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Suppose H is the Hamiltonian that generates time evolution in an N-body, spin-dependent,
nonrelativistic quantum system. If r is the total number of independent spin components and the
particles move in three dimensions, then the Hamiltonian H is an r X r matrix operator given by
the sum of the negative Laplacian — A, on the (d = 3N )-dimensional Euclidean space R plus a
Hermitian local matrix potential W {x). Uniform higher-order asymptotic expansions are derived
for the time-evolution kernel, the heat kernel, and the resolvent kernel. These expansions are,
respectively, for short times, high temperatures, and high energies. Explicit formulas for the
matrix-valued coefficient functions entering the asymptotic expansions are determined. All the
asymptotic expansions are accompanied by bounds for their respective error terms. These results
are obtained for the class of potentials defined as the Fourier image of bounded complex-valued
matrix measures. This class is suitable for the N-body problem since interactions of this type do
not necessarily decrease as |x|-» o0 . Furthermore, this Fourier image class also contains periodic,

almost periodic, and continuous random potentials. The method employed is based upon a
constructive series representation of the kernels that define the analytic semigroup

{e ~*#|Re z> 0}. The asymptotic expansions obtained are valid for all finite coordinate space
dimensions d and all finite vector space dimensions 7, and are uniform in R? X R?. The order of
expansion is solely a function of the smoothness properties of the local potential W (x).

1. INTRODUCTION AND SUMMARY

Take H to be the self-adjoint semibounded operator
that generates time evolution for the N-body problem in non-
relativistic quantum mechanics and let the complex variable
z take values in the open right half-plane D, then the family
of bounded operators

{e-*H|zeD} (1.1)

constitutes the analytic semigroup induced by H. The re-
striction of z to the positive real axis leads to the one-param-
eter semigroup associated with the heat transport equation
and the partition function of the canonical ensemble. In the
heat transport problem the positive value of z is the time
variable, whereas in the partition function z is proportional
to the inverse temperature of the system. On the other hand,
if z belongs to the boundary dD and takes on purely imagi-
nary values then the family of operators (1.1) forms the one-
parameter unitary group which describes time evolution of
the system.

A second, equally basic, family of bounded operators
are the resolvent operators

((H—A)"YAeC, ImA #0) (1.2)

that appear in the time-dependent formulation of quantum
mechanics. This paper studies the uniform asymptotic ex-
pansions of the coordinate-space kernels of both operator
families (1.1) and (1.2). For the analytic semigroup
{e ~*¥|z e D} the asymptotic expansion variable is |z|—O0.
Physically these expansions are applicable for short times or
high temperatures. Asymptotic expansions for the resolvent
kernels then result from a Laplace transform of the analytic
semigroup kernels. The resolvent kernel expansions are val-
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id for [A |->o0c, or convergent for high energies.

Recently the first of these two problems, (1.1}, has been
discussed at length for the case of scalar fields by Osborn and
Fujiwara in Ref. 1 (hereafter OF). Let x be the generic point
in Euclidean space R? that specifies the location of all N
particles in the system. If each individual particle moves in
three dimensions then the Euclidean space dimension is
d = 3N. The scalar problem for local potentials is realized if
the Hamiltonian H is taken to be the self-adjoint extension in
L *R?) of the quadratic elliptic differential form

H, = —q4, +vx). (1.3)
Here 4, denotes the Laplacian in R? and v: R? >R is the
perturbing local potential. In terms of the rationalized value
of Planck’s constant #i, and the particle mass m, the quantum
scale factor is

q="7#/2m. (1.4)

The notationally simplifying device of setting ¢ = 1 is avoid-
ed because it is illuminating to exhibit explicitly the ¢ depen-
dence of the heat-kernel and resolvent-kernel expansions
and thereby see the semiclassical content of these expan-
sions.

However, the general N-body problem is not described
by scalar fields unless all the particles are bosons with spin
zero. If the ith particle has spin s;, the resulting N-body wave
function is a vector-valued complex function of dimension

r= i(m,.+1)

i=1
and an element of the space L ?(R?,C"). In this circumstance
the local perturbation becomes for each x an Hermitian ma-
trix W (x}: C"—C’, and the scalar Laplacian — A, general-
izes to — A, I, where I is the identity on C". The matrix-
valued analog of (1.3) assumes the form
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Hy= —qd, 1+ W(x) (1.5)
The appearance of (1.5) seems to assume that all NV particles
have common mass m. This restriction is apparent rather
than real since a scale transformation of the particle coordi-
nates always allows one to write the most general diagonal
kinetic energy operator in the form — g4, . The Hamilton-
ian operator H which defines the physical quantum system is
the self-adjoint extension of H ,, in L (R*,C").

Denote the kernel of the semigroup element e ~*# by
U(x.y;z): RY X R? X D—C™". Similarly if p{H ) is the resol-
vent set of H, we define the kernel of the resolvent operator
(H —A)"'byR (x,p;A )forallA € p(H ). Thebasic objective of
this paper is to derive the precise forms assumed by the natu-
ral asymptotic expansions of U (x,p;z) and R (x,y;4 ). Specifi-
cally, we obtain the existence of the kernels, the analytic
form (in z) of the asymptotic expansions, explicit closed ex-
pressions in terms of W (x) of all the coefficient matrices that
enter the asymptotic expansions, and RY XR? uniform
bounds for the remainder terms. In fact we show that the
derivation of these uniform asymptotic expansions requires
only continuity and differentiability properties in x of the
potential ¥ (x). In particular, there is no necessity to assume
that W (x) decays as |x|—> o0 . The restriction we doimpose on
the allowed form of W is that the potential be the Fourier
image of a complex bounded 7 X r matrix measure, 1, on R?.

The analytic semigroup (1.1) is characterized uniquely
by its associated family of kernels { U (x,y;z)|z € D }.Our ap-
proach to determining the existence and the properties of
U (x,y;z)is constructive. Let Hy denote the free kinetic energy
operator (the self-adjoint extension of — g4, 7). Weestablish
that the kernel analog of the Dyson series®* for ¢ ~** in
terms of time-ordered parametric integrals of e ~*#° and W
leads to an absolutely and uniformly (in R? X R?) conver-
gent series representation of U (x,p;z). As an immediate by-
product of this result, it follows that if W (x) has uniformly
bounded derivatives of order 2, then U (x,p;it /#), wheret € R
and represents time displacement, constitutes the funda-
mental solution of the Schrodinger equation

iﬁg; Ulxysit /8) = H, Ulxpsit /8) VxpyeRe (1.6)

obeying the delta-function initial condition
U (x,p;it /B)—b(x — y)I as 1—0. (1.7)

Parallel conclusions apply to the heat-conduction problem.
The heat-conduction or diffusion problem results if one for-
mally replaces the imaginary time variable with 8> 0. Again
U (x,y; B)is the fundamental solution of the heat problem. In
particle physics terminology, U (x,y;it /#)is the propagator of
the N-body system.

