occurs in Case 1, the component number "O" may be
merged into another component number and lost. This is quite easily corrected by
keeping track of what the background has been changed to, and changing it back
to "0" at the end of the labeling algorithm. However, we must make sure that the

component number "0’ does not get used to label any other part of the image.

The labeling technique is really the heart of the overlapping parts recognition
system. By separating individual components of the image, many local features
can easily be recognized, areas and perimeters can be calculated, background and
objects can be separated, and internal features such as holes of various sizes
and shapes can be recognized and distinguished from each other. The labeling

technique shows a great deal of potential in computer vision applications. See

0l1ld Row: 0011223300 00110 0©O3300
New Row: 011 2 2 2 2 22 2 011 00O0O0O0O0CDO0
Before After

Figure 8 Processing Case 4

14 Problem Definition and Formulation RSD-TR-6-~-82

Appendix F for the various internal components separated by this algorithm for one

particular overlapping objects image.

2.2.4. Feature Recognition Stage

The fourth stage in the recognition of overlapping objects is the recognition
of any local features that were either modeled during the Training phase or

acquired from an inspection of the objects.

At this point in the system, the overlapping objects image has been
processed in two ways. First, it has been passed through the edge detection
stage where edge pixels were found and separated from extraneous noise.
Second, it has been passed through the labeling technique where various

components have been labeled with different component numbers.

The function of this stage in the system, the feature recognition stage, is to
scan the labeled image trying to recognize specific local features. The local
feature that this particular system focuses on is the relatively large hole in the
center of the objects used (see Appendix A). The reason that this local feature

was selacted is because it is the most apparent and easily distinguishable

characteristic of the objects.

The basic method used to find and recognize the internal hole consists of

three independent tests: 1) the area test 2) the ratio test and 3) the continuity

test.

The first test in the sequence, the area test, is used to eliminate any
component numbers that are either too large or too small to be the hole. This is
done by comparing the area (number of pixels) occupied by each successive
component number with the actual area of the hole. Those component numbers
that do not have an area within a certain tolerance, perhaps 10-20% of the actual

area, can safely be eliminated from further consideration.

RSD-TR-6-82 Problem Definition and Formulation 16

The second test in the sequence, the ratio test, is used to distinguish holes
of various shapes that might have the same area. The basic idea here is to
compute the ratio of the number of pixels spanned on the major axis divided by
the number of pixels spanned on the minor axis. For a circular hole, the ratio will
be very close to 1. For an elliptical hole, the ratio will always be greater than 1.
Of course, the more elliptical the hole, the greater the ratio. For purposes of this
prbject, however, the ratio computed was the number of pixels spanned in the
horizontal direction divided by the number of pixels spanned in the vertical
direction. This deviation was prompted by the fact that the objects used have

only one hole and it is perfectly circular.

The third and last test in the sequence is the continuity test. The purpose of
this test is to separate the outer boimdary of the hole from the hole its_elf (see
Figure 9). The basic method of performing this test is to scan the labeled image
along the horizontal axis looking for transitions from the component number being
tested to some other component number or vice versa. If more than two such
transitions are found, the component number being tested is not continuous and

can be eliminated from further consideration as a hole.

in the recognition of two objects in their overlapping state, four possible
conditions arise as a consequence of these tests: 1) no hole may be found (a
partial hole is considered to be a no hole condition) 2) one hole may be found 3)
both holes may be found or 4) more thar two hoigs may be found. If, no holes are
found, the system as it stands how will come to the unfortunate conclusion that
the objects cannot be recognized. In this case, other local features must be
selected to perform the recognition. For example, it might be feasible to search
for a sharp comer or a smooth edge. However, if one, two, or more holes are
found, the center of each hole can be computed and passed to the next stage in

the system.

16

i -TR-6~-82
Problem Definition and Formulation RSD-TR-6-8

TS
SIS

Outer Edge Hole

Figure 9 Distinguishing A Hole From Its Outer Edge

2.2.6. Template Matching Stage

The fifth stage in the recognition of overlapping objects is to compare the
radial template(s) calculated in the Training phase with the radial template(s)
calculated in real time from holes found in the previous stage, until a "best fit"
match is found. This "best fit" match essentially yields thé orientation of the
object relative to the trained object. Once the orientation is determined, the next

stage of the system can reconstruct any hidden edges and determine which

object is on top.

The first step in the template matching algorithm is to calculate the radial
template for each hole found in the previous stage. The method is exactly similar
to the Training phase. The algorithm is to start from the center of the hole and
compute distances to the outer edge for every one degree increment. The result

is an array with 360 entries, one entry for each degree.

RSD-TR-6-82 Problem Definition and Formulation 17

The second step in the algorithm is the actual comparison. The basic
approach is to match one of the templates (arrays) calculated in real time with
each template from the Training phase. By holding one fixed, and reindexing the

other without destroying its internal order, the best match can be found.

The method is to match up the arrays (templates) so that the i element of
one corresponds to the i element of the other, and performing a calculation to

determine the total deviation as follows:

359
total=) [template1 [i]-template2[i]]2
=0

for all i such that:

(0.5) x template2[i] < template1[i] < (1.5) x template2[i]

where:

template1[i] = i*" element of the real time template
template2[i] = i element of the trained template

The reason that only certain values of / are used is that when the magnitude
of the difference between corresponding template values is very large relative to
the template values, either one of those template values has crossed an
overlapping edge or Is in some way not representative of the object. For example,
the dotted line in Figure 10 shows that at 180 degrees the template value has
crossed the overlapping edge due to a gap in the overlapping boundary and no

longer reflects its own template. Consequently, it must be omitted from the

calculation.

