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l. INTRODUCTION

One of the fundamental properties of the Korteweg—de
Vries (KdV) equation

u, =6uu, —u,,, u=ux.z), (1.1)

is that it has an infinite number of local conservation laws:
that is, there is an infinite sequence of identities
J, H,=dJ,, q=12,.
that follow formally from (1.1). (We write d, = d/d,
d=03/dx.) The “conserved densities” H, and “fluxes” J,
are elements of C[4'?] = the set of differential polynomials
in u, i.e., polynomials in » and its x-derivatives ' = #(u).
Here is the charming construction, due to Gardner,' of
these conservation laws. Consider another equation

(1.2)

w, = 6ww, —w,,, +66ww,, w=uwxt) (1.3)

Itis easy to check that if w satisfies (1.3), then u(x,? ), given by
the formula

u=w+ ew + ew, (1.4)
satisfies (1.1). Now, rewrite (1.3) in the conservation form
(1.5)

invert (1.4) (understood as an automorphism of differential
rings C[u'"] [[e]}>Cw' ] [[€]])

dw = d3uw* —w,, + 26w,

w=u+ 3 &P, P, eClv],

k=1

(1.6)

substitute (1.6) into (1.5), and identify €? -coefficients on both
sides of the resulting equality: you get (1.2).

What is the meaning of the Gardner trick? Notice that
under the homomorphism (1.4), conservation laws (1.2) for
the KdV equation (1.1) become conservation laws for the
Gardner equation (1.3) which, therefore, is also an integrable
system, that is, it has an infinite number of conservation
laws. Thus, starting with the KdV equation (1.1), we have a
curve (1.3) parametrized by € in the space of evolution equa-
tions, and an integrable curve at that. Moreover, the map
(1.4) tells us that we also have a reduction of our curve, that
is, a regular map which sends any point on the curve into a
base point with parameter € = 0 and is the identity at € = 0
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{We do not distinguish between evolution equations and
their solutions; see, e.g., Ref. 2 for the spirit of algebraic
treatment of evolution equations.) It is, then, irresistible to
conjecture that (a) most, if not all, integrable systems cur-
rently in circulation (see, e.g., Refs. 3-5) can be included in
integrable one-parameter families, which we call deforma-
tions, and, moreover, (b) these curves carry with them reduc-
tions. There is some evidence available to back up this con-
jecture (see, e.g., Refs. 6 and 7), though it is not at all clear
what could be the underlying reasons for the existence of
such a general phenomenon.

The main result of this paper establishes the existence of
deformations and rational reductions for all the general
zero-curvature equations associated to simple Lie algebras.’
Details will be given in the course of the paper via the follow-
ing route: in Sec. II, we review the general zero-curvature
equations associated to simple complex Lie algebras; in Sec.
II1, we study two different coordinate systems on the tangent
bundle of the manifold of Cartan subalgebras of a given sim-
ple Lie algebra. We find that these coordinate systems are
related by a rational map. In Sec. IV, we interpret construc-
tions of Sec. I1I as providing deformations and desired re-
ductions.

Il. THE GENERAL ZERO-CURVATURE EQUATIONS

In this section, we summarize the Wilson construction
of the general zero-curvature equations.’

Let g be a complex simple Lie algebra, F a regular semi-
simple element of g, /a unique Cartan subalgebra containing
F, so that we have

g=/o[ gl =/olmad F. (2.1)
Let / = dim /denote the rank of g and let R C /* be the set
of roots of (g, /). For every a € R, let E, be a nonzero ele-
ment of the corresponding root space, so that

[/e]= e CE,.

Let u,,, a<R, be differentially independent variables, and let
B = C [4] be the differential algebra of polynomials in
variables ! with the derivation d acting on B through
Aul) = ul/* Y. We introduce a grading on B by setting

(2.2)

degu!? =j+ 1. Weset§ =B ® gand extend the derivation
C
J and the grading degto §by d{1 @ g) =0, deg (1 ® g) = 0.
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Define u = 3 u, ® E,,, which, for brevity, we shall
write as 2 u, E,. Let A be a formal parameter commuting
with everything; set

U= —u+AFeq. (2.3)
For Ve §[A], our general zero-curvature equations®
[0—-U,8,—V]=0 (2.4)

are equivalent to
du= —av+[UV]. (2.4)
These equations make sense if and only if the rhs of
(2.4") does not depend upon A and lies in [\,Z\g] =B %

[ 4 a]. Here is the full description of all possible V’s:
Fix a natural number r>>1 and an element v € £ Let