The center of interest in this investigation is the small z
uniform asymptotic expansion that U (x,y;z) admits. It is well
known that these kernels are highly singular in the limit
z—0. This is evident from the formula for the free heat kernel
defined by H,,:

Uplx,p;2) = [(m;)m exp( = ';‘z;y ‘2)] I (18

Here |x —y| represents the Euclidean distance in R
between x and y. This convolution kernel has an essential
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singularity at z = 0. Thus, asymptotic expansions of U (x,y;z)
for small z require that this essential singularity structure be
explicitly factored out in order to expose a smooth function
of z. For this reason it is useful to define a function
F(xp;z):R? XR? X D~>C™" by

Uxy;2) = Uplx.y;2)F (x.p;2). (1.9)
Both U, and F are r X r matrices. In (1.9} we adopt the hereaf-
ter standard convention that UyF implies the matrix pro-
duct. Now if the Dyson series for U (x,p;z) is written in the
appropriate form, one finds an explicit series expansion for
F. The F-series is uniformly convergent on all compact sub-
sets of D (the closure of D). Asa consequence it follows that
F (x,y;z)is analyticin D, continuous in D, and F (x,y;0) = I for
allx,y e R9.

A further restructuring of the F-series leads to the
asymptotic expansion

z 122 ) + Bl

Here, M is an integer proportlonal to the number of contin-
uous bounded partial derivatives that W (x) supports. The
error term is of order O (|z|* * ') and has a uniform bound in
R? xR?. In addition, identity (1.10) can be differentiated
with respect to x, y, or z as often as desired and the resulting
equation is also an asymptotic expansion provided W (x) is
sufficiently smooth. This flexible nature of (1.10) permits one
to use it as the basis for calculating the small time behavior of
correlation functions for an arbitrary pair of observables.
The expansion (1.10) has been analyzed extensively in the
literature* for a wide variety of operators H. Generally it is
known that the coefficients P, [P,(x,y) = I'] are functions of
W (x) and its partial derivatives up to order 2(» — 1). A novel
feature of the constructive approach is that one can deter-
mine for every n explicit expressions of the coefficient matri-
ces P, (x,y). These expressions are not only applicable when
x = y, but valid for all x,y € R?. Another useful aspect of the
constructive approach is that one can prove that expansion
(1.10) is uniform in arg z. Thus the short time expansions are
on exactly the same analytical footing as the high tempera-
ture expansions. In passing we note that the x,y uniform
character of expansion (1.10) is a necessary ingredient for the
correct description of N-body systems that incorporate the
wave function symmetrization required by either fermion or
boson statistics.

The study of the resolvent kernel proceeds by using the
Laplace transform of U (x,y;z) to determine R {x,y;z), namely,

R{xyz) = f " AUy B)B, xy, Rez<a
(1.11)

where ¢ is any negative lower bound for the spectrum of H.
The condition Re z < ¢ < 0 ensures that the integral in (1.11)
is absolutely convergent. The resolvent kernel is holomor-
phic in a much larger domain of z, namely z € p(H ). Identity
(1.11) may be analytically continued to a subset of this larger
domain in C by changing the variable of integration so that
the integration contour along the positive real axis is rotated
until it becomes a complex ray with origin at 8 = 0 and hav-
ing constant arg 8 € (n/2, — w/2). We find, upon using the
analytically extended form of (1.11), that the Laplace image

Fixyz) = (1.10)
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of the heat-kernel asymptotic expansion (1.10) becomes
R(xy;z) = ﬁ = p ey (i)n Ro(x.y;2)
n=0 n! Jz

+ Tyxy:z), x#y. (1.12)
Here, Ry(x.y;z) denotes the kernel defined by (H, —z)~".
This free resolvent is an analytic function of z in the open cut
plane C\R™* and for H,= — g4, it is given by a Bessel
function multiplied by 1.

Although it is not so apparent from the form of (1.12),
the small parameter in the expansion is z~ . Furthermore if
M + 2>d/2 then the error term in (1.12) has a uniform
bound in R? X R? and is of the order (|z| ="} +2~9/2_ The
boundedness of the error T, as x—y implies that the singu-
larities of R (x,y;z), Ry(x.p;z), and the derivatives of R(x,y;z)
in the neighborhood of the diagonal x = y are identical on
both sides of (1.12). The uniformity in z of (1.12) can be char-
acterized as follows. For any & € (0,7/2) let V5 denote the
subset of C given by

{zlze C, arg(z + ||u||(sin 8)~") € (28,27 — 28)}.

Clearly V; is the complement of a wedge symmetric about
the positive real axis with its apex at z=_— [|u||(sin &)~
The expansion {1.12) is uniform for all z € V. Although the
opening angle of the wedge, 46, is arbitrary and can be made
as small as desired, there will always be a strip about the
positive real axis disjoint from ¥ . Thus the values of R (x,p;z)
as z converges to points on the spectrum, o{H ), are not esti-
mated by (1.12). This is to be expected since stating only the
smoothness properties of W (x) is insufficient information to
determine the detailed nature of the spectrum. In examples
where formula (1.12) has been continued to the spectral
boundary (such as Buslaev’s treatment® of R®), extensive in-
formation about the |x|—co decay of W(x) is required in
order to extend the z domain of (1.12) to the boundary of the
open domain C\o(H ).

A balanced overview of the results outlined above
emerges if we consider their connection to the spectral
asymptotics of H. Local geometrical spectral asymptotics is
the study of the relationships that link three basic structures
generated by the differential operator H ,,. These structures
are (a) the local coefficient functions that define H ,, and the
boundary conditions which are obeyed; (b) the Weyl expan-
sion'®!! predicting the density of eigenvalues A, satisfying

HY, =A%, |¥l=1, (1.13)

as A,— w0, or the appropriate generalization of the Weyl ex-
pansion when the spectrum has a continuous component;
and (c) the asymptotic expansions of the integral kernels for
the basic operator functions of H such as the semigroup or
resolvent operators.

In general, the coefficient functions that enter H ,,
come from the functions that define the Laplace—Beltrami
operator for a non-Euclidean manifold (either compact or
noncompact), the functions appearing in the first-order
terms (such as the magnetic vector potential), and the poten-
tial W (x}. In our N-body problem the manifold is flat so the
Laplace-Beltrami operator reduces to the Laplacian, the
first-order derivative terms are absent, and so the only non-
trivial coefficient function is W (x). The boundary condition
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for R? reduces to the requirement that H ,, have a unique
self-adjoint extension in L *(R?,C"). If the manifold support-
ing the functions on which H , acts is noncompact (as in the
RY case), characteristically one finds that the spectrum has a
continuous part. The appropriate extension of the Weyl
problem is to replace the study of the density of eigenvalues
by the asymptotic expansion of the spectral kernels e(x,y;4 )
asA—co.

In essence the asymptotic expansions (1.10) for the heat
kernel and (1.12) for the resolvent kernel display the relation-
ship between (a) and (c). In particular, the explicit expres-
sions we derive later for P, (x,y) show how the local form of
H ,, controls these two expansions. In this sense this paper is
a special application of the local geometrical asymptotics
program. The approach emphasized in this work is to deter-
mine first (via the Dyson expansion) the detailed properties
of the semigroup family of kernels and then by various trans-
forms obtain the other asymptotic expansions of interest.

It is worth observing that the connection (a)}—(b), al-
though of fundamental importance, is still not well under-
stood in the noncompact domain problems. Following the
technique introduced by Carleman,'? most investigations of
the large A behavior of e(x,y;4 ) have utilized the Tauberian
theorems.'>~'¢ This approach is capable of predicting only
the leading-order behavior of e(x,y;4 ). An alternate method
of investigating the continuum-Weyl problem and obtaining
a higher-order asymptotic expansion was developed by Os-
born and Wong'” (hereafter OW). The technique of OW is to
obtain the link (a)—(b) by the chain of results (a}—(c) then
(c)—(b). In particular, one may prove that the kernel U {x,y;z)
has the spectral representation’”®

Uxypz) = J e *de(xyA), zeD. (1.14)
o(H)

In order to implement the stage (c}—(b) the inverse of this

transform is required, namely,

+ i

c>0. (1.15)

xh) = o= ? Ulxizdz,

The validity of (1.15) is established in OW. This formula has
the feature of transforming semigroup kernels into spectral
kernels.