After this first calculation is performed, one template is held fixed and the
other template is shifted by one degree. Thus, the 15! element in one corresponds
to the 360" element in the other, the 2" element in one corresponds to the 1%¢
element in the other, etc.(see Figure 11). Then, the total deviation must again be

calculated exactly as before. In fact, this process must continue until the

18 Problem Definition and Formulation RSD-TR-6-82

Figure 10 Erroneous Template Values

templates have been compared in all 360 possible shifted combinations and 360
totals are obtained. The template calculated in real time can now be compared to
another template from the Training phase, representing another possible stable
state of the object. The configuration that results in the smallest total deviation
after all the trained templates have been considered must be the orientation of
that particular object. Thus, the orientation can be represented by the stable
state of the trained template used and the number of shifts that resulted in the
smallest total deviation. If more than one hole is visible, the entire algorithm just

described for template matching can be repeated to determine the orientation of

each corresponding object.

This information can now be passed to the last stage in the overlapping

objects recognition system to determine which object is on top and reconstruct

RSD-TR-6-82 Problem Definition and Formulation 19

template 1 1 2]3 360

112]3 360

>
shift

template 2

1(2 |3 ' 360 360 112

359

Figure 11 Shifting Template Before Calculations

any hidden edges.

2.2.6. Objects Recognition and Reconstruction Stage

The sixth and last stage in the recognition of overlapping objects is the

determination of which object is on top and the reconstruction of any hidden

edges.

Thus far, two key parameters have been computed. First, the feature
recognition stage has resulted in the position (x and y coordinates) of each non-
overlapped hole within the image frame. Second, the template matching stage has

resulted in the best estimate of the orientation of the objects.

Without any further calculation, the objects can easily be reconstructed by
simply redrawing the radial template that was trained in the first phase of the
system at the correct position in the correct orientation. See Appendix G for

examples of reconstructed images.

The process of determining which object is on top, however, is slightly more
complex. The basic algorithm involves comparing the images obtained from the
edge detection stage (Appendix D), with the radial template, after it has been

properly positioned and oriented, for every hole and determining which one

20 Problem Definition and Formulation RSD-TR-6-82

correlates or matches up the "best". This is the topmost object.

The basic procedure for correlating Is to determine if an edge pixel lies in the
edge detected image within a certain range (+ 3 pixels) of where the
repaositioned and reoriented trained template says it should lie. After this is done

for all 360 degrees, the hole showing the most pixel "matches" is most likely the

topmost object.

This concludes the basic overview of the six stages in the overlapping
objects recognition system. More detailed algorithms for the system actually
implemented are provided in the next section. Those readers not interested in

specific details may skip this section and jump to the section on results and

conclusions with no loss in continuity.

3. Detailed Algorithms

This section of the report provides the detailed algorithms for PHASE 1 and all
six stages in PHASE 2 of the overlapping objects recognition system. This section

can be omitted with no loss in continuity.

38.1. PHASE 1 - Training

The Training phase of this project focuses primarily on the large hole in the
center of the object. Using this hole, a radial template is calculated and then
stored in a file for future use. Each template value contains the distance from the
center of the hole to the outer edge of the object for each one degree increment.

The algorithm for the training is as follows:

STEP 1

Process the image of the single object using the algorithms for edge detection,
noise elimination, border creation and labeling.

STER 2

RSD-TR-6-82 Detailed Algorithms 21

Process the image using the algorithm for feature recognition in order to find the
hole in the center of the object.

STEP 3

Starting at the center of the hole, measure the distance to the outer edge of the
object at one degree increments.

STEP 4

Store all 360 of these measured lengths (radial template) in a disk file for future
use,

STEP S

Repeat steps 1-4 for all the stable states of the object.

3.2. PHASE 2 - Object Recognition

3.2.1. image Acquisition Stage

The first stage in PHASE 2 of the system is to acquire an image of the
overlapping parts. This is done by taking a picture of the objects in their
overlapping state using a Hamamatsu T.V. Camera and running it through a high-
speed A/D converter as described in Appendix C. For development purposes, the

resolution of each picture was standardized to 256 x256 X8 bits.

3.2.2. Edge Detection Stage

The second stage in the recognition of overlapping objects is the edge

detection stage.

3.2.2.1. Gradient Calculation

The first step in the edge detection stage is to determine the location of all

possible edges using a gradient magnitude calculation. The procedure is as

22

Detailed Algorithms RSD-TR-6-82

foliows:

(1)
(2)

(3)

(4)

(5)

(6)

(7

Initialize: i=j=1

Read a 3x3 window
(Read a 5x5 window)

MAGX = pixel[i-1][j] - pixel[i+1][j]
MAGY = pixel[i][j-1] - pixel[i][j+1]
(MAGX = pixel[i-2][j] - pixel[i+2][i])
(MAGY = pixel[i][j-2] - pixel[i][j+2])

Total = Sqrt(MAGX*MAGX + MAGY*MAGY)

Normalize the result to the range (0-255)
Total = Total/1.414

Flag central pixel if it is a potential edge, otherwise, turn it off

If (Total > Threshold) OR (MAGX = X-thresh) OR (MAGY = Y-thresh)
Then pixel[i][j] = 265
Else pixel[i][j1=0

Repeat steps (2)-(8) for all 256x256 pixels.