W= Yuvld
i=0
be a unique solution of the equation dW = [U, W] such that
v, is homogeneous of degree i. Set

V,ER, Uy=v 2.5

0

S pArl (2.6)

V=Yuvd"", V_=
i=0 i=r+1

From AW =V + ¥V_, we have

—aV+ [UV]=0V_—-[U¥V_], (2.7)
and since the lhs does not involve any negative powers of A
whereas the rhs does not contain any positive powers, (2.7) is
A-independent. Picking out the terms of order zero in A, we
rewrite (2.4') as
_vr,x+[u,vr] =[F,—‘U,+_1], (28)

which shows that the rhs belongs to [\Zg-,\] = ﬁn{\(m
Now denote by d, = d,(v,7) the evolutionary (i.e., com-
muting with d) derivation of B, which is defined by (2.8) via

u, =

d,(v,r)u, = a—component of [ F, —v,, ] in [%].
(2.9)

These are the equations we are going to deform. The
properties of these equations are given in the following pro-
position:

Proposition 2.1: (i) If v#0 then d,(v,7) #0. Thus we get /
linearly independent derivations for each r. (ii) Let K denote
the Killing form on g naturally extended to §, and set
H,=H(v) =s 'K (v, ,, F). Then the elements H,, s>1
are common nontrivial (i.e., they do not lie in B ) conserved
densities of all evolution equations (2.9) (that is, 3, H, € dB).
Thus we obtain / linearly independent conservation laws for
each s> 1. (iii) Equations (2.9) can be written in Hamiltonian
form

ar(v’r)ua = —alF) 611;1 ’

ac€R,
Su

(2.10)

—a

where 6/8u,, is the functional derivative with respect to u,, .
(See, e.g., Ref. 2 for the differential-algebraic version of cal-
culus.) Thus all derivations J, (v,7) (or corresponding
“flows”’) commute with each other.

The proofs follow from the general theory of Lax* equa-
tions. We shall not need them: our object of study is just Eqgs.
(2.4).
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Ill. MANIFOLD OF CARTAN SUBALGEBRAS

Let g be a simple Lie algebra over C, 7 the set of all
Cartan subalgebras in g. 5% is a homogeneous space for the
Lie group Aut (g) and we may regard 5% as a nonsingular
algebraic variety. In this section, we study relations between
two coordinate systems on (open piece of) 7#°. (To avoid any
confusion with the notations of the preceding section, the
reader would do well to ignore temporarily the existence of
Sec. II).

Let Fbe a semisimple element of g such that the dimen-
sion of the centralizer g* of Fin g is minimal; in other words,
Fis regular semisimple. Then / = g”is a Cartan subalgebra
of g, and the rank of g is given by rk g: = dim / We then have

Let 7 be the open subset of % consisting of all /'€ ¥~
satisfying the transversality condition /'n[ F, g] = {0}. We
define a smooth map P:5%#” —[ F, g] by requiring (F — P{ /"))
€ /" forall /' € 7. Then P (/") uniquely determines £ by
£ =¢" P/ provided F — P( /") happens to be regular se-
misimple; we denote by #°” the set of all such /' € % (for
which it does happen). Then € 7" [since F — P (/) = F]
and F"is open in ¥ (since #” = [7%” which is open in 57
N [{the set of all regular semisimple elements} which is open
open in g]). Therefore P is smooth and injective on the non-
empty open subset #" of 7. Since dim 77 = dim [F,g]

( = dim Im P), it follows that the differential P of the map P
is surjective at all points /" € #°".

Now let us consider the tangent bundle T(#") of "
Regarding P as providing a coordinate system for 7", we
identify T(Z°") with T( P( #"))=P (") X[ F, g], the tan-
gent bundle of P (#"). Denote the coordinate system thus
obtained on T ( ") by ( P,P,)e P(5") X [ F,g].

Another coordinate system { P,u) on P( 57"} X [F,g]
may be defined as follows. Any w € g determines a holomor-
phic vector field X, on 7 as the generator of a one-param-
eter family of diffeomorphisms exp (7 ad w) restricted to #*:

for any fe C (),
(X, )W) = lim 77" [f(explad rwl)lf) = (/).

The map w X, is a Lie algebra homomorphism. Denote
by X,,(£")€T ,.(#) the value of X, at /. Then
X, (£") = 0iff wes”. Thus the correspondence

(£ Xe AL NHAP L )u), ue[F,g]
defines our second coordinate system on T{#"").