Under the hypothesis that the continuous spectrum
contribution to U (x,y;it /i) has nice decay properties as
t— + oo (this assumption just reflects the physically reason-
able expectation that particles and stable clusters of particles
that belong to the continuum of H will diffuse as t— + )
then e(x,y;A ) admits a higher-order Weyl expansion given by

eop)= 3 P () st
+ EylxpiA). (1.16)

Here ey(x,y;A ) is the spectral kernel of Hamiltonian H, and is
a known analytic function of A. This expansion is uniform
within compact regions of R? XR?. The error term is of
order O (|4 | ~ %), where N depends in a complicated way on
the number of bounded derivatives of W (x) and on the nature
of the t-decay of the continuous spectrum contributions to
U (x,y;it /#i). A more detailed overview of local geometrical
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spectral asymptotics may be found in the excellent review of
Fulling.*

The construction of this paper is as follows. In Sec. II
the complex matrix-valued measure representation of the
potential W (x) is introduced. Section III describes the con-
structive series representation of the kernel U (x,y;z) and ob-
tains the x,y-uniform asymptotic expansion associated with
Eq. (1.10). Furthermore, under appropriate smoothness re-
strictions on W (x), it is established that U (x,y;it /#i) and
U (x,y; B) are fundamental solutions of their respective par-
tial differential equations. The explicit formulas for the coef-
ficient matrices P, (x,y) are determined. Finally in Sec. IV we
utilize an analytic continuation of the Laplace transform to
find thelarge |4 | expansion of the resolvent kernels R (x,y;A4 ).
Formulas bounding the total error in the resolvent asympto-
tic expansion are derived. :

Ii. FOURIER IMAGE POTENTIALS

For a particular class of potentials W (x), the operator
H ,, is studied. Let .# (R?,C"™") be the set of all bounded
complex matrix-valued measures defined on the Borel field
% on R?. Each measure u € #, defines a matrix-valued
potential function by the Fourier transform of x,

Wix)= f e duk),

where k € R? and kx denotes the scalar product in R?. The
equality above is understood as that appropriate for the
space of complex matrices, C"™*". If v,y = 1,2,...,r specify the
row and column of a matrix, then (2.1) implies

W,,(x)= ,Ld e~du, k) alwvy.

Each 4,, is a bounded complex-valued measure on #Z and
each vy component of the matrix W is a complex-valued
function of x. Hereafter, in order to simplify our notation the
integration domain R? will be omitted.

We employ the symbol |-| to represent several different
norms. If the argument of |-| is in C, then |.| denotes the
absolute value; if the argument is inC” or C™*” then the norm
is the appropriate Euclidean vector length. For example, if E
is any set in 4,

we={3 3 lp,,,(E)P]”.

v=1y=1

(2.1)

(2.2)

(2.3)

A somewhat different meaning of the absolute value sign
applies to |u|. Here, || is defined to be the total variation of
U, namely the non-negative scalar-valued set function on #
given by

Hl(E)=sup 3 |u(E,),

i=1

(2.4)

where the supremum is taken over all partitions {E,} of E.
The statement that pge.# is bounded means that
|£|(R?) < oo. In fact, the total variation |u| may be used to
define a norm ||-|| for .# if we set

leel] = e | (R?). (2.5)
Equipped with this norm .# is a Banach space." It is clear
from the definition of (2.1) that the Fourier image of .# con-
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sists of R —»C"*" functions that are uniformly bounded and
uniformly continuous. In particular,

|W(x)|<llel, VxeRe. (2.6)
The transformation (2.1) defines a class of potentials

F = [W(x) = je”‘" dp(k )| € /]

The elements of the spaces .# and .# are in a one-to-one
correspondence. This is a consequence of the uniqueness?® of
the transformation (2.1) that states W {x) = 0 if and only if
# =0. Again by adjoining norm ||u|| to # one defines a
Banach space.
Consider the subset of potentials in % that are Hermi-
tian matrices for all x € R?. For a set E € # the reflected set
— Eisdefinedtobe —E= [k |keR? —keE}. We say
the measure u satisfies the reflection property if

ul—E)=p*E), VEe %, (2.8)

where * denotes the adjoint on C™*". Then the Fourier trans-
form of a u satisfying the reflection property is a Hermitian
matrix for all x. And, conversely an element W e & that is
Hermitian for all x has an associated measure u € .4 that
obeys the reflection property. Define the subset of .4 that
consists of measures u of the type (2.8) as .#* and let ¥ * be
the Fourier image of .#*. The potentials W e . * are the
physically significant ones since they comprise all the Her-
mitian potentials in 7.

The asymptotic expansions derived in the next several
sections are a manifestation of the smoothness of the poten-
tials W (x). For this reason it is convenient to further classify
the potentials in % * into subclasses in which derivatives up
to order M are bounded. We define F%C.F*
M=0,1,2,.., tobe

2.7)

7 = [W|We.9‘"*,fd|y|(k)|k|"<oo, n=0,1,...,M].
(2.9)

In fact, for We 5%, there exists a smallest finite positive
constant X (W,M ) such that

[ d itk i<k WPl n=01...0. 210)

We call K (W,M ) the bound constant of potential # in the
space 7 %.

If DL represents an arbitrary partial derivative in R,
multi-indexed by L =(/,l5....l;), 1;>0, with length
|L| =14 + 1, + -+ 1;, and given by

1, 1
DL= (i) ( d ) (2.11)
ax, dx,
then We 7%, implies
(D W )x)| <K (W,M)Eull, |L|<M. (2.12)

It is useful to decompose the matrix measure x into the
product of the total variation measure |¢| and a matrix func-
tion with unit Euclidean norm.

Lemma 1: Let u € #, then there is a unique |z|-mea-
surable matrix function 4:R?—C">" such that

|d(k)| =1, VkeR?, (2.13)
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and

Jdp(k): fdl,u|(k)A(k), VEe#. (2.14)
E E

Proof: Since p1<|u| the Radon-Nikodym theorem im-
plies the existence of a |¢2|-measurable L '(|u|) function A4 (k ).
The proof that 4 (k ) has Euclidean norm equal to unity fol-
lows from a simple modification of the argument Rudin?!
(Theorem 6.12) gives for the scalar case. a

For scalar problem (r = 1) the potential class ¥ was
introduced by Ito? to study the Feynman path integral re-
presentations of ¢ /%, Later, Albeverio and Héegh-Krohn?
used .# for the same purpose and in a fashion similar to our
treatment of the kernel form of the Dyson series.

