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A general treatment of the input boundary value problem for two-dimensional space-charge flow is
developed using a theory of electrostatics (Thomson’s) which notes that in an electrostatic problem the
electric field distribution is such that the electrostatic-field energy is a minimum. This principle is used
to determine the average energy density mismatch and the starting conditions for finite thickness beams
in M-type backward-wave oscillators. It is shown that the mismatch is greatest for strong space-charge
fields, high-circuit attenuation, and signal frequencies below the cyclotron frequency. The starting length
and beam velocity are greater as calculated by the variational procedure than obtained by the approximate
method. Under certain conditions the average energy density mismatch is greater than 209, of the electro-

static field energy in the absence of the beam.

INTRODUCTION

ANY authors'™® have analyzed a system of
space-charge flow in a crossed-field environment
between planar electrodes. The procedure is to solve
the eigenvalue problem defined by the transverse
boundary conditions applied to a simultaneous solution
of the circuit, Poisson, and Lorentz equations for the
system. The eigenvalues of the secular equation are the
propagation constants for the waves in the system. The
total wave system is made up of three near-synchronous
waves and two cyclotron waves. It has been shown that
under conditions in which the near-synchronous waves
are of interest the cyclotron waves are excited to a
negligible extent. This reduces the system to a three-
wave system and thus considerably simplifies the
treatment of the input boundary value problem.

The subject and main thesis of this paper is a
treatment of the energy mismatch at the input boundary
and subsequent excitation of cutoff waves in a planar
M-type space-charge flow. The treatment is particularly
applied to a consideration of the effect of this mismatch
on the starting conditions in an M-type backward-wave
oscillator (M-BWO). The method is a general one and
can be applied to other flow systems, such as E type.

Most of the authors cited have handled the input
boundary value problem and the calculation of the
excited wave amplitudes by matching the boundary
conditions at just one or two levels of the flow at the
input boundary. In all two-dimensional space-charge
flows in which the velocity may vary across the flow,
this is obviously an approximate treatment. Particularly
in thick-beam devices (the term “thick beam?” is here
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used to indicate that the beam occupies an appreciable
fraction of the interaction width and, hence, there may
be an appreciable variation of velocity across the beam
in a two-dimensional flow), this energy density mis-
match can lead to erroneous calculations of starting
current. Hershenov® has used a fundamental theorem of
electrostatics” (Thomson’s theorem) to justify the
minimization of the energy in the cutoff waves, because
in an electrostatic problem the electric field distribution
is such that the electrostatic-field energy is a minimum.
He applied this treatment to the M-type slipping
stream flow in an amplifier, wherein a field analysis was
used. The justification for using this theorem of elec-
trostatics in treating cutoff waves is that the wave
equation may be replaced by Laplace’s equation when
the region being considered is small compared to a
wavelength and, hence, retardation terms may be
neglected.

This study considers the energy mismatch and exci-
tation of cutoff waves in an M-type flow interaction
with a backward circuit wave. The method of analysis
utilizes the equivalent circuit approach of Dombrowski*
to obtain the eigenvalues of the system, and then the
excited wave amplitudes for the near-synchronous waves
are calculated using the minimum-energy method. A
comparison of calculated starting current is made using
both this method and the simpler treatment of the
input boundary value problem. A variational method
for minimizing the excitation of cutoff waves is devel-
oped quite generally and may readily be applied to
other two-dimensional space-charge flow systems, such
as that used in single-transit electrostatically focused
systems.

NEAR-SYNCHRONOUS WAVE DISPERSION EQUATION

A general solution of the eigenvalue problem defined
by the flow system considered and the usual boundary
conditions gives rise to a fifth-order dispersion equation.
Three of these waves are called the near-synchronous
waves and the other two are the cyclotron waves.
Dombrowski studied this composite system by applying

7J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book
Company, Inc., New York, 1941), p. 114.
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five boundary conditions at the input and calculated
the amplitudes of the five waves excited. As boundary
conditions he matched the two velocity components and
the y displacement at the center of the stream, and the
two electric field intensity components at the anode.
As a result he found that both cyclotron waves were
excited to a negligible extent and, hence, the third-
order near-synchronous dispersion equation could be
used with excellent results. Dombrowski’s method of
derivation was essentially an equivalent circuit method
as opposed to Gould’s admittance matching technique.
Other differences occurred in the treatment of the input
boundary value problem and other details of the
analysis, but the results for the near-synchronous wave
dispersion equation were the same.