3.2.2.2. Noise Elimination

The second step in the edge detection algorithm is to eliminate any

extraneous noise picked up in the gradient calculation step. The procedure is as

follows:

(1)

(2)

(3)

(4)

Initialize: i=j=1

Look for central pixel:
If pixel[i][j]=0 then goto step (6)

Read a 3x3 window

Count the number of logical 1 pixels in the window:
Count= pixel[i-1][j-1] + pixel[i-1][j] +
pixel[i-1][j+1] + pixel[i][j-1] +
pixel[i][j+1] + pixel[i+1][j-1] +
pixel[i+1][j] + pixel[i+1][j+1]

RSD-TR-6-82 Detailed Algorithms 23

(6) Eliminate pixel if it is a noise pixel:
If count < Noise-threshold then pixel[i][j] = 0

(8) Repeat steps (2) - (5) for all 256x2566 pixels

3.2.2.3. Border Creation

The third step in the edge detection algorithm is to create a bounding

rectangle, or window, around the overlapping objects. The procedure is as

follows:

(1) Initialize:
i=j=1
XMIN=YMIN=256
XMAX=YMAX=1

(2) Assign minima and maxima:

If pixel[i][j] = 266
then if i < XMIN then XMIN = |
if i > XMAX then XMAX =i
If j < YMIN then YMIN = |
if j > YMAX then YMAX = j

(8) Repeat step (2) for all 2566x256 pixels

(4) Draw bounding rectangle using XMIN, XMAX, YMIN, YMAX

3.2.3. Labeling Stage

The labeling technique, which segments and labels the binary image, makes
use of two simple data structures, and also a row transition data structure. All
three data structures are implemented using a 200 element, one dimensional array.
This was considered to be more than adequate for processing a 256x256 pixel

image. The arrays are called startc (starting column), component (component

number), and trans (transitions).

As mentioned before, rows are divided into segments before being processed.

Each segment in the row is assigned some component number, representing which

Detailed Algorithms RSD-TR-6~-82

part of the object it is. In this way, the startc and component data structures are

related to each other. For example, assume that these data structures are in the

following states:

Startc 0 10 26 255
Component 0 1 2 dummy

This would mean that in the old row we have three segments. The first runs from
column O up to but not including column 10. This segment has been assigned the
component number "0". The second segment runs from column 10 to column 26,
and is assighed the component number "1”. The third segment runs from column

26 to column 255, and is assighed the component number "2,

To explain how the labeling technique Is implemented, we should first define
some terminology. Then, we will explain the action taken in each of the four cases
which occur in the algorithm. Finally, we will examine a sample image and run
through the algorithm, showing the data structures and the labeled image at

various stages throughout the procedure.

3.2.3.1. Labeling Terminology

Current Pointer - this is a pointer to an element in the startc and component

data structures that points to the current segment and its corresponding
component number.

Old Row -~ this is the row which is defined by the startc and component data
structures.

RSD-TR-6-82 Detalled Algorithms 26

New Row =~ this is the row which is currently being processed in the binary
image.

Current Segment - this is the segment which is pointed to by the current
pointer to the startc data structure. It is the segment which the new segment
will be compared to in order to recognize one of the four cases.

New Segment - this is the segment being looked at in the new row. It is
compared to the current segment in the startc data structure.

Previous Segment - this is the segment just before the current segment in the
startc data structure.

Subsequent Segment -~ this is the segment just after the current segment in the
startc data structure.

Transition - a O to 1 or a 1 to O transition in the binary image.

Labeled Array ~ this is the final 266x258 array which contains the labeled
pixels.

3.2.3.2. The four labeling cases

In analyzing each row, we run across four separate cases. They are as

follows:

Case 1: New segment lies to the right of the current segment

If Case 1 is recognized, the startc and component data structures are too
big. Therefore, a segment must be deleted from them and neighboring segments
may have to be merged. In other words, two parts of the object which were
thought to be separate parts are actually connected and should be labeled with

the same component number. The action taken in Case 1 is:

STEP 1

Remove the current segment from the startc data structure.

STEP 2

26

Detailed Algorithms RSD-TR-6-82

If the component numbers of the previous segment and the subsequent segment
are the same, GOTO STEP 4.

STEP 3

If the component numbers of the previous segment and the subsequent segment
are different, change all occurrences of one to the other in both the component
data structure and the labeled array. Keep track of what the background is
assigned if it is changed by this action.

STEP 4

Remove the component numbers which corresponded to the current segment and
the subsequent segment from the component data structure.

STEP 5

Continue processing.

Case 2: New segment lies to the left of the current segment

If Case 2 is recognized, the startc and component data structures must be
increased in size, and the new segment added to them. in other words, a new
part of the object has been found and needs to be assigned a new component
number. The action taken in Case 2 is:

STEP 1

Insert the starting and ending column numbers of the new segment into the startc
data structure right before the current segment.

STEP 2

Choose an unused component number for the new segment and insert it into the
component data structure.

STEP 3

Choose the component number of the previous segment to be the component
number of the subsequent segment, and insert it into the component data
structure in the position just after that pointed to by the current pointer.

STEP 4

RSD-TR-6-82 Detailed Algorithms 27

Continue processing as if a Case 3 overlap was recognized.

Case 3: New segment and the current segment overlap.

If Case 3 is recognized, the first thing that must be checked is if the new
segment is the final segment in the new row, and if so, whether it is being
assigned a component number other than the background number. If so, then the
startc and component data structures are not entirely correct, and Case 4 must

be processed before Case 3. If not, the following action is taken:

STEP 1

The new segment is assigned the same component number as the current
segment in the startc data structure.

STEP 2

The starting column of the new segment replaces the starting column of the
current segment in the startc data structure.

STEP 3

The pixels in the labeled array corresponding to the new segment in the new row
are set to the component number of the new segment.