Our goal is to connect these coordinate systems. To ob-
tain a connection between ( P,P, ) and ( P,u), consider a holo-
morphic curve y:B—5°" defined on an open ball B C C
containing zero. Put P(r) = P (y(r)) for r € B, set P. = P(0),
P, =dP(r)/dr|,_,,andlet( P,u)correspond to( P,P,). For
the Cartan subalgebra y(7), when 7—0, its general regular
semisimple element near F — P [recall that g ~ ¥ = #{0)] can
be written in two different forms (according to the two coor-
dinate systems introduced above) as

F—P_7P +0(7),
and
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F—P+7[F—u,F—P]+0(r)
=(expad 7(F— u))(F — P)+ O (7).

Since ¥(7) is commutative, we have
[F-P—7P ,F—P+7[F—u,F—P]]=0(r),

or, putting

T:=ad(F—P), 3.1)
we get
TP —u)=T(P,) (3.2

We shall now analyze the correspondence
( P, P.)( P,u) given by (3.2), and we regard F as variable as
well (we shall need this later). We note that the results below
require only the assumption that g is a simple Lie algebra
over a field & of characteristic zero, and in such a context we
formulate our statements (one often needs & = R rather than
k = C. We want to cover this case as well).

The following lemma from linear algebra provides the
basis for our analysis.

Lemma 3.1: Let L be a vector space over a field k, with
fixed basis wy,...,w,. Let r be an integer with 1<r<n, and
consider the algebraic variety

M= {(T,T")€End L XEnd L |rank T'<r}.

Define an element 4 € k [M']( = regular functions on
M) by

AT, TYw, N\ ANw,
=TT wA--ATT'w, Aw, . ; A Aw,. (3.3)

(Both sides lie in the one-dimensional space A "( L ) with the
basic vector w, A--Aw,.) Thenthereexists " ek [M] ®,
End L such that

T'TT" =T'A (3.4)

ink[M] &, End L [in other words, considered as a regular
function on M with values in End L, T " satisfies
T'rTT" I, T')=T'4(T,T")].

Proof: Write TT 'w, = X]_ |a;w;, 1<i<n, where a;
€ k [M]. Define the matrix a = (a;),;;.,, then 4 = det a.
Next we take the matrix @’ = (a';),; ;.. such that
ad’ =ad'a=A1,,sothata’;, €ek[M]. Set, for 1<i<r,
w, =2/, a,w,s0Aw, =3_, a; ;. Now we can define
T (for the fixed TTand T') by T "w; = T 'w;, 1j<r,
T"w, =0, r<j<n. Since, for 1<i<r, TT'w; = TT'%]_,
a,w =2_,a;TT'w; = 2] _,a'; 2} _ aw;
=27, dyauw, (mod L,:=kw, ; + -+ kw,) = Aw,
{mod L,), we have, again for 1<i<r, T*'TT'w; =T"
(Aw,mod L,) = T"(Aw,;) = AT "w;, = AT'w,. Thus
(I'"TT' — AT')=0onL": = kiv, + - + kiv, and since
Aw,eL’,weget (T"TT’ —AT')4 =0on
L"=kw,+ - +kw, Nowrk T'<r,soT'(L)=T'(L").
Thusifd #0,thenT"TT' — AT' = O0onL.But Misirredu-
cible, and A is regular and not identically zero on M. There-

fore T"TT' — AT '=0 always.
Q.ED.

We now use Lemma 3.1 in the situation: L =g,
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r=dimg —rkg,and T, T' on M are given by
T=ad(F— P), T' =ad Fwhere Pe g and F € g is regular
semisimple. If F is regular semisimple, i.e., dim g = rk g,
and [F, g] n g~ % = {0}, we choose a basis w,,..., w, in g in
the following manner: take w,..., w, such that [F, w, ],
...,[ F, w, ] are linearly independent (we can do this since Fis
regular so dim (Im ad F) = n — dim g* = 7}, then
IT'w, = T([Fw)),... TT'w, = T ([ F,w, ])arealso linearly
independent (since [F,g] n g ©~ * = {0}). Now choose com-
plementary vectors w, , |,...,w, such that 4 #0, see (3.3).
Now define, via Lemma 3.1, the element

S=A4"'T"T (3.5)

Claim: S is the projection of g onto [ F, g] along g ~”.
Indeed, ST' = A "'T"TT' =A 'AT' = T’, thus S
=IdonIm T’ = Im ad F. On the other hand, ifyeg*
= Ker ad(F — P) = Ker T, that is, Ty = 0, then
Sy=4 "'T"Ty =0. To sum up, S is a rational function of
( F,P) € g X g defined whenever dim gF = rk g and [ F,g] n
g" "=1{0}.

