discussion of vacancy-impurity complexes in Sec. 3. From Eq. (3.15) and the above relation for ν_{k}, we find

$$
\begin{equation*}
\partial \ln \nu_{k} / \partial x=\left[\Delta h_{2}+(1-p)\left(h-E_{B}\right)\right]\left(\nabla T / k T^{2}\right) \tag{A6}
\end{equation*}
$$

When Eqs. (A3), (A5), and (A6) are substituted into Eq. (A1), we again find Eq. (3.16) with $Q_{k}{ }^{*}$ being given by Eq. (3.18) and D_{k} by Eqs. (A2) and (3.17), except that all factors of 7 are changed to 5.15 and the factor 13 is changed to 11.15 . When it is assumed that $F_{o h}=1$ for w_{3} jumps, even this difference between the final results obtained by the two methods disappears. The value of B in other cubic lattices can also be found from Eq. (A4). Equations for j_{k} and Soret gradient on these lattices are then found in the manner already described.

This method can also be used to obtain a purely atomistic derivation of \bar{v}_{k} without reference to Eq .
(5.1). This method gives ${ }^{12}$

$$
\begin{equation*}
\bar{v}_{k}=2 D_{k} \lambda^{-1}\left[A+B+\frac{1}{2} \lambda\left(\partial \ln f_{k} / \partial x\right)\right] . \tag{A7}
\end{equation*}
$$

The quantity ($\partial \ln f_{k} / \partial x$) can be found from Eq. (A2). When values of A and B from Eqs. (A3) and (A5) are substituted into Eq. (A7), we again find Eq. (5.4). Here $Q_{k}{ }^{*}$ is given by Eq. (3.18) and D_{k} by Eqs. (A2) and (3.17) if all factors of 7 are changed to 5.15 and the factor 13 is changed to 11.15 . Expressions for \bar{v}_{k} in other cubic lattices can be found by evaluating Eq. (A4) for B in these lattices, and then proceeding as above. Equations (A2), (A3), and (A7) are valid for any cubic lattice.

ACKNOWLEDGMENT

The authors wish to thank Dr. A. B. Lidiard for valuable discussions.

Second Virial Coefficient for the Spherical Shell Potential*

Andrew G. De Rocco and William G. Hoover \dagger
Department of Chemistry, The University of Michigan, Ann Arbor, Michigan

(Received August 31, 1961)

Abstract

Values of the second virial coefficient for the three-parameter spherical shell potential are tabulated over wide ranges of temperature and shell size. The potential, which is not new, results from the interaction of two spherical surfaces having uniform distributions of Lennard-Jones (6-12) sites.

An objective comparison is made between the tabulated values and the literature values for second virial coefficients, from which the potential parameters for twenty compounds are determined. Generally, the spherical shell potential generates a better fit than does the parent Lennard-Jones potential. The potential parameters found are in good agreement with expectations based upon density and interatomic distance data.

1. INTRODUCTION

TRADITIONALLY the equilibrium and transport properties of relatively small molecules have been correlated by the Lennard-Jones (6-12) potential. Other simpler potentials have also been employed, particularly when more extensive calculations were performed. A good discussion of these and more elaborate potentials can be found in Hirschfelder et al. ${ }^{1}$ Recently the Morse ${ }^{2}$ and Rydberg ${ }^{3}$ potentials have been investigated, and Bernades and Primakoff ${ }^{4}$ have presented

[^0]an interesting study involving a second-order contact between the Morse and Lennard-Jones potentials.

For larger molecules the Mie or Lennard-Jones potential apparently fails to correlate both equilibrium and transport properties with a single set of parameters, but in part the failure may be due to inadequacies in the existing transport theory as noted by Mason and Rice ${ }^{5}$ and others. ${ }^{6}$ The general success of the Mie ${ }^{7}$ potential for simpler systems, however, has prompted attempts to generalize the potential to larger systems. In particular, Thomaes ${ }^{8}$ and Atoji and Lipscomb ${ }^{9}$ have elaborated a spherical shell model related to the potential we have employed. The spherical shell model presumes Lennard-Jones interaction sites uniformly

[^1]distributed over the surfaces of the interacting spheres. Hamann and Lambert ${ }^{10}$ have approximated the full potential by a $7-28$ model, without marked improvement over the $6-12$. In order to assess the value of the full spherical shell model we have examined in detail the experimental and calculated second virial coefficients for twenty compounds, half of which are spherical nonpolar substances, the rest being evenly divided between nonpolar, nonspherical molecules and polar molecules.

The spherical shell potential can be derived in the following fashion. In Fig. 1 the coordinate system is displayed, and it will be noticed that the indicated sites in I and II are separated by a distance t. Point P is first allowed to interact with all points on the surface of I, and is then moved over the full surface of II. The

Fig. 1. Coordinates for calculation of the spherical shell potential.
potential of point P with respect to I is

$$
\begin{equation*}
\phi(P, d, s)=\frac{\int_{0}^{2 \pi} d \theta \int_{0}^{\pi} t^{-N}\left(\frac{1}{2} d\right)^{2} \sin \alpha d \alpha}{\int_{0}^{2 \pi} d \theta \int_{0}^{\pi}\left(\frac{1}{2} d\right)^{2} \sin \alpha d \alpha} \tag{1}
\end{equation*}
$$

Using the law of cosines, $t^{2}=\left(\frac{1}{2} d\right)^{2}+s^{2}-s d \cos \alpha$, we obtain

$$
\begin{equation*}
\left.\phi(P, d, s)=\frac{1}{2} \int_{0}^{\pi}\left(s^{2}+\frac{d^{2}}{4}-s d \cos \alpha\right)^{(-1} N\right) \sin \alpha d \alpha \tag{2}
\end{equation*}
$$

and making the substitution, $\xi=t^{2}$ one arrives at

$$
\begin{gather*}
{\left[s+\left(\frac{1}{2} d\right)\right]^{2}} \\
\phi(P, d, s)=\frac{1}{2 s d} \int \xi^{-\frac{1}{2} N} d \xi=\frac{s d}{(2-N)}\left[\left\{s+\left(\frac{1}{2} d\right)\right\}^{2-N}\right. \\
\left.\left[s-\left(\frac{1}{2} d\right)\right]^{2} \quad-\left\{s-\left(\frac{1}{2} d\right)\right\}^{2-N}\right]
\end{gather*}
$$

When Eq. (3) is expanded in inverse powers of s, it approaches s^{-N} as s grows large.