Ill. ASYMPTOTIC EXPANSIONS FOR e~

Throughout the remainder of the paper it is always as-
sumed that W e % *. For this class of potentials the Hamil-
tonian H is defined as the self-adjoint extension of H ,, in
L*R?,C"). We also let the symbol W stand for the linear
operator on L %(R?,C") given by multiplication in C” with the
potential function W (x). Inequality (2.6) implies that W has
the operator norm bound || W || <||u||; this in turn means that
H is semibounded with lower bound H> — ||||. Because W
is bounded, the unbounded operators H and H, have com-
mon domains Z(H ) = 9 (H,)CL*R?,C"). Take A = o{H )
to be the spectrum of H and {E; [A € A } to be the unique
family of spectral projectors generated by H. The semiboun-
dedness estimate above tells us that A C[ — ||g||,0). The
analytic semigroup operators are then defined by their spec-
tral integrals

e~ = Je‘”‘dE,l, zeD. (3.1

A
Restricting z = > 0 gives us the heat operator e ~#, Re-
placing H by H, in (3.1) determines the free heat operator
e~ FHo,

Before proceeding with the derivations we introduce a
number of the notational conventions that will be employed.
The Hilbert space on which the semigroup operators act is
& = L*R?,C’). On this space (-,-) represents the inner pro-
ductand ||f|| = (£, f)"/* the associated norm. For example,
if f,g € 77 then these functions have r components [i.c.,
S= (/1 for-n f,), where f; € L 2(R?) and similarly for g] and
the 7 -inner product is

r

(fg)= Y (fi8:)

i=1

(3.2)

where (-,-) is the inner product on L (R?). The general L?
norm for fe L?(R?,C") will be indicated by ||f||,. The nth-
order iterated parametric integrals which enter the Dyson
expansion will be abbreviated by

1 1 1 En 1t
[ae=[ e[ ae["a, (33)
> 0 0 0
and the iterated x4 measure integrals
[ aru= [ dutk,) [ dutk, -1 [t

Note that for differing values of x, and x,, generally
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W (x)W (x2) # W (x,) W (x,), (3.5)

or equivalently du(k,)du(k,)#du(k,)du(k,). This noncom-
mutivity of the potentials W (x,), W (x,) is the most significant
structural distinction with the scalar problem. Our choice of
the Euclidean norm (2.3) for the matrix measures x is made
on the basis that this norm definition for u is the one that
makes the bound estimates for the vector problem closely
parallel to those that enter the scalar case. As a result, we are
able to adopt many of the proofs for the scalar problem with
only minor alterations.

Several simple mathematical functions occur repeated-
ly in our analysis so it is convenient to introduce an abbrevi-
ated notion for them. For i = 1,...,n, let &, € [0,1], set

O (£16,) =min{f)(1 — £,).€,.(1 — &)}, (3.6)
For k; € R? define the polynomials in k, by
0 Eibnikikn) = S Obnlk,  (37)

Im=1

bulbisnikika) = 3 [(1=Eb+ 631k, (9

where k, k,, denotes the scalar product in R?. Furthermore
we denote the scalar free diffusion kernel by

h (x;z) = (472q) ~ /> exp|{ — |x|*/4zq}. (3.9)

The Dyson series for e ~#¥ is obtained by iterating the
identity?*

et == [ gp, e-paye-ta-me(3.10)
(V]

The constructive series representation for U (x,;z) given in
Lemma 2 and Theorem 1 results from the analysis of the x,y
kernel analog of the Dyson series (3.10) followed by an ana-
lytic extension from the positive real axis 8 € (0,0) toz € D.
Except for some minor technical details in handling the vec-
tor norm on €', Lemma 1 permits one to adopt in an obvious
way the proofs given in Ref. 1. We have the following results.

Definition 1: Let We F* For each zeD, let
F(-;2):R? X R*—C"™" be the function defined by the series

Flxyz) = 2 B, (x.y;2), (3.11)

where By(x, y;z) = I and

1

Byl =(—2 [ a% [drweT " ()

Lemma 2: Let We >.7"‘. The function F (x,y;z) has the
following properties.

(i) Let D, be any compact subset of D. The series (3.1 1)is
absolutely and uniformly convergent for all
(xy;2) e R XR? XD,. Furthermore, F,,(x,y;z) has the
bound

|F,, (x,p;2)| el (3.13)

(ii) F (x,p;2) is a C"*” valued holomorphic function in D
and continuous in D. It is jointly continuous in R? X R?.

In order to proceed further, let us define the free analyt-
ic semigroup kernel by

Usxy;z) = h(x —y;2)I, zeD\{0}, (3.14)
where 4 is (3.9). With this notation we have the following
theorem.
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Theorem 1: Let We F*
UR? XR? X(D \ {0})—»C™" by

Uxy;z) = Uglxp;2)F (x,:2).
(i) For all z€ D and all fe 77,

(e~ )x) = fdy Uxypz)fly), aa xeR?. (3.16)
(i) Suppose € R, t #0, and fe L (RY,C" )n%,

€)= [ BUpY) aa xeRe. (317
If f€  then

(e~ itHf)(x) =s-lim dy Ux,yit if ().
Yoo J)y<y

The form of Theorem 1, in particular part (ii), for time-
evolution kernels is the best result that can be expected since
if H is replaced by H,, then (ii) is the standard®® representa-
tion of the free time evolution kernel. Related results on the
existence of time evolution kernels have been obtained by
Kitada,?® Kitada and Kumanogo,?’ Fujiwara,”® and Zel-
ditch.”

Turn now to the problem of demonstrating that
U (x,p;it /f) and U (x,p;f ) are fundamental solutions of their
respective Schridinger and heat partial differential equa-
tions.

Proposition 1: Let W e F ¥, the function U (x,y;it /#) is
the fundamental solution of the Schrédinger equation

Define the function

(3.15)

(3.18)

# % Ulngsit /) = H o Ulxgsit /), 1 0, (3.19)
that satisfies the delta-function initial condition
Ulxy;it /Ay —b(x — yM, ast—0. (3.20)

Proposition 2: Let W € 7 %, the function U (x,y; B ) is the
fundamental solution of the heat equation

d
- ‘ZEEU("»}’;B)=H(J=)U(X:.Y£), B>0, (321)
that satisfies the delta-function initial condition
Ulx,y; B)—>b(x —y)I, aspf—0. (3.22)

Proof: Propositions 1 and 2 have similar proofs. We
shall write out the proof of Proposition 1. First substitute
expression (3.15)into Eq. (3.19). So U {x,y;it /#)is asolution of
(3.19) if and only if F (x,y;it /#) is a solution of
iﬁ%F(x,y;it /fi) = {H(x, — _z_?_ (x —y)V,I] F(x,y;it /).

(3.23)
The function F (x,y;it /#) as defined by series (3.11) converges
uniformly in R? XR¢ to I as t—0. Furthermore it is well
known that Uy(x,y;it /#) is a delta function in the limit +—0.
Thus U (x,y;it /#) obeys the initial condition (3.20). So it suf-
fices to prove that F(x,y;it /fi) satisfies (3.23) for all £.

To proceed further, consider the terms B, (x,y;it /#) in
the series expansion (3.11) for F. Make the change of variable
& =(1 —1¢,/t), i = 1,..,n for the integral expression of B,,.
One obtains
B, (xy;it /)

= (_ i)"f dt,,fndt,,,,.--fzdt,
%/ Jo o o

X fd"p exp{S,}, {3.24)
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where the exponential argument is
S, eyt bk k)

1t
(t, At,, — -’T’”—) kk,,

n

=—ig Y

Im=1

+13 [ Lxst (1—i’-)y]k,. (3.25)
=il t
Here the notation ¢, At,, is
t; At,, =sgn(t )Min{ |z, |,[¢,.[}- (3.26)
Note that S, has the algebraic property
S, (xpitye bk k), -
=8, (xytit,_ 3Kk ) +ixk,. (3.27)

Now assume W e .7 ¥. Using formula (3.24) together with
identity (3.27) gives one the recursion relation for 21,
a it
i — B, ( s ——)
! ot o #i
= [ — qdx — (i#/t)x — )V, ) B, x.p;it /#)
+ W(x)B, _ {x.y;it /5). (3.28)

The assumption W € ¥ ¥ is needed in order to justify passing
the derivative operators through the multiple integral in
(3.24). The last step is to sum (3.28) from # =1 to oo. If
W e F%, all the infinite sums are absolutely and uniformly
convergent in R? X R?. In addition, the n-summation may
be interchanged with all the differential operators appearing
in (3.28). Thus (3.23) is satisfied for all x,p,z by F (x,y;it /#)
defined through series (3.11). a

The solution of (3.19) and (3.20j is appropriately termed
fundamental. All other forms of solution of the time-depen-
dent Schridinger equation are implied by Proposition 1. For
example, one immediately obtains the following statement of
the Cauchy-data problem.