The form of the dispersion equation used in studying
the excitation of near-synchronous and cutoff waves in
the assumed planar magnetron space-charge flow is
given below. The equation has been generalized from
Dombrowski’s to include the effects of circuit loss and
the conventional §,=x.+ jy. has been used for the
complex propagation constants of the system.

5 j[Zr@:)Jr(bﬂd)]az

-—[r2+2r(b+jd)< )—1]5+j(b+jd)r2=0, )

H+1

where H = tanh jT'(ys— ys)/tanh T (v,—v,), beam posi-
tion parameter, d=the circuit loss parameter, b=in-
jection velocity parameter, and r=s,/D;, the space-
charge parameter defined as the ratio of the velocity
spread in the beam to the interaction parameter. This
is a third-order equation and the roots for a given set
of H, r, d, and b are the perturbation propagation
constants for the near-synchronous waves in the system.
This equation is for the M-type backward-wave oscil-
lator and will be used later in the analysis.

The space-charge parameter, S, of Gould is related
to the » used here, and in fact for a Brillouin flow
(wp=wc) they are equal. The minimum-energy method
will be used to calculate the amplitudes of the near-
synchronous waves excited as well as the cutoff waves,
and the energy density associated with the mismatch
will be determined. '

E. ROWE AND R. Y. LEE

ENERGY MISMATCH EQUATIONS

It was pointed out above that a more satisfactory
procedure for handling the input boundary value
problem has been developed by Hershenov® in his
small-signal field analysis of the magnetron amplifier.
If only propagating modes are considered at the input
boundary plane, then there will be a mismatch present,
which is accounted for by an infinite spectrum of non-
propagating or cutoff modes. The cutoff waves are
accounted for by minimizing the energy density asso-
ciated with the mismatch in the presence of the stream.
This technique is based on the application of Thomson’s’
theorem, which states that in an electrostatic problem
the electric field distribution is such that the electro-
static field energy is a minimum. The presence of the
electron stream between the rf structure and the sole
electrode perturbs the boundary conditions and a vari-
ational procedure is used to calculate the excited wave
amplitudes with a minimization of the energy density
associated with the cutoff waves. This minimization
amounts to minimizing the mean-square mismatch
across the stream boundary at 2=0.

In the study to be made here the variational tech-
nique is to be applied, using a circuit type of analysis,
to the study of the energy mismatch and the effect of
cutoff waves in planar M-type backward-wave oscil-
lators as one special case of a two-dimensional flow
system. This procedure is particularly useful when
there is a wide velocity variation across the transverse
dimension of the electron beam so that the energy
mismatch is considerable. The geometry to be studied
is illustrated along with defined symbols in Fig. 1. The
analysis will be applied to a consideration of near-
synchronous waves and the effect of cyclotron waves
will be neglected. In very thick beams the cyclotron
waves can account for a considerable gain. The varia-
tional method used here can also be applied in a study
of cyclotron wave excitation.

The usual assumptions are made in this small-signal
analysis and in particular the potential along the rf
structure is assumed to exhibit the following spatial and
time dependence:

N
V(yz,t)=V®+Re 3 V2V, &, exp(jwi—T.2), (2)

n=1

where V, is independent of any space dimension and
®, is a function of y. Based on the above assumption,
the electric field quantities exhibit the following de-
pendence:

Ezn=q>nPnVn; (3)
Eyn=—V(8%,/3y). (4)
The propagation constant I',= jB,(1— jD;5,), where

the 8, are obtained from solutions of the dispersion
equation for near-synchronous waves. The interaction
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parameter is defined by

where
—sinh 72TV (§—v;)

2 sinh?[ T (ya—3.)]