Applying this claim to our basic equation (3.2), written
in the form

P, =S([F—P,P—ul), (3.6)

we get P, as a regular function on the following Zariski-
locally-closed subset Z of g X g X g:

Z:= [(F,Pu)|dimg“ =1k g; Pue [ Fgl;
[Fg]l ng" P =[0}}. (3.7)

Denote by Y the analogous set of ( F,P,P, ) obtained by re-
placing u by P, in (3.7).

Now let Q be the projection of g onto [ — P, g] along
g” ~ *. Then, as above for S, Qis a rational function of ( F,P ) €
g X g defined whenever F — Pis regular semisimple (perhaps
we should stress that in all matters unrelated to our problem
of connecting coordinate systems, we treat ¥ and P as free
variables).

Turning back to our basic equation (3.2), we rewrite it
with the help of Q as

T(P—u)=Q(P,) (3.8)
Since ad F is an isomorphism on [F,g] = Im(ad F'), we can
define P’,u' €[ F,g]by P=[F, P'l,u=[F, u']. Then
P—u=T'(P'— u')and we have, by Lemma 3.1,

AP—u)y=AT'\P' —u')=T"TT'(P' —u')

=T"T{P—u)y=T"(Q(P)
This shows that « is a regular function on the Zariski-locally-
closed set

Y':=|(FPP,)e Y| F— P)isregular semisimple}

(recallthat 4 #0o0n Y ). DenotingZ’' = {{ F,Pu)e Z|(F — F
is regular semisimple}, we collect the results of this reason-
ing in the following theorem.

Theorem 3.2: The maps Z— Y, given by (3.6}, and
Y'—~Z’, given by (3.8), are regular. In particular, our basic
Eq. (3.2) determines an everywhere-defined birational corre-
spondence Y'«>Z".

Now we can analyze different asymptotics connected
with the correspondence Y'«Z".
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Theorem 3.3: (a) Fix a regular semisimple Fyand P, P, €
[Fog) Set F=¢€~'F,. Thenu = P + O (€) as €—0. (b) Fix a
regular semisimple F e g and P, P, , €[ F,g]. Set P = vP,,
P, = vP,,. Then [Fu] = W{[F,P)] — P,) + O(v?), as v—0
(equivalently, u = (P, — (ad F)~' P,,) + O (v*), where
(ad F)~'isanisomorphismon [F, g] 3 P,, ). (c) Fixaregular
semisimple F e g and let /= g” be the corresponding Cartan
subalgebra with root system A. Then the determinant of the
Fréchet derivative of the linearization of the map (P,P, }—u,
is given by

[T —a(F)~'a). (3.9)

aed

Proof: (a) In all three cases we use the fact that by
Theorem 3.2, « is rational in the parameters involved: in the
present case, as a function of €. Let us write then
u = €(u, + O (€)) with some s<0 and require u,70 for s <0
{(we thus allow u, = O for s = 0, taking care of the possibility
of u having positive s-asymptotics in €). Rewriting (3.2) in
long hand, we have
[ad(e™"'Fy — P)1*[P — €{u, + O (€))]

= [ad(e™'F, — P)]P, =0 )=0(€ 3.

This yields

(ad Fo)’u, =0 if s5<0,

(ad Fo)lP —upg)=0 if s=0.
But ad F,, is nonsingular on [F,, g] which forces u, = O for
5 <0, a contradiction with the choice #,#0 made for s < 0.
Thus s = 0 and P — u,, = 0, proving (a). (b) For v—0, write

u = v(uy + O(v)), where s<1 and u,5#0 for s < 1. Then, as
above, (3.2) can be rewritten as

[ad(F — vPo|(vPy — u) = v[ F.Py, | + O (),

which yields
(ad Fy’u, =0, if s<1,

(ad F)}(Py — ug) = (ad F)P,, if s=1,

which forces, as above, s = 1 and P, = [F, Py — u,]. (c) If
u = f( P,P,)is a locally smooth map with 0 = £(0,0), its lin-
earization / { f) (at zero) is defined by

u=1(f)(PP,): =(d/dv) f(vP,vP,)|,_,. By (b), we get

u =P, —(ad F)~' P,,. Choose a nonzero vector E,, in the

root space g, for every root @ € A. Then we can rewrite the
above formula as

B, =Py —a(F)" Py, (3.10)

Now recall that the Fréchet derivative of any map ¢ given by
a nonlinear differential operator of the form u, = u,(v\™),
1<i<n, 1<j<N, isan n X N matrix D (¢ ) of differential opera-
tors, defined by

du, d
PO =20 G O 9= o

J

Thus for the case (3.10), we get the matrix-
diag(..., 1 — a( F)™'3,...), which implies (3.9).
Q.E.D.
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IV. EVOLUTION EQUATIONS

In this section we construct deformations of Egs. (2.4).
The idea is to interpret them as defined on J#°" rather than
on g.