Corollary 1: Let W € F ¥. Suppose f is any wave packet
(element) in L Y{R?,C" )", Then

Yix,t)= f dyU (xy;it /8 (y) (3.29)
is a solution of

iﬁgt— Yt ) = H o Yixot), (3.30)
with the Cauchy initial data

¥(x,0) = f(x). {3.31)

Proof: This follows from an obvious modification of the
argument demonstrating Proposition 1. O

The remainder of this section implements a reordering
of the series expansion for F (x,p;z) and obtains the higher-
order asymptotic expansion (1.10). It is proved that the num-
ber of terms M in the expansion is solely a function of the
order of the bounded partial derivatives that W (x) supports.
Explicit formulas for the diagonal and nondiagonal values of
P, (x.y) for all n are found. The remainder term E,, (x,;z) is
given a bound that is uniform in both R?XR? and
arg z € [#/2, — w/2). It is observed that the asymptotic ex-
pansion (1.10) may be freely differentiated with respect to all
the variables of F {x,y;2).
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Proposition 3: Let We # %, ,, and let X be the corre-
sponding bound constant of W in the family ¥ 3%, , . For
allze Dand n>1,

Bixyl= 3 A= gmp, L x9) + Byl
n = (n +m)! mn-+m nN
(3.32)

The coefficient functions D, , , . (x.y) are jointly and uni-
formly continuous in R? X R? and are represented by the
parametric integrals,

Drim v nle) =1 (m;n)f "é’fd "ula,)me™,

n>0, m>0, (3.33)

where the factor in front of the multiple integral is the bi-
nomial coefficient. Furthermore, D, (x,y) =1, and for
m>1, D, .. (x,y) =0. The coefficient matrices and remain-
der term have estimates

Drmcatol< ("5t (2K, 3
Uz llell)” (lzlgn’K 2\ +!
|E, »(x52)| < WV £ 1)'( 7 ) , (3.35)

for m< N and n>0.
Proof: The argument for Proposition 5, Ref. 1, is easily
modified to accommodate the matrix nature of (3.32). 0O
The asymptotic expansion of the analytic semigroup
kernel U (x,y;z) follows from Proposition 3 and Lemma 2 for
F(x,y;z). Suppose W € F %, . ;, then F-series (3.11)is decom-
posed into two parts:

i B, (xy;z) + i

n=M+1
Inserting (3.32) into (3.36) with N = M — n constructs the
M-term power series in z for F (x,p;z) [Eq. (1.10)]. The defini-
tion of the error term in (1.10) is then

Fxy;z) = B,(xyz).  (3.36)

M )
Eyxyz)= Y E.m_a.lx02)+ Y B,(xp;2).
n=0 M

+1
(3.37)

It is straightforward to see that E,, is of order O (|z|¥*!).
Concise bounds for E,, follow from the bounds (3.35) and
the absolutely convergent integrals that define B, (x,y;z). By
this process it is found that the following theorem holds.
Theorem 2: Let We #%,,, , and K be the associated
bound constant in the space F%,,, . Let U(x,p;z) and
0(x,y,z) be the integral kernels of operators e~ *H and
~*Ho respectively. Then for all z € D \ {0},

Ulrpiz) = Usbxiz) [ >t (xy)+EM(x,y,z)]

(3.38)
where the C™" valued coefficient functions are [Py(x,y) = I]

n—1

2 q"D,,.(xp), n=1,..M.
m=0

The coefficient functions P, and the remainder E,, have
R? XR? uniform bounds for z € D

|P, (xp)| <(llee]| + gn’K >/4)

n=

P (xy)= (3.39)

(3.40)
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and

Aalflef™+" MK IMAY
|Eplxp;2)| < M+ 1 “ + ] ] +e “}.
(3.41)

Several comments are in order. Although we do not
formulate it as a theorem, it is apparent that if
WeF 3ty H14) » then one may differentiate the F-asympto-
tic expansion j times with respect to z (for details see the
proof of Theorem 2, Ref. 1). The resultant identity is an
asymptotic expansion with uniform (in x,p,arg z) error term
oforder O (|z|™* ' —/). Similar conclusions apply to differen-
tiating (1.10) with respect to the variables x and y.

Equation (3.39) contains the general formula for the co-
efficient matrices that appear in the heat-kernel expansion
(3 38). The x+#y off-diagonal formulas for the coefficients

P, {x,y) have a geometrical character. Denote by § ; the linear
path from x to y parametrized by &,

E=(-&p+&y (3.42)
In terms of this linear path the formulas for P,{x,y) and
P,(x,y) become

Pyxy) = f dg, W &,), (3.43)
Pyfry) =2 f dé, f de, WEW )
- 2qfo A E(1—ENAW)E).  (3.44)

So, Py(x,p)is just the linear average of W along on the straight
line drawn in R between x and y. In P,(x,y), the ¢ part is an
average of AW weighted by the polynomial £,(1 — £,). Of
course, the parametric integrals over £; are inherited from
the time-ordered parameters that appear in the Dyson
expression (3.11).
The functions simplify markedly on the x = y diagonal.

If x =y then &, = x and is thus independent of the value of
£€;. So in the integrals (3.43) and (3.44), and in general, the
potentials W can be taken outside the parametric integration
d" £. The parametric integral d" £ multiplies a given polyno-
mial in £,,§,,...,£, and yields a numerical coefficient. In this
way one is able to determine all the formulas for diagonal
values of P, . Specific formulas for P, through P, are

Pyx.x) = W(x), (3.45)
Pyxx) = W(x) — lg(A W )(x), (3.46)
Pyx,x) = Wx) — qiW(AW) + YAW )W + LYW 1} (x)

+ $2%(4 *W)(x), (3.47)
Pyxx) = W4x) — giWAW)

+EW AW )\W + AW )W?

+4W (VW) + VW)W (VW) + VW)W }(x)
+ @UW AW + A W)W + JAW )
+{VW)[VAW)] +3[VaW)|(VW)

+ /YW x) — A4 W )x).  (3.48)
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If these coefficients are compared to the known formu-
las®3° for the r = 1 case we see the first structural change
occurs in the P;(x,x) coefficient, where the noncommutivity
of W and AW lead to the symmetric combination
IWAW + LAWW rather than WA W. The result available in
the literature that comes closest to (3.45)—(3.48) is the deter-
mination by Fulling®' of the coefficient matrices P, for 7> 1
but with space dimension d = 1. In this special case, com-
plete agreement is found with Fulling’s coefficient expres-
sions, including the n = 5 coefficient which we have not giv-
en above because of its substantial length.