[^2]

Fig. 2. Comparison of the characteristic distances σ (at which separation the potential energy is zero) and r_{0} (at which separation the potential energy is a minimum) as a function of $r_{0}{ }^{*} \equiv r_{0} / d$.

Integrating $\phi(P, d, s)$ over the surface of II yields

$$
\begin{equation*}
\phi(d, r)=\frac{1}{2} \int_{0}^{\pi} \phi(P, d, s) \sin \beta d \beta \tag{4}
\end{equation*}
$$

Noting that $s=\left[\left(\frac{1}{2} d\right)^{2}+r^{2}-r d \cos \beta\right]$, using $\phi(P, d, s)$ from Eq. (3) we obtain, finally,

$$
\begin{align*}
\phi(r, d)= & \frac{1}{r d^{2}(N-3)(N-2)} \\
& \quad \times\left[\frac{1}{(r+d)^{N-3}}-\frac{2}{r^{N-3}}+\frac{1}{(r-d)^{N-3}}\right] \tag{5}
\end{align*}
$$

Fig. 3. Comparison of the Lennard-Jones and spherical shell potentials, using a common energy minimum.

Table I. Potential parameters for spherical molecules (LJ values indicated by $r_{0}{ }^{*}=\infty$).

Compound	$r_{0}{ }^{*}$	$\epsilon / k\left({ }^{\circ} \mathrm{K}\right)$	$r_{0}(\mathrm{~A})$	$d(\mathrm{~A})$	σ^{2}	Reference
Carbon tetrafluoride (273 to $673^{\circ} \mathrm{K}$)	$\underset{\infty}{1.70}$	$\begin{aligned} & 322 \\ & 151 \end{aligned}$	$\begin{aligned} & 4.55 \\ & 5.29 \end{aligned}$	$\begin{aligned} & 2.68 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 3.7 \times 10^{-4} \\ & 5.2 \times 10^{-4} \end{aligned}$	a
Cyclopropane (303 to $403^{\circ} \mathrm{K}$)	$\begin{gathered} 1.70 \\ \infty \end{gathered}$	$\begin{aligned} & 635 \\ & 210 \end{aligned}$	$\begin{aligned} & 4.41 \\ & 6.84 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 7.5 \times 10^{-6} \\ & 1.8 \times 10^{-5} \end{aligned}$	b
Krypton (273 to $573^{\circ} \mathrm{K}$)	$\begin{gathered} 1.70 \\ \infty \end{gathered}$	$\begin{aligned} & 366 \\ & 172 \end{aligned}$	$\begin{aligned} & 3.41 \\ & 4.00 \end{aligned}$	$\begin{aligned} & 2.01 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 3.7 \times 10^{-5} \\ & 1.5 \times 10^{-4} \end{aligned}$	c
Methane (273 to $423^{\circ} \mathrm{K}$)	∞	147	$\begin{gathered} 4.30 \\ \text { (LJ poter } \end{gathered}$	$\begin{aligned} & 0.00 \\ & \text { better fit) } \end{aligned}$	3.0×10^{-6}	d
Methane (108 to $249^{\circ} \mathrm{K}$)	$\underset{\infty}{2.50}$	$\begin{aligned} & 215 \\ & 123 \end{aligned}$	$\begin{aligned} & 3.97 \\ & 4.95 \end{aligned}$	$\begin{aligned} & 1.59 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 9.5 \times 10^{-5} \\ & 3.2 \times 10^{-4} \end{aligned}$	e
Methane $\left(108 \text { to } 423^{\circ} \mathrm{K}\right)$	2.50	$\begin{aligned} & 215 \\ & 145 \end{aligned}$	$\begin{aligned} & 3.97 \\ & 4.43 \end{aligned}$	$\begin{aligned} & 1.59 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 4.7 \times 10^{-5} \\ & 4.2 \times 10^{-4} \end{aligned}$	d, e
$\begin{aligned} & \text { Neopentane } \\ & \left(434 \text { to } 548^{\circ} \mathrm{K}\right) \end{aligned}$	$\underset{\infty}{1.50}$	$\begin{aligned} & 814 \\ & 259 \end{aligned}$	$\begin{aligned} & 5.27 \\ & 7.65 \end{aligned}$	$\begin{aligned} & 3.52 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 1.3 \times 10^{-6} \\ & 8.6 \times 10^{-6} \end{aligned}$	f
Neopentane (300 to $548^{\circ} \mathrm{K}$)	$\begin{gathered} 1.50 \\ \infty \end{gathered}$	$\begin{aligned} & 811 \\ & 230 \end{aligned}$	$\begin{aligned} & 5.26 \\ & 8.49 \end{aligned}$	$\begin{aligned} & 3.51 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 2.1 \times 10^{-4} \\ & 4.7 \times 10^{-4} \end{aligned}$	f, g
Perfluorocyclobutane (373 to $623^{\circ} \mathrm{K}$)	$\begin{gathered} 1.50 \\ \infty \end{gathered}$	$\begin{aligned} & 599 \\ & 222 \end{aligned}$	$\begin{aligned} & 6.22 \\ & 7.92 \end{aligned}$	$\begin{aligned} & 4.15 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 1.1 \times 10^{-6} \\ & 7.4 \times 10^{-5} \end{aligned}$	h
Silicon tetrafluoride (293 to $353^{\circ} \mathrm{K}$)	$\underset{\infty}{1.30}$	$\begin{aligned} & 621 \\ & 148 \end{aligned}$	$\begin{aligned} & 4.12 \\ & 6.31 \end{aligned}$	$\begin{aligned} & 3.17 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 4.0 \times 10^{-6} \\ & 8.8 \times 10^{-6} \end{aligned}$	i
Sulfur hexafluoride (293 to $448^{\circ} \mathrm{K}$)	$\underset{\infty}{2.00}$	$\begin{aligned} & 335 \\ & 186 \end{aligned}$	$\begin{array}{r} 5.78 \\ 6.72 \end{array}$	$\begin{aligned} & 2.89 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 2.5 \times 10^{-5} \\ & 2.7 \times 10^{-5} \end{aligned}$	j
Sulfur hexafluoride (273 to $523^{\circ} \mathrm{K}$)	$\begin{gathered} 1.70 \\ \infty \end{gathered}$	$\begin{aligned} & 434 \\ & 196 \end{aligned}$	$\begin{aligned} & 5.18 \\ & 6.35 \end{aligned}$	$\begin{aligned} & 3.04 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 1.4 \times 10^{-4} \\ & 2.3 \times 10^{-4} \end{aligned}$	k
Tetramethylsilane (323 to $403{ }^{\circ} \mathrm{K}$)	$\underset{\infty}{1.70}$	$\begin{aligned} & 534 \\ & 209 \end{aligned}$	$\begin{aligned} & 7.16 \\ & 9.80 \end{aligned}$	$\begin{aligned} & 4.21 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 2.4 \times 10^{-6} \\ & 5.9 \times 10^{-6} \end{aligned}$	1
Xenon (298 to $573^{\circ} \mathrm{K}$)	3.00	$\begin{aligned} & 292 \\ & 221 \end{aligned}$	$\begin{aligned} & 4.30 \\ & 4.61 \end{aligned}$	$\begin{aligned} & 1.43 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 3.2 \times 10^{-6} \\ & 7.0 \times 10^{-6} \end{aligned}$	m