The potential function in the regions between the sole
and the lower beam edge and between the upper beam
edge and the rf structure is found from the solutions to
Laplace’s equation and is conveniently written as

®(y)=A exp(jTy)+ B exp(— jT»y),
for > y>v5.  (5)

Below the stream

®,=F sinhjF,,(y—v,), (6)

The sole is considered to be a smooth, perfectly con-
ducting surface and its potential is zero. Thus

@, (y=7y:)=0. 0]

In general, the potential function within the stream
may be conveniently expressed in terms of a power
series solution as follows:

for y,2y>y,.

®(y) C(1+£2+554+ )
N= T

2

g 11
+D£2<1+—2—+Z)£4+ <o ), for yos>2y2>79., (8)

where Eﬂé (w/we)+ 5T wy.

The constants 4, B, C, D, and F in Egs. (5) through
(8) are yet to be determined from the transverse
boundary conditions on ®,(y) at the sole, anode, and
beam boundaries. Usually |D|<|C| and hence the
potential function within the stream is adequately
represented by the truncated series

®(y)=Ct for yp2>y>ya. 9)

The potential function is normalized to unity at the
anode, y=14,, assuming it to be an impedance sheet
propagating a slow wave. For thicker streams additional
terms in the power series must be retained. Thus from

Eq. (5)

A=[exp(jTnya)+(B/A) exp(— jTya) . (10)
The constant in Eq. (8) is found to be
. Ebn Ean -t
C= {fan[COSh]Fn(yd—yb)]}~l<““+H_) (11)
an bn

where H= tanh T n(ya—ys) /tanhjTw(ya—7ys), defining

AND CUTOFF WAVES 187

the beam position. It is convenient to define

T2 [cosh T, (ya—vs) 1 4+H (£an/ Eon)? T
_ exp (7T ays)+ (B/A) exp(— jT ys)

- (12)
exp(jTwya)+(B/A4) exp(— jTxya)
and X -—T( - )]‘T
5 (B/a)= 2T O] T
T—exp[ il (ya— )]
Xexp(24T.yq). (13)

The potential functions within the beam and in the
region between the beam and the anode are now written

as
. (y)=(£2/E0n)Tny fOr 4292790 (14)
and ' ]
exp(jTxy) +S» exp(— jT )
n y = . . ’
exp(JTnya)+Sn exp(— jTnya)
for ya=y 2>y (15)

The potential function is now matched at the lower
beam boundary, y=7y,, using Egs. (6) and (14):

Ta

Epn sinhjT, (Ya— s
and thus ’ TTnlye=3e)

£an sinhjT.(y—ys)
‘i’n(}’)z Ti— T T T

o (10
) fbn smh]Pn(ya_ys)

for ya>y2y..

The electric field components of interest in all three
regions may now be obtained based on the assumed
space-time dependence given in Eq. (2). The following
definition is made:

EnéPnVnzrnVn(bn(yd)' (17)

The field components are thus
expjT.y+S. exp(— jT.y)

En(y)=Ei—; ; (18)
expjTnya+Sr exp(— jTya)
_expjTy—S. exp(— jTry)

Eyn(}’)= —']En ; N (19)

expjTaya+Sn exp(— T ya)
for dey?_yb,
EIL
Ezn(y): E.T,— (20)
bn
e for Y2923,
Eyn(y)=—jE;— (21)
bn
£an sinhjT.(y—ys)
Ezn(y):EnTn_ (22)

Ebn sinh JT o (ya—¥s)
’ o , for yaayZys.

. Ean coshjTn(y—y.)