Case 4: The data structures are not entirely correct

If Case 4 is recognized, this indicates that the startc and component data
structures contain excess information which is not needed, and must be changed
accordingly. This case results when the final segment in the new row is going to

be assigned a component number other than the background number. The action

taken is the following:

STEP 1

Record the value of the component number which corresponds to the current
segment.

Detailed Algorithms RSD-TR-6-82

STEP 2

Change all occurrences of this component number In the component data
structure and in the labeled array to the background component number.

STEP 3

Remove all elements from the startc and component data structures, starting with
the element after the element which is pointed to by the current pointer, up to
but not including the last element in the data structure.

STEP 4

Continue processing with Case 3.

3.2.3.3. A labeling example

To clarify the labeling procedure, let us look at an example, and run through

the procedure. Suppose we began with a 8x10 binary image as shown in Figure

12 below.
Columns

01 2 3 4356 7 829

0 0o 0o 0 0 0O 0O 0 0 0 O

1 o 60 0 011 0 O 0 O

2 0 0 0 1 1 1 1 0 0 O

Rows 3 0 0 01 0 0 1 0 0 O
4 0 0 0 1 1 1 1 1 1 0

5 0 0 0 0 1 1 1 0 1 O

6 0 0 0 0 1 1 1 0 0 O

7 0 0 0 0 0 0 0 0 0 0

Figure 12 An 8x10 Binary Image Example

RSD-TR-6-82 Detailed Algorithms 29

When analyzing this binary image, we first find all the transitions in each row and

record the column numbers where they occur.

Row 0 - no transitions
Row 1 - Columns 4,6

Row 2 - Columns 3,7

Row 3 - Columns 3,4,6,7
Row 4 - Columns 3,9

Row 5 - Columns 4,7,8,9
Row 6 =~ Columns 4,7

Row 7 - no transitions

We start by initializing the startc data structure to contain a segment with
the starting column number as O and the ending column number which is one more
than the highest column number in the binary image. We give this segment the

component number "0 (background), and set the current pointer to point to it.

Startc 0 10
Component 0 dummy
T
Current

Pointer

30

Detailed Algorithms RSD-TR-6-82

Now we look at row 0. It has no transitions, which means It consists of one
segment of all 0's, which runs from column O up to (but not including) column 10.
This is the new segment. The current segment also runs from column O to column
10, so this results in a Case 3 overlap. Case 3 results in the data structures

remaining unchanged. The labeled array and the data structures now look as

follows:

Row O 0000000000

Startc 0 10
Component 0 dummy
T

Since there are no more segments in the new row, we reset the current
pointer to point to the first element in the startc data structure, and process the
next row. Row 1 h;s transitions at columns 4 and 6. This results in the new row
(Row 1) having 3 segments (0-4), (4-6), and (6-10). Comparing the new
segment (0-4) with the current segment (0-10), we get a Case 3 overlap. The
next segment in the new row runs from columns 4 to 6, but this lies to the left of
the current segment, which starts in column 10. Therefore, Case 2 must be
processed, and the new segment added to the data structure. An unused
component number is chosen for the hew segment, and the labeled array and data

structures look as follows:

RSD-TR-6-82 Detailed Algorithms 31

Row O 0000000000
Row 1 000011

Startc 0 Ly 6 10
Component 0 1 0 dummy
T

The last segment in the new row runs from column 6 to column 10, and

results in another Case 3 overlap. We now have:

Row 0 0000000000
Row 1 0000110000

Startc 0 L 6 10
Component 0 1 0 dummy
?

We now go on to row 2. This has transitions at columns 3 and 7. This gives

us 3 segments to look at (0-3), (3-7), and (7-10), all of which result in Case 3

overlaps. This gives us the following situation:

a2 Detailed Algorithms RSD-TR-6-82

Row O 0000000000
Row 1 0000110000
Row 2 0001111000

Startc 0 3 7

10
Component 0 1 0

dummy
?

Row 3 has transitions at columns 3, 4, 6 and 7, giving 5 segments (0-3),
(3-4), (4-6), (6-7) and (7-10). The first two segments result in Case 3
overlaps, but the third segment (4-6) results In Case 2 when compared to the
current segment (7-10). This causes the segment (4-6) to be added to the data

structure and gives the following:

Row O 0000000000
Row 1 0000110000
Row 2 0001111000
Row 3 000122
Startc 0 3 [6 7 10

Component 0 1 2 1 0 dummy

We now continue processing the segments (6-7) and (7-10), which results

in two more Case 3 overlaps. We now have:

RSD-TR-6-82 Detalled Algorithms 33

Row O 0000000000
Row 1 0000110000
Row 2 0001111000
Row 3 0001221000
Startc 0 3 b 6 7 10
Component 0 1 2 1 0 dummy

Row 4 contains the 3 segments (0-3), (3-9) and (9-10). For the first two
segments we get Case 3 overlaps, but when comparing the new segment (9-10)
with the current segment (4-6), we get a Case 1. This means we need to merge
2 elements in the startc data structure and remove the current segment from it.