[^3]We note that in the limit of large $r, \phi(r, d)$ becomes r^{-N}. In general, the expansion is a series of positive terms-the coefficients may be found in the paper of Atoji and Lipscomb ${ }^{9}$-and the first few for the case $N=6$ are displayed below:

$$
\begin{array}{r}
\phi(r, d, N=6)=\left(6 r^{6}\right)^{-1}\left[6+15(d / r)^{2}+28(d / r)^{4}+45(d / r)^{6}\right. \\
\left.+66(d / r)^{8}+\cdots\right] \tag{6}
\end{array}
$$

This result was first obtained by Thomaes ${ }^{8}$ and later by Pitzer. ${ }^{11}$ Combining the cases $N=6$ and $N=12$ from Eq. (5), we write

$$
\begin{equation*}
\phi(r, d)=\left(A P^{(9)} / r\right)-\left(B P^{(3)} / r\right), \tag{7}
\end{equation*}
$$

[^4]where
\[

$$
\begin{equation*}
P^{(N)} \equiv(r+d)^{-N}-2 r^{-N}+(r-d)^{-N} \tag{8}
\end{equation*}
$$

\]

and where A and B are constants containing d and the well depth. Using the two conditions that characterize the energy minimum, ($\boldsymbol{r}_{0},-\epsilon$), Eq. (7) can be expressed as

$$
\begin{gather*}
\epsilon\left\{\left[3 r_{0}^{*} P_{0}^{*(4)}+P_{0}^{*(3)}\right] P^{*(9)}\right. \\
\phi=\frac{\left.-\left[9 r_{0}{ }^{*} P_{0}^{*(10)}+P_{0}^{*(9)}\right] P^{*(3)}\right\}}{\left[9 P_{0}^{*(3)} P_{0}^{*(0)}-3 P_{0}^{*(4)} P_{0}^{*(9)}\right] r^{*}}, \tag{9}
\end{gather*}
$$

in which $r^{*} \equiv r / d$ and $P_{0}{ }^{*(N)} \equiv P_{0}{ }^{N} d^{N}$. Let us examine a few of the characteristics of this potential.

First, it can be shown that in the limit $r_{0}{ }^{*} \rightarrow \infty$ (or

Table II. Potential parameters for nonpolar, nonspherical molecules (LJ values indicated by $r_{0}{ }^{*}=\infty$).

Compound	$r_{0}{ }^{*}$	$\epsilon / k\left({ }^{\circ} \mathrm{K}\right)$	$r_{0}(\mathrm{~A})$	d (A)	$\sigma^{\mathbf{2}}$	Reference
$\begin{aligned} & \text { Benzene } \\ & \left(280 \text { to } 438^{\circ} \mathrm{K}\right. \text {) } \end{aligned}$	$\begin{gathered} 1.60 \\ \infty \end{gathered}$	$\begin{aligned} & 464 \\ & 183 \end{aligned}$	$\begin{gathered} 8.98 \\ 11.6 \end{gathered}$	$\begin{aligned} & 5.61 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 5.1 \times 10^{-5} \\ & 7.2 \times 10^{-4} \end{aligned}$	a
Carbon dioxide (273 to $873^{\circ} \mathrm{K}$)	$\begin{gathered} 1.40 \\ \infty \end{gathered}$	$\begin{aligned} & 607 \\ & 202 \end{aligned}$	$\begin{aligned} & 3.62 \\ & 4.57 \end{aligned}$	$\begin{aligned} & 2.59 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 4.4 \times 10^{-4} \\ & 2.9 \times 10^{-3} \end{aligned}$	b
Cyanogen (308 to $423^{\circ} \mathrm{K}$)	$\begin{gathered} 1.50 \\ \infty \end{gathered}$	$\begin{aligned} & 489 \\ & 174 \end{aligned}$	$\begin{array}{r} 5.89 \\ 7.74 \end{array}$	$\begin{aligned} & 3.92 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 1.8 \times 10^{-5} \\ & 3.0 \times 10^{-5} \end{aligned}$	c
Propadiene $\left(293 \text { to } 353^{\circ} \mathrm{K}\right)$	∞	195	$\underset{\text { (LJ potential gives better fit) }}{7.20}$		6.0×10^{-6}	d
Fluorine $\left(80 \text { to } 250^{\circ} \mathrm{K}\right)$	2.00	$\begin{gathered} 192 \\ 97.4 \end{gathered}$	$\begin{array}{r} 3.63 \\ 4.63 \end{array}$	$\begin{aligned} & 1.81 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 4.4 \times 10^{-4} \\ & 1.3 \times 10^{-3} \end{aligned}$	e

${ }^{\text {a }}$ R. J. L. Andon J. D. Cox, E. F. G. Herrington, and J. F. Martin, et al., Trans. Faraday Soc. 53, 1074 (1957); J. D. Cox and R. J. L. Andon, Trans. Faraday Soc. 54, 1622 (1958) ; A. E. Korvezee, Rec. trav. chim. 72, 483 (1953).
${ }^{\text {b }}$ K. E. MacCormack and W. G. Schneider, J. Chem. Phys. 18, 1269 (1950).
c Reference i, Table I.
${ }^{d}$ Reference i, Table I.
${ }^{e}$ D. White, J. Hu, and H. L. Johnston, J. Chem. Phys. 21, 1149 (1953).
equivalently, $d \rightarrow 0$) the potential reduces smoothly to the Lennard-Jones potential. This can be seen by inserting the result

$$
\begin{equation*}
\lim _{r_{0}{ }^{*} \rightarrow \infty} P_{0}^{*(N)}=N(N+1) r_{0}^{*-(N+2)} \tag{10}
\end{equation*}
$$

into Eq. (9), obtaining

$$
\begin{array}{r}
\epsilon\left[\left(60 r_{0}^{*-5}+12 r_{0}^{*-5}\right) 90 r^{*-11}\right. \\
{\left[9\left(12 r_{0}^{*-5}\right)\left(110 r_{0}^{*-12}\right)\right.} \tag{11}\\
\left.-3\left(20 r_{0}^{*-6}\right)\left(90 r_{0}^{*-11}\right)\right] r^{*}
\end{array}
$$

which reduces to the Lennard-Jones potential.
Second, the rapidity with which the $12-6$ result is approached as $r_{0}{ }^{*}$ increases can be seen from Fig. 2, where σ / r_{0} is plotted as a function of $r_{0}{ }^{*}$, (σ is the finite value of r for which $\phi=0$). The Lennard-Jones potential has the constant value $2^{-1 / 6}(0.89090)$.