Finally observe the symmetry that the P, obeys as a
consequence of the self-adjoint nature of H. Since H is self-
adjoint, so is e “#¥, B> 0. If * denotes the adjoint on C™",
then the integral kernel of e ~#¥ satisfies

UlxyB)=UpxB)* (3.49)
Inserting (3.15) and series (1.10) in the above identity gives
P,(x.y) = P, {yx)*. (3.50)

This follows since 4 (x — y;3) is real and invariant under
x<>p. If r=1, then (3.50) and the symmetry P,(x,y)
= P, (y,x) requires that the P, (x,y) be real valued.

The semiclassical facet of the heat-kernel expansion
(1.10) resides in the fact that the P, (x,y) are polynomials in g
of order n — 1. It has been shown>>3? in the r = 1 case that if
the asymptotic series for (1.10) is exponentiated, then a non-
perturbative semiclassical approximation for U {x,y;z) is de-
fined. Furthermore, if x =y the Wigner—Kirkwood semi-
classical expansion®*?* is recovered as a special case.

IV. RESOLVENT KERNEL EXPANSIONS

This section describes the large z asymptotic expansion
of the resolvent kernel R (x,p;z). The technique utilized is to
investigate the behavior of R (x,y;z) by using the Laplace
transform (1.11) that connects the heat kernel to the resol-
vent kernel. In the first instance, the Laplace transform
(1.11) is defined as a convergent integral only on the restrict-
ed set Rez< — ||u||. However by exploiting the holomor-
phic character in z of the kernels U (x,y;z) it is possible to
analytically continue the Laplace transform representation
of R (x,y;z)to the domain V5. With this approach the Laplace
image of asymptotic expansion (3.38) for U (x,y;z) becomes
the asymptotic expansions for R (x,y;z). Furthermore the er-
ror term bound (3.41) for E,, (x,y;z) suffices to provide an
R? X R? uniform error term bound for the R {x,y;z) asympto-
tic expansion.

Let { E |1>0] be the family of spectral projectors that
is defined by H,,. In terms of E §, the spectral representation
of the free solvent is

= 1

rolz)=(Hy—2)7 ' = J. ——dES, z¢[0,c0).
o A—z

Consider first the kernel representation of the free resolvent.

Lemma 3: Suppose Re z <0, then we have the follow-

4.1)

ing.
(i) For each fe L*R?,C"),

(roz) £)x) = f T et f)x)dB, aa x.  (42)
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(ii) Let Co= {z|ze C,Rez<0}. Define the function
RyR? XR? X Co—C™" by the integral

Rofrpsz) = f FUrfx.y; B)dB. (4.3)

R,(x,y;z) is translation invariant in R X R? (i.e., it depends
only on the variable x — y). For each pair x,p (x #y) Ry(x,;z)
is an analytic function in domain C,. Finally, R(x,y;z) satis-
fies the integral estimate

fdy |Rofx.p32)| < Vr .
—Rez

(iii) For z € C, ro(z) is an integral operator with an L *-
convolution kernel R(x,y;z). For each fe L*R?,C"),

(rol2) £ )x) = j dy Rolxy2) 0,

Proof: These results are all elementary but we will write
out a detailed proof in a form that allows an easy extension to
include the (H — z)~! case. Start with (i). Observe that the
right-hand side of (4.2) defines an L * function of x:

J dx L " e~ B f)x)dB

< f dﬂl f dﬂz el B+ B)Rez
0 ]

(4.4)

aa. x. (4.5)

2

x [ ax fle= % £)wllle =5 o)

© 2
<”f||zq dﬂem,) <o (4.6)
(4]
The second inequality follows from Jje ~##||<1. Let g be an
arbitrary element of L *(R?,C"). Then

a=(a [ e mriap)

= f dx g(x)* [f e%(e ~PHe f)(x)dp ] 4.7)
(4]

Using the Schwartz inequality and |le %% f||<|| | it fol-

lows that the dx df3 integral in (4.7) is absolutely convergent.

Fubini’s theorem allows us to interchange the order of inte-

gration giving

A= f " (ge—PHf)dg

= f: e&[fe—&ug,Eg f)]dﬁ.

The last equality employs the spectral theorem for H,,. The
spectral measure has finite total variation bounded by
|| gll 1| £||- Further, é®<*dB is absolutely integrable, so the
order of integration in (4.8) again can be reversed. Using

(4.8)

® B—a) - 1
L ¢ % A—z (4.9)
(4.8) takes the form
4= Lw ,11 2 d(g.E} [} = (gri2)f). (4.10)

The equality of (4.10) and (4.7) for all g € L *(R?,C") implies
(4.2).
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(ii) The expression (3.14) for Uy(x,y;,8) shows that the
integral (4.3) for a fixed pair x,y {(x#y) is absolutely conver-
gent for Re z < € < 0. Since the integrand of (4.3) is analytic in
C, it follows that the integral defines an analytic function for
Re z < €. Since € may be selected to be as small as desired, the
allowed domain for z may be extended to C,. Here, R(x,y;z)
is translation invariant because Uyx,p;8) is a function of
x — y. Finally, since A (x — y;8) is real and positive,

[ @irdal< [~ emir [ ayhix—y)] s
(4.11)

Thediffusion function {(x — y;f }isnormalized sothatthedy
integral is unity. Equation (4.4) follows by carrying out the
dp integration.

(iii) Identity (3.16) with W = O states for fe L %(R?,C")

(e~ 5% £)(x) = f dy Uy B)f0), aa x  (4.12)
Combining this with (4.2) gives us

iV = [ { [ @y v o) a3

Changing the order of the df3 dy integrals here leads at once
to formula (4.5) with R (x,y;8 ) defined by (4.3). Now, consid-
er the justification of this interchange of integral order. The
iterated integral on the right of (4.13) is majorized by

)= [T e {[ayhx -y 0] ds. 14

All the functions in (4.14) are non-negative so it may be writ-
ten

)= [ |[" emnix—pus) 110

- de rolx — y;Re z)| f)|,

where 75(x — y;Re z) is just the resolvent kernel R {x,y;Re z)
in the 7 = 1 case. Estimate {4.4) means that (4.15)is an L -
convolution. Now the Hausdorff-Young inequality for con-
volutions®® states that if we have a convolution

(4.15)

W)= [dy K- 0) (4.16)
where K € L '(R%) and ¢ € L? (R?), p>1, then
11, <UK |11l 1l,.- (4.17)

Applying (4.17) to (4.15) with p = 2, it follows that 4 (x) is
L?R?) and thus 4 (x) < o for all but an exceptional set of
measure zero in R?. So, the majorant {4.14) of the iterated
integral is absolutely convergent almost everywhere in x.
Outside this exception set we apply Fubini’s theorem in or-
der to justify the change of integral order in (4.13). O

The next step is to extend our analysis to treat the full
resolvent rz). For the self-adjoint operator H, we let
{E;|A> — ||u]|} be the family of spectral projectors. The
resolvent then has the spectral representation

r(z):(H——z)“‘=fjH " 1_4E,, zepH).

4.18
12 (4.18)

Lemma 4: Let We 5 * and Rez< — ||ul|, then we
have the following.
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(i) For each fe L*R%,C"),

(H2) f)lx) = f e~ H f\xdf, aa. x.

(i) Let C, = {z|ze C,Rez < — |ju||}. Define the func-
tion R:R? XR? X C, —~C™" by the integral

R(xysz) = f AU (xy;8)dp.