Ep(y)=—jELi— — (23)

£pn SInh T n (32— ys)
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The component velocities #., and u,, of the beam
are obtained from a consideration of the Lorentz force
equations in the beam, assuming linear perturbations
on the average quantities. Since the y component of
velocity depends upon the derivative of the potential
function with respect to v, and the z component depends
directly on the potential function, it is necessary to
retain a second-order term in the potential function
when dealing with #,, and only a first-order term when
obtaining #... The velocity components are easily
shown to be

_WFnan)n(y) — Ty

Uon= - - (24)
Jwckn Jwckbn
and
nVa aan(y) ch'n‘Pn(y) nE T nén
= [ T ]= . (25)
]chn 3}' ]wcsn wcfbn

The component electric fields present in the region
between sole and anode in the absence of the beam are
obtained as follows:

®(y)=asinhjT’(y—y.), (26)
where I” is the cold-circuit propagation constant for
the field component of interest. The potential function
is again normalized to unity at the anode and hence

sinh TV (y—v,)
By)=—— - @
sinh 717 (y4—ys)

The electric field components are obtained in a manner
similar to that used when the beam is present. Define
E=T'V. The y and z components of electric field are
then

__coshyI"(y—y,)

E,(y)=—jE (28)
! sinh T’ (ya—y,)
and
sinh T (y—y,)
Es(y)=F—— 2 (29)

sinhjT’ (ya—v2)
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The procedure to be applied in computing the excited
wave amplitudes was outlined above and amounts to
a minimization of the energy density associated with
the mismatch in the presence of the beam. The average
energy density associated with the mismatch is written
using the field expressions as

€0 *Yd

3 3
{l Z Ezn_Ezltz"}‘l Z Eun—Ey‘2

n=1 n=1

S
Z(yd—ys) Us

—%[{uml“rlum“’]}dy, (30)

where the dc space-charge density po is given by
pO= (Wc250//’7>'

In Eq. (30) E, and E, are the fields existing in the
absence of the beam. In order to minimize the energy
mismatch §W is formed and E, and E.* are adjusted
independently so that éW=0. The result of these
variations of E, and E,.* is

n=1 n=1

€ Ya 3 3
Wm0 / a[(z Fa—E)(Y Eo—E#)
Z(yd“yé‘) Ys

(Y By EN(E Epi~E)

n=1 n=1

2

@,
+-2—(uznuzn*+uynuyn*):ldy- (31)
7

The final result for calculating the excited wave
amplitudes is expressed in matrix form as

Ay Aa An E, D*
Ay Ags Asell X | Esll = Eo || D2*|], (32)
Ay Aay Ass N Dy*

where F£,=the total applied circuit field amplitude,
The matrix elements are given by the following ex-
pressions :

_ 2explj(Tn—T'n*)ya]—exp[j(Tn—=Tn*)y5]— SnSn* exp[— j(L'n=Tn*)ya]+SuSn* exp[— j(T'a—T'w*)ys ]}

nm

JT 2= Tw)[exp (ST 2ya) +Sn exp(— jTnya) JLexp(— T m*ya) +S* exp (FTw*ya) J(va— ¥s)

TnTm* 2 —Va j e. rn_ rm* 2 — a2 Pnrm*
parr [(g) _H](yb y )+J(w/w )( ) (= )+ 38
Ebngbm We Va—Ys/~ Z(yd_ys) S(yd—ys)
2 TnTm*Eangam* Sinhj(rﬂ— Fm*) (yll— ys)
+ : : . (33)
Eonkom” J(Ta=Tn*) (ya—ys)[coshj(ya—ys) (Tr—Tm*)~ coshj(ya—ys) (TatTw*)]
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expl j(Ta—I"™*)357FT"*y. ]~ exp[j (= T"*) 3o+ jT"*y. ]+ S n exp—[§ (T n—T"*)ya+ 1", ]

—Snexp—[j(Ta=T"*)yp+T"*y,]

D,= ; X . .
J(Ta=T"*)[sinh—~ jT"*(ya—v:) JLexp (§Tnya) +Sx exp(— JT3a) J(ya— )
. T, {w [cosh— jT"*(yp—~y,)— cosh— jT"*(y,— y,)]
3 .
Epn sinh— jT"*(y,—v,) lw, — T (ya—ys)

| JTaLys cosh— jT™ (95— y:) = ya cosh— jT"* (ys—y,) ] jTaLsinh— jI"™* (yp—y:) ~sinh— T (ya—.) ]
L T

— JT"*(ya—ys)
, sinh—jT"™*(y,—y,)—sinh— jT"*(ya—y.) }
1
— T (ya—~y.)