When we first come across this Case 1, we have:

Row O 0000000000
Row 1 0000110000
Row 2 0001111000
Row 3 0001221000
Row 4 000111111
Startc 0 3 Ly 6 7 10

Component 0 1 2 1 0 dummy
T

After processing Case 1 and merging, we have:

34 Detailed Algorithms RSD-TR-6-82

Row 0O 0000000000
Row 1 0000110000
Row 2 0001111000
Row 3 0001221000
Row 4 000111111
Startc 0 3 7 10
Component 0 1 0 dummy
T

Since the component numbers of the segments before and after the current
segment were both "1", we did not have to go to the labeled array and
component data structure to merge one component to the other. Finally, we get

another Case 3 overlap to finish row 4, and this gives us:

Row O 0000000000
Row 1 0000110000
Row 2 0001111000
Row 3 0001221000
Row 4 0001111110
Startc 0 3 9 10

Component 0 1 0 dummy
T

Row & has transitions at columns 4, 7, 8 and 9 giving the five segments (0-
4), (4-7), (7-8), (8-9) and (9-10). The first two result in Case 3 overlaps. The
third results in a Case 2, causing the new segment (7-8) to be added to the data

structures. The last two segments also result in Case 3 overlaps, and that

RSD-TR-6-82

finishes row 5. We now have:

Detailed Algorithms

Row
Row
Row
Row
Row
Row

Startc 0
Component 0

wnEwhor O

"

0000000000
0000110000
0001111000
0001221000
0001111110
0000111310

7 8
3 1

9

10
dummy

36

Row 6 has 2 transitions at columns 4 and 7. This gives three segments to

look at (0-4), (4-7) and (7-10). All three result in Case 3 overlaps. However, it

is important to notice that when we compare the new segment (7-10) with the

current segment (7-8), we will be setting the final segment in the new row to a

component number "3'" other than the background "0". This results in Case 4,

and the startc and component data structures contain erroneous information. We

must also change all occurrences of the component number "3" in the labeled

array and the component data structure to "0”. Thus, processing Case 4, we

get:

36

Detailed Algorithms

RSD-TR-6-82

Row
Row
Row
Row
Row
Row
Row

Starte 0
Component 0

oo EFHFuwNeEe O

n
1

0000000000
0000110000
0001111000
0001221000
0001111110
0000111010
0000111000

7 10

0 dummy

T

Row 7 has no transitions, and thus one segment (0-10). This results in a

Case 3 overlap and is assigned the component number "0". Since we found a row

with no transitions, we also re-initialize the data structures, and now have:

Row
Row
Row
Row
Row
Row
Row
Row

Startc 0
Component 0

~N O\ EFwhhe= O

10

0000000000
0000110000
0001111000
0001221000
0001111110
0000111010
0000111000
0000000000

dummy

T

Thus, the object has been labeled into three different parts {(components).

Component "0" is considered to be the background, component "1'" is the actual

RSD-TR-6-82 Detailed Algorithms a7

object, and component number "2'' could be a hole in the object.

3.2.4. Feature Recognition Stage

At this point in the processing, the feature recognition stage will search for
all possible holes in the objects. This is done using three tests on the possible
holes. They are 1) the area test, 2) the ratio test, and 3) the continuity test. If a

possible hole passes all three tests, it is considered to be a hole. The algorithm

used is as follows:

STEP 1

Using information from the labeling stage, find all component numbers such that

between 90 and 160 pixels in the labeled array were labeled with that component
number (area test).

STEP 2

For each component number which meets the area test, count how many columns in
the labeled array have at least one occurrence of that component number.—-

STEP 3

For each component number which meets the area test, count how many rows in
the labeled array have at least one occurrence of that component number.

STEP 4

Divide the number of rows (STEP 2) by the number of columns (STEP 3). If this
ratio falls within a given range (usually 0.8-1.2), then this passes the (ratio test).

STEP §

For all possible holes which pass the first two tests, check along the principle
horizontal axis for transitions from the component number being tested to another

component number or vice versa. If there are two transitions, the continuity test
is satisfied.

STEP 6

Store the component number of each possible hole that passes all three tests.

38 Detailed Algorithms RSD-TR-6-82

These are now considered to be holes.

3.2.6. Template Matching Stage

In order to reconstruct the image of the overlapping objects, we need to
process the template matching algorithm. This enables us to determine the

orientation of each object by comparing information taken from the labeled picture

with information from a stored radial template. The algorithm is as follows:

STEP 1

Find the centers of each of the holes which passed the three tests in the feature
recognition stage (cx[i],cy[i]).

STEP 2

Input the increment in degrees that is to be used in the template matching. Call
this "increment'.

STEP 3

Measure the distance from the center of the hole to the background, starting at

an angle of O degrees, and measuring every "increment” degrees (Length[i], i=0 to
369 step "increment').

STEP 4

Read the radial template from the file (Known[i], i=0 to 359)

STEP S5

Match Length[i] to Known[i], and let the total deviation be:

359
total deviation=}, [Length[i] ~Known[i]]2
1=0

However, do not udd the /" deviation if:

Length[1] > (1.5) x Known[i]

RSD-TR-6-82 Detailed Algorithms 39

or

Length[i] < (0.6) x Known[i]

STEP 6

Rotate the Known template "increment’’ degrees, and repeat STEP 5.

STEP 7

Repeat STEP &6 and STEP 6 until the Known template has been rotated 360
degrees. Always keep a record of the lowest value for the deviation and what the

orientation of the Known template was when this lowest value for deviation was
calculated.

STEP 8

Repeat STEPS 4-7 for all of the templates which were trained during the Training
phase.

STEP 9

The lowest deviation will now indicate what the orientation of the object is and
which stable state it is in.

STEP 10

Repeat STEPS 3-9 for each hole found in the feature recognition stage.

3.2.6. Objects Recognition and Reconstruction Stage

After the image has been labeled and processed by the feature recognition
and tempiate matching stages, it can then be processed by the objects
recognition and reconstruction stage. For each object in which the central hole
was found, we can reconstruct the object using the trained template and the
position and orientation found in the template matching stage. Then, by comparing

or correlating this reconstructed image with the edge detected image, we can

40 Detalled Algorithms RSD-TR-6-82

determine which object is most likely to the topmost object using the following

algorithm:

STEP 1

Reconstruct the object by using the trained template and the position and

orientation found in the template matching stage. Set the correlation counter for
the object to 0.

