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Abstract

We address the undiscounted nonhomogeneous Markov decision
process with average reward criterion and prove two structural results.
First, we establish equivalence of this problem to a discounted Markov
decision process by means of an ergodic coefficient embedded in the
original problem. Second, we prove, for the original problem, that the
optimal finite horizon average values converge to the infinite horizon
optimal average value under an ergodic condition.

1 Introduction

Many problems can be modeled as Markov decision processes, but are not
necessarily homogeneous. That is, rewards or transitions may be time de-
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pendent. Examples include R&D modelling (Nelson and Winter [1982]), ca-
pacity expansion (Freidenfelds [1981], Luss [1982]), equipment replacement
(Lohmann [1984]), and inventory control (Sobel [1971]). In some of these
applications average reward criteria are more appropriate than discounted
objectives.

In this paper we address the nonhomogeneous Markov decision pro-
cess with objective to maximize average reward. This analysis is complicated
by the fact that the average reward criterion is tail driven. That is, whatever
is done during any finite leading solution segment is irrelevant to the final
objective value. In many homogeneous problems this is not a concern since
the tail is an exact replica of the original problem. Such is not the case in
nonhomogeneous problems. To further complicate the issue, in nonhomoge-
neous problems we are often interested only in a leading strategy segment
since only it must be implemented now.

One approach is to transform the Markov decision process to an
equivalent discounted problem. To accomplish this we generalize results of
Ross [1968] that consider homogeneous problems, and develop a more efficient
transformation. We then adapt results from Alden and Smith [1992] that
were developed for finite state, discounted problems.

We also prove convergence of the finite horizon average optimal val-
ues to the infinite horizon average optimal value. This facilitates planning
or solution horizon approaches. Our goal is to establish the mathematical
framework necessary to create algorithms to solve these problems.

Section 2 introduces the notation and definitions necessary for our
discussion. In Section 3, we describe the relationship between three common
ergodic coefficients. Section 4 proves equivalence between the nonhomoge-
neous Markov decision process to maximize average reward, and a discounted
problem. In Section 5 we prove average optimal value convergence for the
nonhomogeneous Markov decision process. Section 6 summarizes the results
of this paper.

2 Notation and Definitions

We generalize the notation of Bean, Smith and Lasserre [1990] for undis-
counted nonhomogeneous Markov decision processes.



- We observe a process at time points k = 0,1,... to be in one of a
countable number of states ¢ = 1,2, .... The decision maker chooses a policy
in stage k, zx € X}, by selecting any actions, z}, from finite sets, X}, for
states ¢ = 1,2,.... An infinite horizon feasible strategy, z, is an infinite
sequence of policies. It resides in the set of feasible strategies, X.

A finite horizon strategy, z(k, N), is a sequence of policies from time
k through time N —1. Even though a finite horizon feasible strategy consists
of a finite number of policies, we require that z(k,N) € X by allocating
arbitrary policies before time k and after time N. Also, if k¥ = 0, denote
z(N) = z(0, N). We use an asterisk to represent the optimality of an action,
policy or strategy in the minimum class to which it belongs. For example,
¢*(N) is an N-horizon optimal strategy.

The set of all feasible strategies, X, is compact in the metric topology
presented in Bean, Smith and Lasserre. The metric, p, is defined

p(z,2) = 35 @y(z,2)2"") for all 7,7 € X,
k=01=1
and

i -\ 0, 1f Z;c = i.;c
Oilz,2) = { 1, otherwise.

Using this metric we define algorithmic optimality, first introduced
in Hopp, Bean and Smith [1987].

Definition Under this topology, an infinite horizon strategy, Z, is called
algorithmically optimal if, for some sequence of integers, {N,,}5_,,

z*(N,) — & in p-metric as m — oo.