I (ya—ys)

2Tﬂ£t;n sinh j(I',—T"*) (ya"' ¥s)

41

" fn (T2 —=T"*) (ya— y:) {cosh j[ (Ya— ¥ )Tu~T"* (34— 3,) I~ cosh jT (ya— ¥ )T+ T"* (ya—3.) ]}

In order to facilitate the calculation of parameters
for the dispersion equation and the matrix elements,
the following definitions of variables are made. Quan-
tities are normalized with respect to the interaction
width, (ya—y.), as the space-charge flow may originate
from a cathode located below the plane of the sole, i.e.,

Y<Ye.

aéya/(yd—ys)’ (35)
8= e/ (ya—ys), (36)
V=ya/ (ya—3.). @37)

The wave propagation constant jI', and the inter-
action parameters may now be written in terms of «,
8, and ¢ as

w\/ 2 \(1—jDs,)
Tp=—(—)}{ — }———, 38)
I (w)(a-l—ﬁ) (ya—s) (
Sinh{z_w Q2+a+B8— @]
D2_B—a w, (atB) (39)
" B+ sinh[ (dw/w)(@+8)1]
r=D[(B—a)/(B+a)], (40)

and

H=tanh[i—i ZJ:ZH / tanh[%:—z %)i)] (a1)

The following terms £,n, £sn, Ty and S, are involved
in the calculation of the matrix elements:

w  w 20

Sanz’_'_—"(l_jDian)_‘—: (42)
We We a+8
W W 28

Ebnz_"“(l—jDian)_“‘v (43)
We W, a+p

(34)

20 v—3 £an\* )"
T.= lcosh[»-(l—‘jDiﬁn)w:I[1+H<-~> ]’ ,
W, a+6 Ebn
(44)
and
2 a—ipeyt =1
J exp[';): J4/4 ")a_‘_ﬁ] n
S"= l
L

- 2w y—3
T,,—exp[ 1—- jDian)_‘"_]
+8

W, o

Xexp[ (1— jDiﬁn)'L]- (43)
at+B

We

Equations (42)—(45) are for n=1,2,3. The matrix
elements are now calculated for n=1,2,3; m=1,2,3
where A ,n= A m*.

A solution of the matrix expression, Eq. (32), gives
the electric field amplitudes of the excited waves which
are related to the wave voltage amplitudes as follows:

, (46)

Ve (1-jDs%.] E.
where d=injection velocity parameter, and d=circuit
wave loss parameter.

Once the excited wave amplitudes for a minimum-
energy mismatch for a given beam configuration and
amount of space charge have been calculated, the effect
on the starting current of a magnetron backward-wave
oscillator may be found by determining the point along
the anode rf structure at which the total rf wave ampli-
tude becomes zero. The propagation of electromagnetic
waves along the anode is given by

=exp| —j— — exp(—#6d.,),
- p ]D & P

i/ =1V,

(47)

a
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TasLE 1. Energy mismatch and M-BWO starting conditions for finite-thickness streams (d=0).