STEP 2

For each "on" (logical 1) pixel that is part of the reconstructed image, if that pixel
(or a pixel within a very small neighborhood of that pixel) is “on" in the edge
detected image, then increment the correlation counter for the object by 1.

STEP 3

Repeat STEPS 1-2 for all objects of which the central hole was found in the
feature recognition stage.

STEP 4
Compare the highest correlation count obtained with a correlation thresholid. If the

count is above the threshold, then the object with this correlation is the topmost
object. If not, then the algorithm has failed to produce a topmost object.

4. Results and Conclusions

This section discusses the results obtained in PHASE 1 and ali six stages of
PHASE 2 in the overlapping objects recognition system. It also discusses any

advantages, limitations, and possiblie improvements to the various algorithms.

4.1. PHASE 1 ~ Training

The first phase in the system is the Training phase. It involves calculating a

radial template for each object in all its non-overlapping stable states.

The results of this phase amounted to simple arrays containing distance
values from the center hole to the outside edge for all 360 degrees. One

advantage of this is that it allows the system to become more automated and

RSD-TR-6-82 Results and Conclusions 41

require less human inspection. That is, it helps to make the system more object
independent so that it can be used for a variety of objects and not just for those
shown In appendix A. Another advantage Is that it only has to be run once for each

object in all its stable states. Once the distances are calculated they never have

to be calculated again.

One way to improve the Training phase is to make it even more object
independent. Instead of locating only the circular hole in the center of the object,
the Training phase can be upgraded so that it is smart enough to locate other local
features. For example, have it locate holes of different sizes and shapes, and

perhaps even edges that have sharp corners or smooth curves.

4.2. PHASE 2 - Object Recognition

The second phase in the system is the actual recognition and reconstruction

of overlapping objects in thelr overlapping state.

4.2.1. Image Acquisition Stage

The first stage in the Object Recognition phase is the actual acquisition of

the overlapping objects image.

This phase is critical to the success of all future stages in the system.
Appendix C shows the results of various images after they were acquired and
digitized. Picture 1 shows an image where only one of the two holes are non-
overlapped. Picture 2 and 4 show images where both holes are non- overlapped.

._Picture 3, on the other hand, shows images where both holes are overlapped and

hidden.

42 Results and Conclusions RSD-TR-6-82

4.2.2. Edge Detection Stage

The second stage in the recognition and reconstruction of overlapping
objects is to determine the location of all possible edge pixels in the overlapping

objects image.

Most images processed with this algorithm resulted in wvery good
boundary/edge maps (see Appendix E). However, lighting was observed to be a
major factor in the success. After considerable experimentation, the base light
was found to be an absolute necessity. It blocked out reflections from the
overhead light and other intruding light sources. When both side lights were left
off or turned on, the algorithm produced excellent outer edges, but only a trace of
the overlapping edge. In any case, the best results were obtained when only one
of the two side lights were turned on. This seemed to produce a shadow on the
overlapping edge that could be detected by the gradient technique. The question

of which side light to turn on seemed unimportant to the algorithm. In fact, both

produced nearly identical results.

In any case, the lighting procedure is critical to the algorithm. Many
questions still need to be answered. For example, should a higher light intensity
be used? Should it be projected at a different angle, perhaps from aimost directly
overhead? Should fluorescent lights be used? In any event, the idea is to create
a more intense shadow on the overlapping edge in order to increase its

detectability. That is, to optimize the edge detection algorithm.

While the gradient calculation step of this algorithm flagged many edge
pixels, it also flagged many non-edge or 'false pixels' as edges. The noise
elimination step of this algorithm attempts to eliminate as many of these
"extraneous' pixels as possible. The results were fairly successful. Refer to
Appendix D for images before the noise elimination and Appendix E for images

after the nolse elimination.

RSD-TR-6-82 Results and Conclusions 43

Overall, the edge detection algorithm had a fast processing time, about 45~
60 seconds under "optimal conditions", that is, when a small number of users were
on the system. The 45-80 seconds included reading the digitized pixel data from
the disk file into a 266x256 array, calculating the magnitude of the gradient at
each pixel and determining which pixels were edge pixels and which were
extraneous noise, and displaying the edge detected map on the Ramtek monitor.
The gradient calculation accounted for about 80% of the total time, while the

noise elimination, border creation and image display combined for the remaining

20%.

4.2.3. Labeling Stage

The third stage in the recognition of overlapping objects is to separate the

image into its individual components using the labeling technique.

The components of the image that could be separated by this algorithm for

the two objects used in the project are the:

(1) background

(2) outside edge

(3) overlapping edge

(4) inside area of the objects
(5) outside edge of any holes
(6) Inside area of any holes

Appendix F shows the individual components that were separated for one

particular overlapping objects image.

The background component is probably the easiest to distinguish; it has the
largest area and involves the most pixels. Any transition in this component marks
an edge pixel. Because of this feature, the background component is the ideal

candidate for the template matching stage.

44 Results and Conclusions RSD-TR-6-82

Ideally, we would like to get both the outside edge and the overlapping edge
all labeled with the same component number, and the ingide area of the two
objects labeled with different component numbers. However, since the
overlapping edge was never completely solid and connected in any of the images
after the edge detection stage, both objects became labeled as one object (with
one component number). Thus, one improvement in the system would be to have an
additional stage just before the labeling that somehow connects the overlapping
edge with itself and also with the outside edge. This will force each object to be

uniquely labeled (with different component numbers) and be clearly

distinguishable.