If we take action z! in state ¢ at time k, then, independent of past
actions, two things happen:

1. we gain a reward ri(z}). The vector of such rewards is Ri(zy).
2. we transit to states, j, at time k + 1 according to the probability tran-

sition matrix {p}(z})} = Py(zx).

Note that both the rewards and transition probabilities may be stage depen-
dent. '



The basis for many optimality criteria is the finite horizon reward
function. Given an infinite horizon strategy, z, and a one period discount fac-
tor, 0 < a < 1, the expected net present value of the total rewards from time
k to time N, N > k, at the beginning of stage k, is written Vi(z; N). Note
that in evaluating Vi(z; N), the first & policies of z are ignored. Let Vi(z; N)
map into R with the i** element given by Vi(z; N) which represents the
expected net present profit from state 7 in stage k through stage N under
strategy z. Note that Vi(z*(N); N) = Vi (z*(k,N); N) forall k =0,1,... by
the principle of optimality.

The value function from stage k to stage N, which is written:

Vi N) = Z o T} () Ra(22),

where
n—1
THz) = [[Plx), n>k>0
=k
TP/ (z) = I, n<k.
Throughout the paper we make the following assumptions:
Assumptions

1. the state space, I, is countable.

2. the number of decisions available is finite for all states, i.e.,
|Xi] < oo, for all i and k
where |A| is the cardinality of set A.

3. rewards are uniformly bounded for all states and decisions, i.e., for
some R < oo,

Iri(zi)| <R, foralli €I, k=0,1,... and z} € Xi.

4. From each state, 7, at stage k, under strategy z, the set of reachable
states, {j|p{(zt) > 0}, is finite. That is, only a finite set of states is
reachable in one transition from any state, under any action. Further,
max{j|p{ (%) > 0} is uniformly bounded over z} € X} for each stage,
k. '



In the infinite horizon problem, with discount factor o, 0 < a <1,
define z* to be an a-optimal strategy if

Vo(z*) 2 Vo(z), for all z € X,

where

Vo(e) = lim Vo(z; N).

This definition is valid if the limit exists. By Assumption 3 it exists whenever
a < 1. However, the primary interest of this paper is the case & = 1. In this
case 1t is possible that Vo(z; N) diverges with N. Then we define z* to be
average optimal if
.. Vo(z;N . . Vo(z; N
hmme > liminf o(; V)

N—oo N—oo

, for all z € X.

Assumption 3 implies that the liminf is always finite.

3 Weak Ergodicity

In this section, we formally define weak ergodicity and the corresponding
ergodic coefficients.

Let

Pn,N(m) = POPn(xn)Pn+1($n+1) e PN—I(xN—l)a

where P is a starting vector (initial distribution). Let Q, y(z) be the same
forward product with starting vector Qq. If P = (p;) is a vector, we define
the norm of P to be

IP) = f: i

If P = (pi;) is a square matrix, we define the norm of P to be

1] = sup 3" [pyl

1 J=1

Definition A nonhomogeneous Markov decision process is called weakly er-
godic if and only if, for all n,

lim sup ||P, n(z) — Qun(z)|| =0 forall z € X,

N—oo p; 0,



and is called strongly ergodic if and only if there exists a vector ¢(z) =
(¢1(2), g2(2),...), with ||¢(z)|| = 1 and ¢;(z) > 0 for all ¢ = 1,2,... such that
for all n _

]\}I_IEO sup |Pan(z) —q(z)|| = 0 for all z € X.

That is, a nonhomogeneous Markov decision process is weakly er-

godic if and only if it eventually loses memory of the starting vector. For a
~ problem to be strongly ergodic, the process not only must lose memory, but
also converge to a fixed probability vector.

It is often difficult to determine if any specific problem satisfies these
definitions. To facilitate the identification of weak ergodicity, we define sev-

eral ergodic coefficients: the Ross coeflicient (ag), the Doeblin coefficient
(8), and the Hajnal coefficient (7).