Finally, a graphical comparison of the two potentials is made in Fig. 3, where the Lennard-Jones result is plotted along with the spherical shell potential ($r_{0}{ }^{*}=2$) using a common well depth. The effect of shell integration is to narrow the well, an effect more pronounced as $\boldsymbol{r}_{0}{ }^{*}$ approaches one.

2. CALCULATIONS

The result obtained when Eq. (9) is substituted into the standard expression for the second virial coefficient is not integrable analytically. When divided by

$$
2 \pi N_{0} r_{0}^{*} * / 3
$$

the second virial coefficient per mole becomes

$$
\begin{equation*}
B^{*}\left(r_{0}^{*}, T^{*}\right)=\frac{3}{r_{0}^{* 3}} \int_{0}^{\infty} r^{* 2}\left[1-\exp \left(-\phi / \epsilon T^{*}\right)\right] d r^{*} \tag{12}
\end{equation*}
$$

where $T^{*}=k T / \epsilon$. This integral was evaluated by a

Table III. Potential parameters for polar molecules (LJ values indicated by $r_{0}{ }^{*}=\infty$).

Compound	$r_{0}{ }^{*}$	$\epsilon / k\left({ }^{\circ} \mathrm{K}\right)$	$r_{0}(\mathrm{~A})$	$d(\mathrm{~A})$	σ^{2}	Reference
Acetone	1.20	817	8.90	7.41	3.3×10^{-4}	a
(300 to $403^{\circ} \mathrm{K}$)	∞	150	14.9	0.00	5.5×10^{-4}	
Methyl chloride	1.50	566	5.47	3.65	3.7×10^{-5}	b
(239 to $450^{\circ} \mathrm{K}$)	∞	180	8.03	0.00	4.5×10^{-4}	
Methyl fluoride	1.50	573	4.23	2.82	8.9×10^{-6}	c
(273 to $423^{\circ} \mathrm{K}$)	∞	183	6.13	0.00	1.2×10^{-4}	
Phenyl fluoride	1.50	954	5.59	3.72	8.6×10^{-6}	d
(318 to $623^{\circ} \mathrm{K}$)	∞	250	9.72	0.00	4.2×10^{-4}	
Pyridine	∞	184	12.6	0.00	9.4×10^{-5}	e
(347 to $438^{\circ} \mathrm{K}$)	(LJ potential gives better fit)					

[^5]Table IV. Comparison of ϵ / k with critical temperatures.

Compound	$r_{0}{ }^{*}$	$\epsilon / k\left({ }^{\circ} \mathrm{K}\right)$	$T_{c}\left({ }^{\circ} \mathrm{K}\right)$	$\epsilon / k T_{c}$ Reference	
Silicon tetrafluoride	1.30	621	259	1.6	a
Neopentane	1.50	811	434	1.9	b
Perfluorocyclobutane	1.50	599	388	1.5	c
Carbon tetrafluoride	1.70	322	228	1.4	d
Cyclopropane	1.70	635	398	1.6	e
Krypton	1.70	366	209	1.7	f
Sulfur hexafluoride	1.70	434	319	1.3	g
Tetramethylsilane	1.70	534	458	1.3	h
Sulfur hexafluoride	2.00	335	319	1.2	i
Methane	2.50	215	191	1.1	j
Xenon	3.00	292	290	1.0	k

a S. D. Hamann and J. A. Lambert, Australian J. Chem. 7, 1 (1954).
${ }^{b}$ T. Ishikawa, Bull. Chem. Soc. Japan 28, 515 (1955).
${ }^{\text {a }}$ D. R. Douslin, R. T. Moore and G. Waddington, J. Phys. Chem. 63, 1959 (1959).
${ }^{\text {d }}$ See reference a, this table.
e H. S. Booth and W. C. Morris, J. Phys. Chem. 62, 875 (1958).
i E. Mathias, C. A. Crommeln, and J. J. Meihuizen, Physica 4, 1200 (1937).
E See reference a, this table.
${ }^{\text {h }}$ J. H. Perry, Editor, Chemical Engineers' Handbook (McGraw-Hill Book Company, Inc., New York, 1950), Jrd ed., p. 166.
${ }^{i}$ See reference a, this table.
; K. S. Pitzer, D. Z. Lippmann, R. F. Curl, Jr., C. M. Huggins, and D. E. Petersen, J. Am. Chem. Soc. 77, 3433 (1955).

* See reference b, this table.
modification of the trapezoidal rule ${ }^{12}$ to an estimated accuracy of 0.0001 in B^{*}. The values of $r_{0}{ }^{*}$ range from 1.2 to 4.0 , and those for T^{*} from 0.2 to 400 . In the Appendix the values of B^{*} are tabulated corresponding to the ranges cited above, and where, for comparison, the values for the Lennard-Jones potential are included (note that the 6-12 results included here are smaller by a factor of $\sqrt{2}$ than those compiled by Hirschfelder et al. ${ }^{13}$ due to reduction by $2 \pi N_{0} r_{0}{ }^{3} / 3$ rather than $2 \pi N_{0} \sigma^{3} / 3$).
The potential parameters were determined by a modification of the Lennard-Jones method, ${ }^{14}$ in which $\Delta T, \Delta B$, and $r_{0}{ }^{*}$ (from among those tabulated), were chosen to minimize

$$
\begin{align*}
\sigma^{2}\left(r_{0}^{*}, \Delta T, \Delta B\right)= & \frac{1}{M-1} \sum_{j=1}^{M}\left[\log B_{j}\left(T_{j}\right)-\Delta B\right. \\
& \left.-\log B_{j}^{*}\left(r_{0}{ }^{*}, \log T_{j}-\Delta T\right)\right]^{2} \tag{13}
\end{align*}
$$

consistent with M data points. This amounts to minimizing the sum of the squares of the vertical deviations on a $\log |B|$ vs $\log T$ plot. The quantities ΔT and ΔB are related to the potential parameters by the expressions

$$
\begin{equation*}
\Delta T=\log (\epsilon / k), \quad \Delta B=\log \left(\frac{2}{3} \pi N_{0} r_{0}^{3}\right) . \tag{14}
\end{equation*}
$$