Approximate match Variational procedure
H r w/we b DiN W/ («F2/2) b D:N W/ (eF2/2)
1 0.1 2 0 0.249 0.199 10~ 0.0099 0.250 0.199X10*
1 0.3 2 0 0.247 0.179X1073 0.0232 0.250 0.178X10*
1 0.5 2 0 0.242 0.494X 1073 0.0148 0.249 0.493X10-3
1 1.0 2 0 0.225 0.458 X101 —0.2540 0.245 0.212X1072
1 0.1 1 0 0.249 0.104X 102 0.0796 0.250 0.103X102
1 0.3 1 0 0.247 0.936X102 0.1964 0.255 0.880X10~2
1 0.5 1 0 0.242 0.260X107* 0.1786 0.265 0.240X 107
1 0.1 0.5 0 0.249 0.853X102 0.1807 0.249 0.821 X102
1 0.3 0.5 0 0.247 0.769%X 1071 0.4423 0.252 0.594X 1071
1 0.5 0.5 0 0.242 0.210 0.3244 0.271 0.155
0.5 0.1 2 —0.067 0.249 0.103107* 0.7056 0.239 0.927% 102
0.5 0.5 2 —0.323 0.242 0.765X 101 0.8825 0.259 0.435x107!
0.5 1 2 —0.607 0.226 0.115 —1.079 0.303 0.163
0.5 0.1 1 —0.067 0.249 0.167X 101 0.4150 0.246 0.154x 107
0.5 0.5 1 —0.323 0.242 0.203 0.7110 0.265 0.978 X101
0.5 0.1 0.5 —~0.067 0.249 0.423X 101 0.3390 0.246 0.375% 101
0.3 0.5 0.5 -0.323 0.242 0.853 0.5190 0.266 0.272
2 3 1 1.513 0.165 0.492X 103 7.21 0.162 0.291X10-3
2 4 1 1.921 0.145 0.280X10~2 8.52 0.134 0.166X103
2 5 1 232 0.129 0.192X102 9.65 0.114 0.116 X103
where 62 22D;N,. An oscillation will exist, i.e., the excited wave amplitudes:
right-hand side of Eq. (47) will be zero, for some com-
bination of b and 6 for a given set of H, 7, and d. 1 1 1 Va Va
Sai—1 Sepi—1 Sue—1|[(|V
THIN-STREAM WAVE AMPLITUDES AND i i o @8
OSCILLATION CONDITIONS S iSmyt jSwrs . .
If the stream is extremely thin as compared to the IR Snin EI e
. . . . . L
interaction width between the sole and anode, it is
permissible to treat the input boundary value problem 08
in an approximate manner and match at only one or ' I 1
two levels of the stream. Matching the two velocity
components at the beam edge and the field components Nttt
at the anode gives rise to the following matrix for the
03
oz AN
\\
2 r \j\\\/ ~— Hz00! 8 100 ~—
=) ~—
7\\ =~d7 H=00I 8 100 H=0.05 8 20
'\K,:\ T~ H:005820 H:02 85
o T - : H:0285 ] ol \ans 82
H=1
E—Hﬂ)ﬁ a2
| H=)

] 2 4 6 8 10
r

Fi16. 2. Thin stream starting conditions (d=0).

[+] 2

a

13
r

8 10

F1G. 3. Thin stream starting conditions (d=1.0).
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TasLE II. Energy mismatch and M-BWO starting conditions for finite thickness streams with circuit loss.

Approximate match

Variational procedure

g r w/we d b DN W/(aE/2) b DN W/(eE2)
1 0.1 2 0.1 0 0.258 0.199X10* 0.0091 0.258 0.199X 10~
1 0.5 2 0.1 0 0.250 0.494X1073 0.0133 0.257 0.493 X103
1 1 2 0.1 0 0.231 0.198 X102 —0.2434 0.251 0.212X102
1 0.1 1 0.1 0 0.258 0.104X 102 0.0735 0.259 0.103X10~2
1 0.5 1 0.1 0 0.250 0.260X 10! 0.1643 0.273 0.240 107!
1 1 1 0.1 0 0.231 0.122 —0.940 0.285 0.354
1 0.1 0.5 0.1 0 0.258 0.853X 102 0.1668 0.258 0.823X102
1 0.5 0.5 0.1 0 0.250 0.210 0.306 0.280 0.158
1 0.1 2 0.5 0 0.299 0.199 10 0.0063 0.299 0.199X10~*
1 0.5 2 0.5 0 0.286 0.494X 1073 0.0081 0.294 0.494X 1073
1 1 2 0.5 0 0.260 0.198X 102 —0.1973 0.281 0.209X 102
1 0.1 1 0.5 0 0.299 0.104 X102 0.051 0.300 0.103X10~2
1 0.5 1 0.5 0 0.286 0.256X 10! 0.115 0.313 0.245X10!
1 0.1 0.5 0.5 0 0.299 0.851X 102 0.116 0.300 0.831 X102
1 0.5 0.5 0.5 0 0.286 0.199 0.233 0.324 0.162
0.5 0.1 2 0.1 —0.067 0.258 0.103X 10! 0.615 0.246 0.934X 102
0.5 0.5 2 0.1 —0.323 0.250 0.764 X101 0.774 0.272 0.455X 10!
0.5 0.1 1 0.1 —0.067 0.258 0.167 X101 0.369 0.253 0,155 10!
0.5 0.5 1 0.1 —0.323 0.250 0.202 0.633 0.275 0.102
0.5 0.1 2 0.5 —0.067 0.299 0.103X 10! 0.365 0.281 0,971 X102
0.5 0.5 2 0.5 —0.321 0.287 0.764X 107! 0.397 0.324 0.538X 101
0.5 0.1 1 0.5 —0.067 0.299 0.167 X101 0.222 0.288 0.159X 10
0.5 0.5 1 0.5 —-0.321 0.287 0.192 0.376 0.317 0.118
0.5 0.1 0.5 0.5 —0.067 0.299 0.419X10! 0.185 0.293 0.388X 10!
0.5 0.5 0.5 0.5 —0.321 0.287 0.656 0.272 0.320 0.324
where The rf voltage as a function of distance is again given
1 Ony3=0n by Eq. (47), where the excited wave amplitudes are
an