Definition Ergodic Coefficients:

o Ross coefficient:
ao = sup sup ao(Pr(zy)),
k rreXi

where ag(Py(z4)) = 1 — sup; inf; pi (zx).

e Doeblin coefficient:

B =sup sup B(Pi(zi)),
k zpeXi

where B(Pi(zy)) =1 — Y%, inf; i (z4).

e Hajnal coeflicient:

v =sup sup y(Pi(zx)),
k zi€X)

where y(Py(z4)) = 1 = infi, i, £32, min(p” (z¢), pi’ (zx))-

We call ag the Ross coefficient since the homogeneous version was
used in Ross [1968]. For the nonhomogeneous case, Hopp, Bean, and Smith
use this coefficient to prove the average optimality of an algorithmically op-
timal strategy. Alden and Smith use the Doeblin coefficient to show that
the error between a rolling horizon strategy and a discounted optimal strat-
egy goes to zero when f < 1. The Hajnal coefficient was first introduced
by Dobrushin [1956], followed by several papers and books such as Hajnal



[1958], Paz [1963] and Paz [1971]). For applications of this coefficient, see
Hopp [1989).

The following lemma describes the relationship between the coeffi-
cients and the property of weak ergodicity. The proofs are straight forward
and omitted.

Lemma 1 a) ao <1 if and only if B < 1.
b) aOZﬂ.
¢) If 3<1 theny < 1.

d) if any of ap < 1, B < 1, or v < 1, then the nonhomogeneous
Markov decision process is weakly ergodic.

Even though we know from Lemma 1 that the Hajnal condition
(v < 1) is the weakest of the three implying weak ergodicity, we will use the
Doeblin coefficient to show many of the results in Section 4. The advantage
of the Doeblin coefficient is that we can transform the undiscounted Markov
decision process into an equivalent discounted Markov decision process by
exploiting 8 as a discount factor. We can also transform using ao, but since
ap > 3, the Doeblin coefficient can lead to faster convergence when we solve
the equivalent discounted problem.

4 A Discounted Equivalent Problem

The traditional transformation from a nonhomogeneous problem to a homo-
geneous problem defines states in the homogeneous problem as a (time, state)
pair. If the original problem has a countable number of states, then so does
the transformed problem. However, even if the nonhomogeneous problem
satisfies the conditions for weak ergodicity in Lemma 1, the transformed, ho-
mogeneous problem may not. For example, begin with a finite state problem
where transitions in an even numbered stage occur with transition proba-
bility matrix P,,e, and in odd numbered stages follow P,4;. An equivalent
homogeneous problem would have transition matrix

0 P,. 0O O
P=|0 0 Py 0



Since each of the columns of P contains predominantly zeroes, none of the
sufficient ergodic conditions, of which we are aware, are satisfied (see Feder-

gruen and Tijms [1978]).

We now present an improved transformation that preserves the Doe-
blin condition for weak ergodicity. Alden and Smith proved the finite state
version of the following theorem. The extension to the countable state case
is straight forward and omitted.

Theorem 1 Every one step probability transition matriz can be expressed
as a conver combination of another stochastic matriz and a stable matriz
(stochastic matriz with identical rows), using the ergodic coefficient B as a
multiplier. That is, for all k and all 2 € X,

Pi(zi) = BPi(ar) + (1 - B) L,

where Py(z) is a stochastic matriz, Ly, is a stable matriz independent of zy,
and 0 < B <1.

Solving for Py(zx) in the case 8 > 0 we have

o = 2 =B

k, for each k, and for each zy.

Let (P) be the original problem defined in Section 2. Based on
the above theorem, define another class of nonhomogeneous Markov decision

~

processes, (P).

(13) The B-discounted nonhomogeneous Markov decision process with prob-
ability transition matrix Py(zx), reward Ry(zy), value function Vi (),

infinite horizon optimal strategies * and finite horizon optimal strate-
gies 2*(k, N).