In any case, the inside area of the holes and the outside border of the holes

came out very well. In fact, in every image tested, the area of the internal hole

ended up to be approximately the same value.

The maln advantage of the labeling technique is its fast processing time.
During "optimal conditions" (a low number of system users) it takes about 15-20
seconds to process a 256x256 pixel binary image like those shown in Appendix E.
The algorithm is faster than the edge detection stage for two reasons. First,
Instead of having to process one pixel at a time, a whole group of pixels or
segments can be processed together. Second, whereas the edge detection stage
had to process all 2566x258 pixels, the labeling technique only needs to consider

those pixels that reside within the window created by the edge detection stage.

4.2.4. Feature Recognition Stage

The fourth stage in the recognition of overlapping objects is to scan through

the labeled images looking for certain characteristics or identifying features.

The feature that this algorithm concentrated on was the relatively large

circular hole in the center of the object. If the hole was not overlapped by

RSD-TR-6-82 Results and Conclusions 45

another object it could almost always be found. For example, of the images shown
in Appendix B, both holes could be located in pictures 2 and 4, one hole in picture
1, and nelther hole in picture 3. Thus, at present, the recognition is completely
dependent on the visibility of the holes. An obvious improvement would be to
develop a procedure to be able to recognize other features such as sharp corners

and smooth edges. This will considerably increase the flexibility of the system.

One limitation of this algorithm, however, is that if the objects are Eositioned
80 that they form a pseudohole, or a hole that is not realily there, the algorithm will
still think it is a hole (see Figure 13). This error could, however, be recognized in

the next stage when radial templates are compared and no suitable match is

found.

pseudohole

Figure 13 Formation of a Pseudo-hole

46 Results and Conclusions RSD-TR-6-82

4.2.5. Template Matching Stage

The fifth stage in the recognition of overlapping objects is to match the
radial template(s) calculated in the Training phase with the radial template(s)

calculated for every hole to determine the orlentation of the objects.

The results of this stage were very good. For every hole that was located in
the previous stage, the algorithm could determine the "best fit" orientation. For

the images shown in Appendix E, the "best fit" orientation was in fact the correct

orientation.

Note, however, that the entire template matching algorithm is completely
dependent on the visibility of the holes. Without them, there is simply no starting
place for the algorithm to run. The algorithm could be strengthened if more
features were detectable in the previous stage. This would alleviate the problem
of having to rely solely on the hole. —In addition, if other features such as sharp

comers could be found, they could also be located in the template to yield the

orientation.

In the case where two holes plus a pseudohole are found, the template
matching stage can easily eliminate the pseudohole. The pseudohole is simply the

hole whose ''best fit" orientation is weakest compared to the other two.

The time required for the template matching stage varied depending on the
degree increment by which the matching was done. The smaller the increment, the
more accurate the "best fit" orientation turned out to be. However, the algorithm
required a tradeoff between accuracy and time. An imaée where two holes were
found required 15-25 seconds to match with a one degree increment, and only
about 5-10 seconds with a three degree increment. In almost all cases,

increments of up to five degrees provided enough accuracy to find the "best fit”

orientation.

RSD-TR-6-82 Results and Conclusions 47

4.2.6. Objects Recognition and Reconstruction Stage

The sixth and last stage in the recognition of overlapping objects Is to make

the final recognition and reconstruct any hidden or overlapped edges.

For two overlapping objects, this stage in the system was very successful
provided both holes were accurately located in the previous stages. If they were,
the system could determine the position of the objects (x & y coordinates of the
center of the holes), and the orientation of the objects (number of degrees
rotated relative to the trained object), and identify which object was on top. If,
however, only one hole was located, only the position and orientation of that
particular object could be determined. No information about the other object could

be determined. If no holes were found, then nothing could be determined about

either object.

One possible solution in the case where one hole is found is to have the robot
pick up that object, and then run the algorithm over again starting from the image
acquisition stage. By removing the first object, the hole for the second object is
exposed and, thus, can be detected on the second try. The only problem Is that

we cannot tell if the first object was really on top or not.

4.3. Conclusion

The computer vision system presented in this report can determine the
position and orientation of two overlapping objects. First, the Training phase
teaches the computer to recognize the objects in all of their non-overlapping
stable states. Second, the image acquisition stage converts the analog image
obtained from a single T.V. camera into an 8-bit grey-scale image of the the
overlapping parts. Third, the edge detection stage converts the grey-scale image
into a binary image while locating as many edge pixels as possible. Fourth, the

labeling technique segments the binary image by labeling its various internal and

48 Results and Conclusions RSD-TR-6-82

external components. Fifth, the feature recognition stage searches the labeled
image for local features such as holes, and determines the position of their
corresponding objects. Sixth, the template matching stage computes a radial
template, compares it with templates generated in the Training phase, qnd
determines the orientation of the objects. And last, the objects recognition ;nd
reconstruction stage reconstructs the objects and determines which one is on top.
The only requirements are that the edge detection stage generate a 'good"
internal edge, the objects have some clearly distinguishable features such as
holes, and that at least one of these features be non- overlapped. For the obje;:ts
used in this project, the vision system was unable to recognize only those objects
whose internal hole was "hidden"; it could still recognize all the other objects.

However, to accurately determine which object is on top requires all of the holes to

be completely visible.

RSD-TR-6-82 Appendix 49

6. Appendix A: Objects Used

The objects used in this research project were identical, unsymmetrical,

metallic door lock parts shown below in actual size.

O

Objects Used in the Current Research.

These parts have many of the characteristic features found in other industrial
parts and are well suited for the bin-picking application. They have 4 sharp corners,
2 rounded corners, 1 straight edge, many curved edges, 1 circular hole, and 1 small

circular indentation.