We begin by recalling some simple notions from the
calculus. Suppose N is a manifold (smooth, like everything
else in this section), let D (V) denote the set of all vector fields
on N [that s, derivations of C *(N).] Consider separately R’
with the coordinate x and vector field d /dx. f Xe D(N), a
{local) trajectory of X is a map y:/ ' — N such that

—a;i— y* =y*X, [I' isanintervalinR', (4.1)
x

understood as the equality of operators on C (N ) [with val-
ues in C (7 ']. If one chooses a (local) coordinate system
sy Jon Nand if X = 2g,(y)d/dy;, then (4.1) is equivalent
to the familiar form of a system of ODE’s:

dy*(y,)
dx

If the field X depends upon parameters u,,...,; (X may be
one of them), definition (4.2) works equally well.

What we need is a bit more. Suppose X and Y are two
families of vector fields on N, and they both depend upon
two parameters which we denote x and z. Consider
I? =1"XI"withthesecoordinates x and ¢ and fix two vector
fields d =3d/dx and d, = 3/Jt on I

Definition 4.1: A trajectory of the pair X, Y is a map
y: I? — N such that

=7r*g) I<i<n. (4.2)

a
Ex_ '}’* = ’}’*X, (43)
d
SV =Y. (4.4)

Definition—Proposition: Let X = X (u) be a family of vec-
tor fields on N depending upon parameters g = {1 ,....125 ).

Then the set of operators X, : = g—X ,1<igk, defined by
i

X, (h)= %X(h ) heC=(N),

is again a family of vector fields on N with parameters u.
Proof: Differentiate, with respect to u;, the equality
X(hihy) = h,X (hy) + hyX (), hihye C=(N).
Proposition 4.2: A trajectory y for the pair X, ¥ can be

drawn through every point (x,t,n)eI*X N [i.e., y(x,t) = n}if

and only if

XY]-X,+Y =0, (4.5)
as operator on C *(N).

Proof: The only integrability condition for  is

9 3= 9 s,

at dx

as follows, e.g., from writing (4.3), (4.4) in local coordinates.
We have then

da ., .,
S yr = Zy* Y = (*Y *X.,
! 27 (Y*Y )X + y*X,
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33 . 9 .
Ay B Y D Y. 4) 4 *y.
Earnd Fld (Y*X)Y + y*Y,

S0
r*([X,Y]-X, + ¥,)=0.
Q.ED
We remark in passing how to transform (4.5) into a
more familiar form. Consider N: = N X I 2 and extend natu-
rally on N vector fields X, Y, d and d,, continuing to denote
them by the same symbols. Then (4.5) can be written as

[+ X0, +Y]=0. (4.6)
It is obvious now how to proceed. Rewrite (2.4) as
[—U—V]1~(=U)+(-¥)=0, (4.7)

and consider the representation of g in D ("), as in Sec. I11.
Applying proposition 4.2, we see that (4.7) is the integrability
condition for the system

d
A A ! (4.8
9=y = X,), 4.9)
at

for u = u(x,t) fixed. Applying Theorem 3.2 to Eq. (4.8), we
find « (or rather — u) as a rational function of P (y). This
enables us to eliminate u in favor of ¥ in (4.9) which thus
becomes our deformed equation, if we define the deforma-
tion parameter € as — A . Indeed, Theorem 3.3(a) then
yields that — u = P(y) + O (€), thus — P(y) (or — 9)is the
deformed variable [analog of w in (1.3)].

Proposition 4.3: Deformed Eq. (4.9) is not equivalant to
undeformed one (2.4) under any change of variables.

Proof: Use existence of the reduction (4.8). If (4.9) were
equivalent to (2.4), the map w—y which inverts (4.8) (under-
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stood as a rational map —u by Theorem 3.2) will be a (finite)
differential operator. In particular, its linearization will in-
vert the linearization of (4.8). Therefore the Fréchet deriva-
tive of this linearization will invert the Fréchet derivative of
linearized (4.8). Taking determinants, we get a differential
operator which inverts expression (3.9), which is a differen-
tial operator of positive order [since a(F}z£0 forac 4], a
contradiction.

Q.E.D.
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