We transform the original undiscounted nonhomogeneous Markov
decision process, (P), into the S-discounted nonhomogeneous Markov deci-
sion process, (13), using the ergodic coeflicient 3. This generalizes an ap-
proach by Ross since it considers nonhomogeneous problems and uses the
more efficient Doeblin coefficient. The following lemma shows that the fi-
nite horizon optimal value of (P) can be obtained from (P) and the set of
finite optimal solutions of (P) is equal to that of (P). It generalizes a result

8



in Alden and Smith from finite states to countable states. It is similar in
structure to the result in Alden and Smith, but the Lemma below expresses
Vi(z*(k, N); N) in terms of V whereas the earlier paper expresses it in terms
of V and V. We denote an element of the matrix Ly as LY. However, since
Ly is stable, L} is independent of i.

Lemma 2 Under the condition that § < 1, we can represent the finite hori-
zon optimal value of (P) as a function of the finite horizon optimal value of

(P), i.e.,

Vila" (kW) N) = Vi (b M) N) 4 (1= B) 3 S LT (1, N V),

I=k+1 3=1

for all states, i; k=0,...,N — 1.

Moreover, the finite horizon optimal strategy set of (P) is equal to that of
(P), i.e.,
z*(k,N)=z*(k,N), forallk=0,...,N —1.

Proof Let Vi(N) = Vi(z*(N); N) = Vi(z*(k, N); N).

We will prove the result by induction on k. For k = N —1,

Vi-1(NV) = max{ry_,(z_,)} = Va_,(NV), thus &*(N=1,N) = 2" (N1, N).

Th-1

Now fix £ in 0 < k < N — 2 and assume that the result holds from period
k+ 1. If 8 =0 then the result holds as above. If 3 > 0 then,

V,:(N) = max{r,c z} +ﬂZ"UVk{H (N)}

= maxired) + 65 | C B vy
= max{ri(z}) + Y. 2 2 (V) - (1= B) S0 LV (V)

Tk

<
1]
—
.
1
—

:Z
'MS

= max{ri(z}

1]
Tk

(1-5)

ij xk [ijﬂ(N) -

<
1]
—

M=
Mg

~
3
lL

VN - (1 -8 ZL”VEH (N)}

Jj=1

-



o . N o
= max{ri(e}) + Lo GV (N} - (1= 8) 3= S L,V (N)

Jj=1 I=k+1 3=1

N e .. ~ .
= Vi(N)-(1-8) X Y LLV/(N),
I=k+13=1
since L{Tl = Li™ for all 7, §, which is the desired result. Also from the second
to last equation, we can see the equivalence of the solution set, since the last
term of that equation is independent of zi. m

The above lemma is interesting since both the finite horizon opti-
mal solution and value of an original undiscounted nonhomogeneous Markov
decision process problem, (P), can be obtained by solving the §-discounted
nonhomogeneous Markov decision process problem, (P).

Now, we prove the main theorem of this section.

Theorem 2 Under Assumptions 1 through 4 and the condition that B < 1,
any algorithmically optimal strategy for (P) is an average optimal strategy

for (P).

Proof From Lemma 2, any algorithmically optimal strategy of (P) is an
algorithmically optimal strategy of (P). Bean, Smith and Lasserre, Theo-
rem 5, shows that an algorithmically optimal solution is an average optimal
solution under these hypotheses. Hence, the result follows. =

Now a traditional transformation to a discounted, homogeneous prob-
lem can be carried out.

5 Average Value Convergence

In a direct forecast horizon approach to the nonhomogeneous Markov decision
process we seek to find the optimal policy for the first stage since we must
implement that policy now. We proceed, as in Bean, Smith and Lasserre, by
truncating the infinite horizon problem at some finite horizon. We then solve
the finite horizon problem and test to see if the policy for the first stage is
optimal for the infinite horizon problem.