In many cases a subjective choice of the parameters by visual comparison results in two or more sets of constants, and to avoid this problem we chose to select

[^6]those parameters for which the computer determined σ^{2} to be a minimum; this results in an unambiguous assignment of the potential parameters.
In Table I the results for spherical nonpolar molecules are presented; in Table II, nonspherical, nonpolar molecules and in Table III, polar molecules. It should be noted that in only two cases-pyridine and propadiene-does the Lennard-Jones potential seem better, and for both of these the temperature range was small, less than 100°. The majority of the results indicate that the spherical shell potential is a general improvement over the Lennard-Jones potential, when the second virial coefficient is the discriminant.

3. COMPARISONS WITH EXPERIMENT

The improved agreement noted above could be misleading, since the three parameter spherical shell potential is certainly more flexible than the LennardJones. The view that the spherical shell model represents an improvement can be better supported by comparisons with other types of data. It would be nice if comparisons with transport properties were possible, but the effort required to evaluate the collision integrals does not seem justified at present. It might be expected that transport properties for the spherical shell model would compare reasonably with experiment, since such

Fig. 4. Comparison of experimental intramolecular distances with the spherical shell diameter d as determined from second virial coefficient data. [Small circles are drawn to represent distance from the molecular centers. Large circles of diameter d (to the same scale) are included for each compound.]

Table V. Values of r_{0} from density and virial coefficient data.

Compound	(All rogiven in A)					
	Temperature	Density (g/cc)	r_{0}, density	$r_{0} \mathrm{LJ}$	$r_{0} 8 \mathrm{ss}$	Reference
Carbon tetrafluoride	$-184{ }^{\circ} \mathrm{C}$ (mp)	1.96	4.72	5.29	4.55	a
Cyclopropane	$-79^{\circ} \mathrm{C}$ (L)	0.720	5.16	6.84	4.41	b
Krypton	$-153^{\circ} \mathrm{C}$ (bp)	2.155	4.50	4.00	3.41	c
Methane	$-164^{\circ} \mathrm{C}$ (L)	0.415	4.49	4.43	3.97	d
Neopentane	$0^{\circ} \mathrm{C}$ (L)	0.613	6.51	8.49	5.26	e
Perfluorocyclobutane	$30^{\circ} \mathrm{C}(\mathrm{L})$	1.4506	6.87	7.92	6.22	f
Silicon tetrafluoride	$-87^{\circ} \mathrm{C}$ (L)	1.629	5.31	6.31	4.12	g
Sulfur hexafluoride	$-39^{\circ} \mathrm{C}$ (L)	1.79	5.76	6.35	5.18	h
Tetramethylsilane	$20^{\circ} \mathrm{C}$ (L)	0.645	6.85	9.80	7.16	i
Xenon	$-109^{\circ} \mathrm{C}(\mathrm{bp})$	3.06 mp , melting point	4.65 boiling point	$\begin{aligned} & 4.61 \\ & \text { quid } \end{aligned}$	4.30	j

${ }^{3}$ N. A. Lange, Editor, Handbook of Chemistry (McGraw-Hill Book Company, Inc., New York, 1961), 10th ed., p. 452.
${ }^{b}$ See reference a, this table, p. 470.
${ }^{c}$ C. D. Hodgman, Editor, Handbook of Chemistry and Physics (Chemical Rubber Publishing Company, Cleveland, Ohio, 1959), 41st ed., p. 590.
${ }^{d}$ See reference c , this table, p. 1090.
${ }^{e}$ See reference c, this table, p. 1176.
${ }^{\text {f }}$ D. R. Douslin, R. T. Moore, and G. Waddington, J. Phys. Chem. 63, 1959 (1959).
${ }^{2}$ J. H. Simons, Editor, Fluorine Chemistry (Academic Press Inc., New York, 1950), Vol. I, p. 77-118.
${ }^{\text {b }}$ See reference a, this table, p. 316.
${ }^{\text {i }}$ See reference c , this table, p. 1220.
${ }^{\text {; }}$ See reference a, this table, p. 328.
comparisons are known for the $7-28$ potential ${ }^{15}$ which, like the spherical shell potential, has a deeper and narrower well then the corresponding 6-12 potential. Subsequently, we will restrict ourselves to the following kinds of data: (1) the critical temperatures of the compounds in question, (2) values of r_{0} obtained from the density of the liquid, assuming a closest-packed arrangement, (3) the known interatomic distances in the molecules.

For molecules having the same value of $r_{0}{ }^{*}$, a corresponding states argument can be constructed from which one infers that $T_{c}{ }^{*}\left(k T_{c} / \epsilon\right)$ should be a constant. The relevant information for the spherically symmetric molecules is contained in Table IV. A general decrease in $\epsilon / k T_{c}$ with increasing $r_{0}{ }^{*}$ is evident, and serves to emphasize the fact that the attractive part of the well is less important as the well becomes narrower. Assuming the experimental data to be correct and the potential reasonable, the behavior noted in the entries for $\epsilon / k T_{c}$ in Table IV may reflect the fact that the nearest neighbor separation is much smaller at the critical point than at the low densities used to determine $B(T)$. In the critical region the potential is surely dependent upon angle as well as distance.

One would expect the intermolecular separations in a liquid at low temperatures to be on the order of r_{0}. It is true that vibrations tend to increase the separation, but the effect of neighbors beyond the first coordination shell is to diminish the separation; since both

[^7]effects are small, ${ }^{16}$ we will neglect them. We have used the density data entered in Table V to compute r_{0} based on the assumption of closest-packing. The values of r_{0} were determined from the easily derived equation, $r_{0}=1.329(M / D)^{\frac{3}{3}}$, where M is the molecular weight, D the density in g / cc, and r_{0} is in Angstroms. Also included in Table V are the values of r_{0} from the spherical shells potential and from the Lennard-Jones potential. Assuming that the nearest-neighbor separation is r_{0}, it is clear that the value of \boldsymbol{r}_{0} computed for the closestpacked arrangement is an upper bound on r_{0}, because for a less efficient packing the molecules are necessarily smaller. For several of the compounds listed in Table V, the Lennard-Jones value of r_{0} greatly exceeds the closest-packed value, while the values from the spherical shells potential are generally smaller and thus in better agreement with our expectations.