Sp=—(r— 75,) (b+ 8..).

A solution of the above matrix for the wave ampli-
tudes yields

3
Vn/Vaz-Xn/ Z Xn, (49)
n=1
where . _
J(Sn1—=DSni2 §(Snpa—1)Snis
Xp= .
6"—1—2 6n+1
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F16. 4. (B—B,)L vs r at start oscillation (d=0).

calculated by Eq. (49). The starting conditions for the
thin-stream M-BWO have been calculated as a function
of space charge, beam location, and circuit loss. These
results are presented in Figs. 2 through 6. Circuit loss
increases the required starting length for low space-
charge conditions and has little effect with large space-
charge fields. For finite values of d the starting length
is constant for streams located at H and 1/H. The
(B—B:)L curves are symmetric with respect to H and
relatively independent of circuit loss.
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192 I.
EFFECT OF ENERGY MISMATCH ON STARTING
(THICK BEAMS)

The average energy density associated with the
mismatch occurring when the electron stream is intro-

E. ROWE AND R. Y. LEE

duced between the sole and anode was given by the
integral of Eq. (30). The integral is easily evaluated
and the average energy density in the mismatch is
given by

where the electric field of the first term is that present
at the anode of the unperturbed circuit at z=0. The
factor F?/2 is approximately unity. The integrated
energy density (average) appears in the cutoff waves
which arise in the presence of the electron stream. These
fields provide for a perfect match at the input boundary
when coupled with the fields associated with the near-
synchronous waves excited. Of course, the energy
density associated with the cutoff modes is highest at
the electron stream itself. Hershenov® ¢ has determined
the variation of energy mismatch across the stream,
for the M-FWA (forward-wave amplifiers), and has
calculated the change in excited wave amplitudes.
The minimum-energy method has been used to

BERR
| i A
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Bos |
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|
_______L_——-—————r—"‘
1 T

|

F1G. 6, Effect of loss on starting length (H=1).

smh~————~————————
a+B
, (50)
w (14+D;d) 4o (14+Dd) 4w Di(ya—ys)
2— -——————[cosh—— cos— :|
a+p w, atf w, ot

calculate the excited wave amplitudes and starting
conditions for the M-BWO. This method is particularly
useful when the transverse velocity variation across the
stream is large. The results are compared with the
approximate match results for no circuit loss in Table L.
The energy mismatch for both calculations is given.
The average energy density mismatch W is normalized
with respect to €£?/2, which is approximately unity.
The effects in the presence of rf circuit loss are shown
in Table II. The magnitude and degree of influence of
the energy mismatch on M-BWO starting conditions
is apparent from Tables I and IT.

It is clear that the required starting length is greater
when calculated by the variational procedure and that
the amplitudes of the cutoff waves excited increase with
increasing space-charge field strength relative to the
circuit fields. Generally the required injection velocity
is also higher, except that under some large space-
charge field conditions the required b value is less,
sometimes even falling below synchronism.