Such approaches require convergence of the finite horizon optimal
values to the infinite horizon optimal value. See the Appendix of Hopp,
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Bean and Smith for an example where this property fails. This convergence
implies that the average value obtained by solving a sufficiently long finite
horizon problem is within any chosen ¢ of the infinite horizon average op-
timal value. Average optimal value convergence justifies the truncation of
an infinite horizon problem to a sufficiently long finite horizon problem; an
approach commonly used for real world problems.

In this section, we establish conditions under which we can prove
that optimal average values converge. If & < 1 the question is trivial. Below
we assume that o = 1.

Mathematically, average optimal value convergence is

liminf Yo(a"(N); N) — liminf Yo(z"N)

im in N im in N for all : € I.

We begin with a technical lemma and then prove the main theorem.

Lemma 3 Let z be an algorithmically optimal strategy so that for some
{Nm}2_y, ©*(Nm) — &. Then, under Assumptions I through 4 and the

m=1"

condition that B < 1, for any times, k < N, and state, 1, Vi(z*(N);N) -
Vi(#;N) < 2R/(1 - B).

Proof By Assumption 4 and the definition of the p metric, for m sufficiently
large, & and z*(N,,) agree in action for all states, j, and for all times through
N. Hence,

V(2™ (Nm); Nm) = Vi(3; N) + lev(i')VN(x*(Nm); Nn). (1)

Define & as the concatenation of policies from z*(N) for times 0 to N witk:
policies from z*(N,,) for N and beyond. Then

Vi(@; Nim) = Vi2*(N); N) + T (2*(N)) V(@™ (N Now)- (2)

Subtracting (2) from (1) and recognizing the superiority of z*(/N,,) to  over
the horizon N,, we get

0 < Vi(&; N) = Vi(@™(N); N) + [T} (2) = T (2" (N))]Vw (2™ (Nm); Nm), (3)

where 0 is a vector of zeroes. The last term in (3) is equal to

Nm -1

;V oI (&) = T (2" (N))[ TR (2" (Nm)) Ba(2" (Nrm) ).

By Lemma 4 of Bean, Smith and Lasserre this is bounded above by 2R/(1 — 8).
Hence, the result follows. = '
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Theorem 3 Under the Assumptions 1 through 4 and the condition that B <
1, the optimal values of the finite horizon problems converge to the optimal
value of the infinite horizon problem, that is,

Vo(z* V)

V@ NN)

Proof Let & be any algorithmically optimal strategy. The existence of such
a strategy is proved in Theorem 1 of Bean, Smith and Lasserre. For any
given N, by Lemma 3,

Vo (a*(N); N) = V5 (& N) < 5

Dividing by N and taking the liminf gives
Vs (z*(N); N) Vs (& N)

. 0 R T 0
llNrriloIéf N = h]\l}—]-}o%f — N N

By Theorem 5 of Bean, Smith and Lasserre
Vi(%; N) Vi(z*; N)

.. 0 I L 0
lﬁlgf N —thrlloréf — N

Hence, the result follows. =

Theorem 3 suggests a conceptual, tail value algorithm similar to that
in Bes and Lasserre [1986] for the discounted problem.

1. Choose € > 0 and, by Theorem 3, choose N such that the average value
of the finite horizon optimum is guaranteed to be within € of the infinite
horizon optimal average value.

2. Find all strategies with finite horizon average value within 2e¢ of the
optimal finite horizon value. By Theorem 3, no strategy outside of this
set can be optimal. If all strategies in the set begin with the same
policy at time 0, it must be optimal to the infinite horizon problem.
Else, decrease € and go to Step 1.

6 Summary

This paper presents several structural results for an infinite state nonhomo-
geneous Markov decision process with average reward criterion. First, under

12



the Doeblin condition, the problem is shown to be equivalent to a discounted
problem. Under the same condition, we show that the optimal finite horizon
optimal average values converge to the infinite horizon optimal average value.
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