Finally, interatomic distances are known quite accurately from x-ray and electron diffraction, and we may compare these data ${ }^{17}$ with the values of d determined from virial coefficient data for the spherical shell potential. In Fig. 4 we have drawn schematically the

[^8]Table VI. Values of $B^{*}\left(r_{0}{ }^{*}, T^{*}\right)$.

r *							

Table VI (continued)

$T^{*} \mathbf{r o}^{*}$	1.20	1.30	1.40	1.50	1.60	1.70	1.80
1.55	0.56255	0.39656	0.25924	0.14484	0.04860	-0.03317	-0.10331
1.60	0.57456	0.41322	0.27977	0.16861	0.07511	-0.00434	-0.07249
1.65	0.58569	0.42867	0.29882	0.19066	0.09970	+0.02241	-0.04387
1.70	0.59604	0.44304	0.31653	0.21117	0.12256	0.04729	-0.01727
1.75	0.60568	0.45642	0.33304	0.23028	0.14388	0.07048	+0.00753
1.80	0.61468	0.46893	0.34846	0.24815	0.16380	0.09216	0.03071
1.85	0.62311	0.48063	0.36289	0.26487	0.18246	0.11245	0.05241
1.90	0.63101	0.49161	0.37644	0.28056	0.19995	0.13149	0.07278
1.95	0.63843	0.50193	0.38916	0.29530	0.21639	0.14939	0.09194
2.00	0.64542	0.51163	0.40114	0.30918	0.23188	0.16624	0.10995
2.10	0.65821	0.52943	0.42310	0.33462	0.26027	0.19713	0.14299
2.20	0.66965	0.54534	0.44273	0.35738	0.28566	0.22478	0.17257
2.30	0.67993	0.55964	0.46039	0.37785	0.30851	0.24964	0.19918
2.40	0.68921	0.57255	0.47634	0.39635	0.32915	0.27211	0.22322
2.50	0.69762	0.58427	0.49082	0.41313	0.34788	0.29251	0.24506
2.60	0.70529	0.59495	0.50401	0.42843	0.36496	0.31110	0.26495
2.70	0.71229	0.60470	0.51607	0.44242	0.38058	0.32811	0.28315
2.80	0.71871	0.61366	0.52713	0.45525	0.39491	0.34372	0.29986
2.90	0.72462	0.62189	0.53732	0.46707	0.40811	0.35810	0.31525
3.00	0.73007	0.62950	0.54672	0.47798	0.42030	0.37138	0.32946
3.10	0.73511	0.63653	0.55542	0.48808	0.43158	0.38366	0.34263
3.20	0.73978	0.64305	0.56349	0.49745	0.44205	0.39507	0.35484
3.30	0.74413	0.64912	0.57100	0.50617	0.45179	0.40569	0.36620
3.40	0.74817	0.65477	0.57799	0.51429	0.46087	0.41558	0.37679
3.50	0.75195	0.66005	0.58452	0.52188	0.46935	0.42482	0.38669
3.60	0.75548	0.66498	0.59064	0.52898	0.47729	0.43347	0.39595
3.70	0.75878	0.66961	0.59636	0.35364	0.48472	0.44158	0.40463
3.80	0.76188	0.67394	0.60174	0.54188	0.49171	0.44919	0.41280
3.90	0.76480	0.67802	0.60679	0.54776	0.49828	0.45636	0.42048
4.00	0.76754	0.68186	0.61156	0.55329	0.50447	0.46311	0.42771
5.00	0.78796	0.71050	0.64711	0.59466	0.55077	0.51362	0.48184
6.00	0.80040	0.72803	0.66893	0.62011	0.57929	0.54477	0.51527
7.00	0.80853	0.73954	0.68330	0.63690	0.59817	0.56540	0.53743
8.00	0.81408	0.74745	0.69322	0.64852	0.61123	0.57973	0.55284
9.00	0.81800	0.75306	0.70028	0.65683	0.62060	0.59001	0.56392
10.00	0.82081	0.75713	0.70544	0.66291	0.62748	0.59758	0.57208
20.00	0.82745		0.71915		0.64679		0.59572
30.00	0.82502		0.71647		0.64436		0.59365
40.00	0.82160		0.71171		0.63898		0.58796
50.00	0.81827		0.70687		0.63334		0.58186
60.00	0.81520		0.70235		0.62801		0.57605
70.00	0.81242		0.69821		0.62311		0.57068
80.00	0.80990		0.69443		0.61862		0.56575
90.00	0.80760		0.69098		0.61451		0.56123
100.00	0.80549		0.68781		0.61073		0.55707

Table VI (continued) Lennard-Jones values (see text).

Tr *							

Table VI (continued)