This variational treatment of the input boundary
value problem predicts that the starting length for an
M-BWO increases as the beam thickness is increased,
which is contrary to the predictions of the previous
linear theories. This increase in required length is
attributable to a lack of phase focusing in thick-beam
devices and, hence, a less favorable interaction. This
reduced interaction results in a decrease in the beam
loading on the rf structure and, hence, the required
beam velocity would be higher. Similar effects in
thick-beam forward-wave amplifiers have been found
by Gandhi.?

It is interesting to note that for signal frequencies
above the cyclotron frequency the percentage mismatch
is small, whereas for w/w,<1 the effect is accentuated,
and under some conditions the average energy density

3 0. P. Gandhi, “Multiple stream crossed-field interaction” [to
be published in J. Electronics and Control (London)].
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mismatch amounts to over 209} of the electrostatic
field energy in the absence of the beam. It may also be
that under these conditions the cyclotron waves are
excited to an appreciable extent. These have not been
accounted for in this analysis.

The effect of rf circuit attenuation is to accentuate
nearly all of the above trends as indicated in Table II.

CONCLUSIONS

The energy mismatch occurring and the cutoff waves
excited due to the introduction of an M-type space
charge flow in the anode-sole region of a planar
crossed-field oscillator were calculated using Thomson’s
theorem in the solution of the input boundary value
problem. This variational technique is shown to be
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particularly useful when the transverse velocity vari-
ation in the beam is large.

The cutoff wave amplitudes excited are increased as
the velocity spread is increased and as the circuit
attenuation is increased. The required starting length
is greater for thick-beam tubes. The effect of the mis-
match is greatest for signal frequencies less than the
cyclotron frequency. This variational technique may
conveniently be applied to any two-dimensional space-
charge flow.
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The dependence of the coercive force of Ni, Fe, and Ni-Fe films upon film thickness and amount of trapped
gas was evaluated in vacuo. The magneto-optic Kerr effect was utilized for this investigation. Although the
penetration depth of light into the film material was determined to be 15025 A, measurements of
could commence for film thicknesses <100 A. It was found that the coercive force H, is independent of film
thickness if the content of trapped gas, as indicated by the p/r (residual gas pressure over deposition rate)
ratio is very small, e.g., 5X 1075 torr/A /sec for Ni films. At higher p/r ratios, the coercive force of Ni films
displays initially a steep rise which is followed by a shallow minimum, while in Ni-Fe films 2 maximum
appears at about 750 A. The different behavior of Fe films is ascribed to higher gas absorption on this
material rather than a principal change in the mechanism of the coercive force. A hypothesis is proposed as

explanation for the observed effects.

I. INTRODUCTION

FOR a number of years it was expected that the mag-

netic properties of thin films were influenced by the
amount of gas trapped during film fabrication. Further-
more, if the properties are not measured i vecuo and
immediately after deposition, oxidation and penetration
of gas into the interior of the film may change the
results appreciably.

To investigate the questions implied in these state-
ments, the apparatus employed must allow to: (a)
maintain ultra-high vacua during the evaporation, and
(b) measure the magnetic film properties during and
after the deposition iz vacio with a sensitivity sufficient
to yield data for films which are only a few atomic layers
thick.

II. APPARATUS

An evaporation system was constructed out of glass.!
Two tubes of 23-in. diameter were fused into a cross.

* Present address: General Dynamical Astronautics, San Diego,
California.

! For a detailed description of the evaporation system see K. H.
Behrndt, Vacuum Symposwum Transactions (1959), p. 255,

The horizontal tube contained the shutter, connection
to ionization gauge, and cyro pump, while evaporation
source and substrate were located in the vertical tube,
which is shown in cross section in Fig. 1. The evapora-
tion source consisted of two concentric rings of the
evaporant wire, and depositions were performed by
subliming from the resistance heated wire. In each
“run” four films of 1-cm diameter were deposited,
together with a “monitor strip” for measuring resistance
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F16. 1. Cross section (schematic) through vacuum chamber
and Kerr-effect apparatus,