For each fixed pair x,y {(x #y}, R (x,y;z} is an analytic function
of z with domain C,, . Furthermore, forz € C,,, R (x,y;z) satis-
fies the pointwise bound

R y;2)|<Jr|RolxpsRez + ||, VxyeRY.  (4.21)

(iii) If z € C,, r{z) is an integral operator with the kernel
R (x,y;2). For each fe L3R?,C7),

(4.19)

(4.20)

)= [ dy Risa) S0 . x. 4.22)
Proof: The estimate
le=fll<e®esl) £, fe#, BeD,  (423)

and estimate (3.13) for |F,, (x,;8)| allow us to follow the
same line of argument used to prove Lemma 3 provided that
the restriction Rez <0 is shifted to Rez< — jju|l. The
pointwise bound (4.21) results from

fo "B | < |G

< f°° LR+l (x _ yB)dB
(4]

<rIRfxyRez+ lul)l,  (4.24)

where the second inequality is a consequence of (3.15) and
(3.13). 0

The existence of the Laplace transform {4.2) requires
the restriction Re z < 0. However, the domain of analyticity
of Ry(x,p;z) is considerably larger. First fix the polar coordi-
nate representation of z by choosing arg z € [0,27) with the
positive real axis corresponding to arg z = 0. With this nota-
tion, the transform (4.3) may be evaluated explicitly®’ yield-
ing a modified Bessel function. For x#y,

2 ilx—y| 1—d/2
(4’17?)‘1/2 qu/zzuz

XK(d/Z)—l( _iq_1/221/2!x_y“1, (4.25)

where z*/2 is the square root with positive sign. The right side
of (4.25) is an analytic function with domain C\ [0, w0 ).

In the subsequent anlaysis it is shown that one may
exploit the analyticity of U (x,y;8) in order to implement an
analytic continuation of R {x,y;z) from the domain C,toa
larger subset of C. The method utilizes contour rotation and
depends only on the analytic semigroup properties obtained
in Sec. III.

We introduce some convenient terminology. Hereto-
fore, B has denoted a positive number. Now let 8 € D and
specify the polar form to be B = |8 |¢'*%f with arg B € [7/
2, — m/2). For any § € (0,77/2) define two linear rays in D by

L*8)={BeD|+argB=n/2—6}. (4.26)
Here, L *{6) is a ray in the upper right quadrant of the com-

Rofr,yz) =
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plex B-plane and L () lies in the lower right quadrant. Let
us introduce special notations for several different domains
in C for the z-variable appearing in R (x,y;z). For é € (0,7/2]
define
V+6)={zeC|26<argz< 7},
V~(6) = {zeC|r<argz <27 — 26}.

(4.27)
(4.28)

Finally indicate by V'* (§) + ( — 2’} the set in C defined by
translating the set V'* (§)by —2z' €C,ie,z+ 2 € V* (§).
Proposition 4: Let W € 5 * and parameter 6 € (0,7/2).
Define D & = V* (8) + (— |le/l(sin 6) 7).
(i) Ifeitherze D ;- orze D ; and fe L*R,C"), then

(H2) f)x) = J; " e PH f)x)dB, aa. x, (4.29)

where the integration path L *(8) is applicable for domain
Dg andL ~(§)forD; .

(ii) Define the functions R * :R? X R? X D & —C™" by
the integral

R *(xyz) = f oy EU BB

For each fixed coordinate pair x,p (x#y), R *(x,p;2) is an
analytic function of z in D ;+ and R ~(x,y;2) is an analytic
function in D ;. The functions R* satisfy for all ze D &
the pointwise estimate

IR *(x,p;2)| <(Wr/(sin 8)¢"% =) Rolx,y; — |2olsin® )],
(4.31)

(4.30)

where z, = z + ||u||(sin ).

(iii) For z in either D ;* or D 5, then r{z) is an integral
operator with a kernel given by R *(x,p;z) or R ~(x,;2), re-
spectively. For each fe L *(R?,C") and z in the appropriate
domain D § or D 5, then

(z) f)lx) = f dyR *(xp2) fO), aa x.

(iv) R * (x,p;z) are analytic continuations of R (x,y;2)
from domain C,, to the domains D ;. Specifically, for x#y,

(4.32)

R*(xyz) =R (xy;z), zeC,nD", (4.33)

R (xyz)=R(xyz2), zeC,nDs . (4.34)

Proof: (i) Define u:R?—~C" by the integral

)= [ e fxip (4.39)
L *(8)

By employing the Schwartz inequality it is easily shown that
the L (R?,C") norm of u has the bound

lull< [ 1e] =211 dB |
L")

In order to establish the finiteness of the L *(6) integral in
(4.36) it suffices to find an |df3 | integrable bound. To this end,
introduce the following polar coordinates: 8 = ¢ expli(7/
2-68), t=I8l, BeL*(®) zo=z+|ullisin5)~"
= |zo|exp(i€@). If zo € V *(5), then 8 € (28,7). Thus for all
ze D g one has

|e%| <exp( — ¢ |zolsin(6 — &) — # ||u]))-
Furthermore, inequality (4.23) provides the bound

(4.36)

(4.37)
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lle=## fli<e W=l £]l, BeL ™).
Taken together, (4.37) and (4.38) give the estimate
e%] lle = %% fl|<exp( — ¢ |zo|sin & — ¢ [|u[|(1 — sin & ))]| £,
(4.39)

where we have used the fact that sin(@ — 6)>sind for
z,€ V *(5). So (4.36) acquires the bound

el <IN/l — sin8) + |z|sin §) < 0. (4.40)

Letgbean arbitrary L >(R?,C") element. Form the inner
product

() = [drgee {[ e rynp ). 841

Inversion of integral order is permitted here since bound
(4.40) together with the Schwartz inequality shows that the
dx|dp | integral is absolutely convergent. Introducing the
spectral representation for { g,e ~#"f) gives

(gu) = fm’ o U_w”#” e—d (g,E, f)] B (442)

Upon utilizing

f PN dp =
L*)

and a final inversion of integral order [valid because the mea-
sured { g,E, f) is of finite total variation and |¢®| has esti-
mate (4.37)] one obtains

(4.38)

1

A—z

(4.43)

()= [ —d(eE. ) = (), (444
—lu A —2
or since g is arbitrary,
u=rz|f. (4.45)

This is (4.29) with contour L *(8) and z-domain D ;. A simi-
lar argument applies to contour L ~(8) and domain D ;.

(ii) Given relationship (3.15) and estimate (3.13) it fol-
lows forz € D §* that the integral (4.30) is uniformly conver-
gent. Since the integrand is analytic the integral defines a
holomorphic function of z. The convolution bound (4.31)
results from majorizing the integral with estimate (3.13) and
inequality (4.37).

(iii) Combining identity {3.16) of Theorem 1 with Eq.
(4.29) leads to

(rz)f )x)
- L S { f dy U(x,y;B]f(y)] dB, aa x. (4.46)

Inverting the order of integration gives (4.32). In view of
estimate (4.37) for |¢®| and the bound

|FpeyiB )| <] £ (p), (4.47)

the convolution argument given in (4.14) and (4.15) may be
used to show that the integral order in (4.46) may be reversed
except possibly on a set of x having zero measure.