$T^{*}{\underset{0}{*}}^{*}$	1.90	2.00	2.50	3.00	3.50	4.00	∞
2.60	0.22504	0.19026	0.06821	-0.00347	-0.04917	-0.07998	-0.18818
2.70	0.24429	0.21040	0.09155	+0.02175	-0.02274	-0.05274	-0.15810
2.80	0.26195	0.22889	0.11298	0.04490	+0.00154	-0.02773	-0.13047
2.90	0.27821	0.24593	0.13272	0.06625	0.02390	-0.00469	-0.10501
3.00	0.29325	0.26167	0.15095	0.08595	0.04454	+0.01661	-0.08148
3.10	0.30716	0.27625	0.16783	0.10423	0.06367	0.03634	-0.05969
3.20	0.32006	0.28977	0.18353	0.12117	0.08145	0.05465	-0.03945
3.30	0.33207	0.30235	0.19812	0.13697	0.09797	0.07169	-0.02061
3.40	0.34328	0.31408	0.21174	0.15168	0.11341	0.08760	-0.00303
3.50	0.35375	0.32504	0.22445	0.16543	0.12783	0.10245	+0.01340
3.60	0.36355	0.33531	0.23637	0.17830	0.14133	0.11638	0.02879
3.70	0.37273	0.34494	0.24753	0.19038	0.15400	0.12944	0.04323
3.80	0.38136	0.35397	0.25802	0.20174	0.16590	0.14170	0.05680
3.90	0.38948	0.36248	0.26788	0.21242	0.17709	0.15327	0.06957
4.00	0.39713	0.37050	0.27719	0.22251	0.18764	0.16414	0.08161
4.10		0.37806	0.28598	0.23200	0.19760	0.17442	0.09298
4.20		0.38520	0.29428	0.24098	0.20702	0.18412	0.10372
4.30		0.39196	0.30214	0.24948	0.21593	0.19330	0.11389
4.40		0.39835	0.30958	0.25753	0.22438	0.20201	0.12352
4.50		0.40443	0.31663	0.26516	0.23240	0.21028	0.13267
4.60		0.41019	0.32332	0.27241	0.24000	0.21812	0.14135
4.70		0.41567	0.32968	0.27929	0.24722	0.22558	0.14960
4.80		0.42087	0.33574	0.28585	0.25410	0.23268	0.15746
4.90		0.42582	0.34150	0.29211	0.26065	0.23943	0.16494
5.00	0.45442	0.43054	0.34700	0.29806	0.26689	0.24587	0.17207
6.00	0.48982	0.46768	0.39025	0.34493	0.31609	0.29663	0.22833
7.00	0.51331	0.49233	0.41904	0.37619	0.34890	0.33050	0.26593
8.00	0.52966	0.50951	0.43917	0.39805	0.37189	0.35425	0.29234
9.00	0.54144	0.52189	0.45371	0.41390	0.38857	0.37149	0.31155
10.00	0.55012	0.53104	0.46452	0.42568	0.40097	0.38432	0.32589
20.00	0.57555	0.55807	0.49732	0.46201	0.43958	0.42447	0.37150
30.00	0.57367	0.55636	0.49637	0.46159	0.43953	0.42467	0.37259
40.00	0.56789	0.55051	0.49040	0.45560	0.43355	0.41870	0.36669
50.00	0.56163	0.54412	0.48365	0.44869	0.42655	0.41165	0.35947
60.00	0.55564	0.53800	0.47710	0.44194	0.41969	0.40472	0.35229
70.00	0.55010	0.53232	0.47100	0.43564	0.41327	0.39822	0.34553
80.00	0.54501	0.52710	0.46538	0.42982	0.40733	0.39221	0.33926
90.00	0.54035	0.52231	0.46021	0.42446	0.40186	0.38667	0.33348
100.00	0.53605	0.51790	0.45545	0.41952	0.39682	0.38156	0.32815
200.00		0.48716	0.42222	0.38505	0.36163	0.34590	0.29093
300.00		0.46871	0.40231	0.36444	0.34061	0.32466	0.26879
400.00		0.45573	0.38835	0.35002	0.32593	0.30992	0.25339

nonpolar molecules together with a circle of diameter d, preserving the distance of all atoms from the center, but not angle. We see from Fig. 4 that d has about the size one would expect intuitively if d represented the diameter of the sphere swept out by the centers of the peripheral groups during rotation.

We have seen that the spherical shell potential, as an extension of the Lennard-Jones potential, is in general an improvement over the latter for fitting second virial coefficient data. Its distinguishing feature, $r_{0}{ }^{*}$, permits one to calculate distance parameters, d and r_{0}, which are in reasonable accord with other existing data. The energy parameter is harder to validate because comparisons must at present be made with data strongly dependent upon nonspherical contributions to the potential. Even in those cases where calculated results and available experimental data are not in close agreement, the spherical shell potential is interesting in its own right, and may well become more useful in the future as more virial coefficient data of better precision become available.

4. ACKNOWLEDGMENTS

The authors wish to express their gratitude to the University of Michigan Computing Center for making available a large amount of IBM 704 computing time. W. G. H. acknowledges assistance received from the National Science Foundation and the Procter and Gamble Company for their predoctoral grants. Very profitable discussions of this problem were held with Professor C. E. Nordman.

APPENDIX: VALUES OF THE SECOND VIRIAL

COEFFICIENT FOR THE SPHERICAL SHELLS MODEL

In this appendix we cite the Table VI values of

$$
B^{*}\left(r_{0}^{*}, T^{*}\right)
$$

calculated according to Eq. (12). We have also included the Lennard-Jones values given by Hirschfelder et al., ${ }^{13}$ divided by $\sqrt{2}$ because we are using r_{0}, rather than σ, as a reduction parameter. These LennardJones values correspond to $r_{0}{ }^{*}=\infty$. The pertinent dimensionless quantities are

$$
B^{*}=B /\left(2 \pi N r_{0}^{3} / 3\right), \quad r_{0}^{*}=r_{0} / d, \quad \text { and } \quad T^{*}=k T / \epsilon
$$

Active Nitrogen at High Pressure*

J. F. Noxon \dagger
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts

(Received July 6, 1961)

Abstract

A pure nitrogen afterglow has been studied spectroscopically at pressures up to 1 atm and up to several seconds after the discharge. The first positive bands of nitrogen continue to show an unchanged preferential enhancement of bands with $v^{\prime}=11$ at high pressure, but their decay with time, measured photoelectrically, indicates that at high pressure $\mathbf{N}\left({ }^{4} S\right)$ atoms must be removed by a more rapid process than recombination in triple collisions; it is suggested that this may be a two-body reaction with an oxide of nitrogen. Forbidden radiation from O, N, and N_{2} predominates over the first positive bands at high pressure, and a high degree of immunity toward deactivating collisions is shown to be required for the metastable states $\mathrm{N}\left({ }^{2} P\right), 0\left({ }^{1} S\right)$, and $\mathrm{N}_{2}\left(\boldsymbol{A}^{3}{ }^{3}{ }_{u}+\right.$). The absolute intensity and decay of the forbidden radiation indicates that $\mathrm{O}\left({ }^{1} S\right)$ must be created in the afterglow while $N\left({ }^{2} P\right)$, and to some extent $\mathrm{N}_{2}\left(A^{3} \Sigma_{u}{ }^{+}\right)$, survive from the discharge. The observations favor a long radiative lifetime near 1 sec for $\mathrm{N}_{2}\left(A^{3} \Sigma_{u}{ }^{+}\right)$.