60 Appendix RSD-TR-6-82

6. Appendix B: Equipment Used

The algorithms were developed and tested on a VAX 11/780 four mega-byte
Computer System and a Ramtek Graphic Display System, using the C-Programming

language, the Picture Processing System (PPS), and the Unix operating system.

A Hamamatsu T.V. camera, high-speed Analog/Digital converter, and a Conrac
analog monitor were used to take pictures of small industrlal components with
various degrees of overlap. For simplicity and ease of processing, each picture was

converted into a 256 x256 x8-bit grey-scale image using a single scan line.

The T.V. camera was mounted vertically just above the lighted work-base with

additional lights on each side. The complete system is shown below.

RAMTEK
N ‘ Display

To VAX — TV -
User <= Controller
Terminals 11/780 ALD ,
CONRAC BASE
Analog
To ¢ LSI Monitor
Robot Controller | |

RSD-TR-8-82 Appendix 61

7. Appendix C: Digitized images

This éppendix shows the digitized images of two overlapping objects before

any processing was performed.

62

Appendix

RSD-TR-6-82

Picture 1

63

Appendix

RSD-TR-6-82

icture 2

P

64

Appendix

RSD-TR-6-82

gty
s

e WL IIIIIIIN A

Picture 3

66

Appendix

RSD-TR-6-82

Picture 4

66 Appendix RSD-TR-6-82

8. Appendix D: Edge Detected Images

This appendix shows the processed images after the gradient calculation step

of the edge detection algorithm but before the noise elimination step.

RSD-TR-6-82

Appendix

&7

Picture 1

68

Appendix

RSD-TR-6-82

Picture 2

69

Appendix

RSD-~TR-6-82

Picture 3

60

Appendix

RSD-TR-6-82

Picture 4

RSD-TR-6~-82 Appendix 61

8. Appendix E: Noise Eliminated Images

This appendix shows the processed images after the gradient calculation step
{step 1), the noise elimination step (step 2), and the border creation step (step 3)

of the edge-detection stage.

62

Appendix

RSD-TR-6-82

Picture 1

RSD-TR-6-82

Appendix

63

Picture 2

64

Appendix

RSD-TR-8-82

Picture 3

RSD-TR-6-82

Appendix

65

Picture 4

66 Appendix RSD-TR-6-82

10. Appendix F: Labeled Images

This appendix shows the Individual parts of the objects after they have been

processed by the labeling stage.

RSD-TR-6-82

Appendix

67

68

Appendix

RSD-TR-6-82

RSD-TR-6-82

Appendix

69

70

Appendix

RSD-TR-6-82

RSD-TR-6-82

Appendix

71

72

Appendix

RSD-TR-6-82

RSD-TR-6-82

Appendix

73

74

Appendix

RSD-TR-6-82

RSD-TR-6-82

Appendix

76

76

Appendix

RSD-TR-6-82

RSD-TR-6-82 Appendix 77

11. Appendix G: Reconstructed images

This appendix shows the images after they are recognized and reconstructed.

78

References

RSD-TR-6-82

80

Refaerences RSD-TR-6-82

12. References

(1]

[2]

(3]

[4]

(6]

[6]

[7]

[8]

[e]

Agin, G. J. and Duda, R. O., "SRl Vision Research for Advanced Industrial

Automation,” Artificial Intelligence Center, Stanford Research Institute, Menlo
Park, CA.

Agin, G. J., "Basic Connectivity Analysis - DRAFT,” "Run Length Coding",
Artificial Intelligence Center, Stanford Research Institute, Menio Park, CA,
March 3, 1976.

Ballard, D. H., Brown, C. M., Feldman, J. A., "An Approach to Knowladge - Directed

Image Analysis," Computer Vision Systems, Academic Press, 1978.

‘Bolles, R. C., "Robust Feature Matching through Maximal Cliques,” Proc. SPIE

Technical Symposium on Image and Assembly, Washington, D.C. (April 1979).

Bolles, R. C., "Parts Acquisition using the SRI Vision Module," /EEE Computer
Society's Third International Computer Software and Applications Conference,

Chicago, lllinois, (6-8 November 1979).

Bolles, BR. C., "Locating Partially Visible Objects: The Local Feature Focus
Method,” SR! Technical Notes 223, Artificial Intelligence Center, SRI

International, Menlo Park, CA.

Birk, J., et al, General Methods to Enable Robots with Vision to Acquire, Orient,

and Transport Workpieces, Fourth Report, 8/15/77 to 7/16/78, University of

Rhode island.

Birk, J., et al, General Methods to Enable Robots with Vision to Acquire, Orient,

and Transport Workpieces, Sixth Report, August 1980, University of Rhode

Island.

Rosenfeld, A., "Picture Processing by Computer,” Computing Surveys, Vol. 1, No.

3, September, 1969.

RSD-TR-6~82 References 81

[10]Rosenfeld, A., "Progress in Picture Processing: 1969-71," Computing Surveys,
Vol. 5, No. 2, June, 1973.

[11]Shirai, Y., "Recognition of Real World Objects Using Edge Cue," Computer Vision

Systems, Academic Press, 1978.

[12] Szwed, M.; Himlin, R. W.; Goris, D. R.; Stockton, D. W.; "Robot Vision System
User's Guide,” Robotics Research Laboratory internal memo, Department of
Electrical and Computer Engineering, The University of Michigan, April 1981.

[13] Thompson, A. M., "Camera Geometry for Robot Vision," Robotics Age, March/April
1981.

AR T

3 9015