I. INTRODUCTION

TNHE majority of work concerned with the active nitrogen afterglow has been carried out at pressures of a few millimeters of mercury or lower ${ }^{1}$; in the present paper we describe observations made on a pure nitrogen afterglow at considerably higher pressures extending up to 1 atm . As a background to the work to be described, we briefly review some of the properties

[^9]of the low-pressure nitrogen afterglow. Specifically we discuss the Lewis-Rayleigh (LR) afterglow which is easily excited at low pressure; we do not discuss the "auroral" afterglow investigated by Kaplan. ${ }^{2}$
The LR afterglow at low pressure is distinguished by its long life and characteristic bright yellow emission which, in the visible, consists of first positive bands ($B^{3} \Pi_{g}-A^{3} \Sigma_{u}{ }^{+}$) of N_{2} originating near $v^{\prime}=11$, with a smaller secondary maximum at $v^{\prime}=6$. Bands with $v^{\prime}>12$ are not observed. Recent work ${ }^{3}$ has re-

[^10]
[^0]: * Based on a dissertation submitted in August, 1961, by William G. Hoover, in partial fulfillment of the requirements for the degree of Doctor of Philosophy at The University of Michigan.
 \dagger Present address: Department of Chemistry, Duke University, Durham, North Carolina.
 ${ }^{1}$ J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, The Molecular Theory of Gases and Liquids (John Wiley \& Sons, Inc., New York, 1954).
 ${ }^{2}$ D. D. Konowalow, M. H. Taylor, and J. O. Hirschfelder, Phys. Fluids 4, 622 (1961).
 ${ }^{3}$ O. Sinanoğlu and K. S. Pitzer, J. Chem. Phys. 31, 960 (1959).
 ${ }^{4}$ N. Bernades and H. Primakoff, J. Chem. Phys. 30, 691 (1959).

[^1]: ${ }^{5}$ E. A. Mason and W. E. Rice, J. Chem. Phys. 23, 843 (1954).
 ${ }^{6}$ A. G. De Rocco and J. O. Halford, J. Chem. Phys. 28, 1152 (1958).
 ${ }^{7}$ G. Mie, Ann. Physik 11, 657 (1903).
 ${ }^{8}$ G. Thomaes, J. chim. phys. 49, 323 (1952).
 ${ }^{9}$ M. Atoji and W. N. Lipscomb, J. Chem. Phys. 21, 1480 (1953).

[^2]: ${ }^{10}$ S. D. Hamann and J. A. Lambert, Australian J. Chem. 7, 1 (1954).

[^3]: ${ }^{\text {a }}$ K. E. MacCormack and W. G. Schneider, J. Chem. Phys. 19, 849 (1951).
 ${ }^{\text {b H. G. David, S. D. Hamann, and R. B. Thomas, Australian J. Chem. 12, } 309 \text { (1959). }}$
 c J. A. Beattie, J. S. Brierly, and R. J. Barriault, J. Chem. Phys. 20, 1615 (1952).
 ${ }^{d}$ H. W. Schamp, Jr., E. A. Mason, A. C. B. Richardson, and A. Altman, Phys. Fluids 1, 329 (1958).
 ${ }^{e}$ G. Thomaes and R. Van Steenwinkel, Nature 187, 229 (1960).
 ${ }^{f}$ J. A. Beattie, D. R. Douslin, and S. W. Levine, J. Chem. Phys. 20, 1619 (1952).
 E H. M. Ashton and E. S. Halberstadt, Proc. Roy. Soc. (London) A245, 373 (1958) ; S. D. Hamann, J. A. Lambert, and R. B. Thomas, Australian J. Chem, 8, 149 (1955).
 ${ }^{\text {h }}$ D. R. Douslin, R. T. Moore, and G. Waddington, J. Phys. Chem. 63, 1959 (1959).
 ${ }^{\text {i }}$ S. D. Hamann, W. J. McManamey, and J. F. Pearse, Trans. Faraday Soc. 49, 351 (1953).
 ${ }^{\text {j S S. D. Hamann, J. A. Lambert, and R. B. Thomas, reference g, this table. }}$
 ${ }^{k}$ See reference a, this table.
 ${ }^{\text {' S. D. Hamann, J. C. Lambert, and R. B. Thomas, reference g, this table. }}$
 ${ }^{m}$ Reference 1, p. 167.

[^4]: ${ }^{11}$ K. S. Pitzer, J. Am. Chem. Soc. 77, 3427 (1955), incorrect beyond the second term.

[^5]: ${ }^{\text {a }}$ J. S. Rowlinson, Trans. Faraday Soc. 45, 974 (1949) J. D. Lambert, G. A. H. Roberts, J. S. Rowlinson, and V. J. Wilkinson, Proc. Roy. Soc. (London) A196, 113 (1949) ; R. E. Pennington and K. A. Kobe, J. Am. Chem. Soc. 79, 300 (1957).
 ${ }^{\text {b }}$ J. O. Hirschfelder, F. T. McClure, and I. F. Weeks, J. Chem. Phys. 10, 201 (1942).
 ${ }^{\text {c }}$ R. J. Lunbeck and C. A. ten Seldam, Physica 17, 788 (1951).
 ${ }^{\text {d }}$ D. R. Douslin, R. T. Moore, J. P. Dawson, and G. Waddington, J. Am. Chem. Soc. 80, 2031 (1958).
 ${ }^{\text {e }}$ Reference a, Table II; J. P. McCullough, D. R. Douslin, J. F. Messerly, I. A. Hossenlopp, T. C. Kincheloe, and G. Waddington, J. Am. Chem. Soc. 79 4289 (1957).

[^6]: ${ }^{12}$ W. E. Milne, Numerical Calculus (Princeton University Press, Princeton, New Jersey, 1949), p. 119.
 ${ }^{13}$ Reference 1, p. 1114.
 ${ }_{14}$ J. E. Lennard-Jones, Proc. Roy. Soc. (London) A106, 463 (1924).

[^7]: ${ }^{15}$ J. C. McCoubrey and N. M. Singh, Trans. Faraday Soc. 55, 1826 (1959).

[^8]: ${ }^{16}$ Reference 1, p. 1036.
 ${ }^{12}$ D. R. Douslin, R. T. Moore and G. Waddington, J. Phys. Chem. 63, 1959 (1959), $\mathrm{C}_{4} \mathrm{~F}_{8} ;$ H. Braune and S. Knoke, Z. physik. Chem. $21 \mathrm{~B}, 297$ (1933), SF_{6}; the remainder from, L Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1948), 2nd ed.; A. F. Wells, Siructural Inorganic Chemistry (Oxford University Press, New York, 1950), 2nd ed.; Y. K. Syrkin and M. E. Dyatkina, Structure of Molecules and the Chemical Bond (Butterworths Scientific Publications, London, 1950).

[^9]: * Research supported by the Air Force Cambridge Research Center.
 \dagger Present address: Pierce Hall, Harvard University, Cambridge, Massachusetts.
 ${ }^{1}$ S. K. Mitra, Active Nitrogen-A New Theory (Association for the Cultivation of Science, Calcutta, 1945).

[^10]: ${ }^{2}$ J. Kaplan, Phys. Rev. 54, 176 (1938).
 ${ }^{3}$ See, e.g., K. D. Bayes and G. B. Kistiakowsky, J. Chem. Phys. 32, 992 (1960).