{iv) Consider the case with z € D 4 . Let s and S be real
parameters 0 <s<.S < . Define a closed contour in the
analytic semigroup domain D by joining the four segments:
Ci = (BIs<B<S}, C,= (BIB=S €%, $c[0,n/2)— 5]},
C,={B|B=1te"?=9 <t<S} and C,= {B|B=s¢€",
& €[0,(7/2) — 8]}. The kernel U(x,»;8) is analytic in D.
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Cauchy’s theorem  applied to the contour
C, 4+ C, + C; + C, states
§ & UxyB)dp =0. (4.48)

We restrict z so that it lies in a subset of the union of D ;- and
C,, ; specifically we take

zeDg. (4.49)

Now estimate the contribution of the C, integral as S— oo.
Let the variable z, be that defined after (4.36). Assume €>0
and note that condition (4.49) is obeyed if

0'€(0,m/2), |zo|>e€ (4.50)
Employing estimate (3.13), a computation of the Euclidean

norm shows that
__25)Se—eas
P (xyB)dp | < T —2005e”
. (x.y:8)dp 2amaS|

where @ > 0 and is the minimum value of the two numbers
sin 6’ and sin(@’ + 7/2 — 8 ). Thus the C, contribution to
(4.48) vanishes as S— 0. For x5y, similar reasoning and
conclusions apply to the C, contribution as s—0. Thus after
taking the limits S0 and s—0, (4.48) becomes

. U= f: U (x.y8 ).

This is just equality (4.33) for the z allowed by (4.49). For
z€ D ; the argument proceeds by taking the contour in D
that is the conjugate image of C; + C, + C; + C,. O
In view of the fact that R * (x,y;z) and R (x,y;z) represent
the same analytic function we will drop the + superscripts.
Furthermore, we denote by FV(6) the z-plane sector
V T(8)u¥V ~(6). Observe that inequality (4.31) provides in
V(i6)+ (— llll(sind)~") an L '-convolution bound for
the resolvent kernel R (x,y;z). Convolution bounds common-
ly occur for resolvent kernels of elliptic differential opera-
tors. For a recent discussion of this topic see Gurarie.>®
If the potential W (x) is set equal to zero, the the conclu-
sions of Proposition 4 specialize to the following corollary.
Corollary 2: Let 8 € (0,7/2), then we have the following.
{i) For z € ¥ (6) the resolvent operator r,(z) has a kernel
RyR? XR? X V* —»C™<" given by the integral representa-
tion

Rez < — |jul||/sin 8,

Zo= Izolei(ﬂ/Z + G'I’

, (4.51)

(4.52)

Roxyiz) = jm) S Ux.p:,B)dB, (4.53)

where the path L *(8) is associated with domain ¥ *(§ ), and
L —(6) with ¥V —(5).
(ii) For all x,y with x#y and positive integers #,

a n
() Robxwal= [ sresvgnmsrip, w54
dz L £(8)
for z in the appropriate ¥'* (§) domain.
(iii) If n + 1 > d /2 and z € V' (6),
a n
|(2) Rl
- n —(d72)
<\/;I"(n+1 (d/Z))( l ) +1-(a/ (4.55)
(4mg)?”? |z|sin &
uniformly in R? X R?.

Proof: (i) This is the statement of Proposition 4 that re-
sults if W =0.
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(ii) The absolute integrability of the integrand of (4.54)
justifies passing the partial differentiation (d /dz)" through
the integral sign in {4.53).

(iii) The right side of (4.55) is the outcome of taking the
modulus of the integrand in (4.54) and completing the |df |
integration. Symbol I" denotes the gamma function. ]

In the following we set ¥; = D ;-uD ;. This is the al-
lowed domain for the variation of z. Further it is convenient
to denote the nth z-derivative of Ry(x,y;z) by

R{(xy;z) = ((—;9;)" Ro(x.y52).

The asymptotic expansion of the resolvent kernel of #{z) for
large z is described by the following theorem.

Theorem 3: Let We #3%,, ., ,, and let K be the associat-
ed bound constant of potential W in space F3m - Sup-
pose 8 € (0,m/2).For z Vs and all x,p (x5£y) the resolvent
kernel of (H — z)~! admits the expansion

(4.56)

Ricya)= 3 AL PR Qlpa) + Tt
" (4.57)
Define the constant C = C(||u||,M ) by
_ “ﬂ”M+1 MZKZ M+1
C= T [(1 O ) + 1]. (4.58)

(i) For z € ¥; and all integers M > O the error term has
the x #y nonuniform bound

C(sin 6 )M+ 2—(d/2)
Jr
X [R G Yx,y; —~ |(sin? 8 )z + (sin & )[[uel|}]. (4.59)

(ii) If M + 2>d /2, then for z € ¥ the error term has
the R? X R uniform bound

[Talxo52)|<

CriM+2—(dr2
| Thex:p32) | < ( (:— )d/2( )
1
X . 4.60
i e 4
Proof: If z € V;, then either zeDg orzeDy . Sup-

pose the first. In this case, the resolvent kernel R (x,y;z) has
the integral representation (4.30) with contour L *{(§). Since
We F 3%, the semigroup kernel Ul(x,y;z) obeys the
asymptotic expansion (3.38) of Theorem 2. Thus R (x,y;2)
may be written

R (xyz2) = L FUyx.p:B)
% {E (— /.3)

n=0

(5) + Exe(xiB )} dp.

(4.61)
The 7 series is finite and may be passed through the L *(5)

integral. Furthermore the individual terms in n are exactly
of the form (4.54) S0

R(xpz) = z L P eoR 1) + Togbegsa,
(4.62)
where the remainder T, is defined by
Tubwa)= | U BIEuleyBYE. (463
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If the upper bound (3.41) for E,, is used in (4.63) we have
Tube<C [ (6] [htc—pB)

X |8 |M+ 118 Hieel |dB |, (4.64)

where C is (4.58). Formula (4.59) for | T, | results if [¢*| is.

estimated by (4.37) and |h | is bounded by
2
[k (x — yB)I< B2 g 5),
4|8 |
(4.65)

Carrying out the |d | integration gives (4.59). Formula (4.60)
follows from (4.59) and (4.55). This argument extends to
ze D ; provided that contour L ~(8) is used to represent
R (x,y;2). a

A number of comments are in order. An examination of
the union of all allowed z domains ¥ shows that there is a
strip in C parallel to the positive real axis that is forbidden to
z. All z whose least distance to the positive real axis is less
than ||| are in the complement of all ¥;. Thus Theorem 3
does not allow one to take z arbitrarily close to the real z axis
in spite of the fact that R (x,y;z) is analytic for all
z¢[ — ||u||; oo ). This domain restriction appears in the analyt-
ic continuation technique of this section because of estimate
(3.13) for F(x,y;z). An examination of the proof of Lemma
2(see Ref. 1, Proposition 2) shows it has not used the fact that
W (x) is Hermitian. Series {3.11) will construct representa-
tions of e ~ *# for non-self-adjoint operators H as well as self-
adjoint ones. In the case of non-self-adjoint H the spectrum
is not confined to the real axis but may be any point in C not
exceeding a distance ||u|| from the positive real axis. Thus the
analytic continuation based only on estimate (3.13) cannot
penetrate the allowed spectrum of the non-Hermitian opera-
tors H.

Consider briefly the behavior of identity (4.57). If
n+ 1>d /2, (4.55) shows that the term R Y(x,y:z) has a
R? X R? uniform O (|z| ~" ~ !+ /%)) estimate. However, the
terms with n + 1<d /2 are singular at x = y. Since T,, is
bounded at x = y, one has the conclusion that the x = y sin-
gularities of R (x,y;z) and the singularities of the first n<(d /
2) — 1 terms of (4.57) must cancel. Finally, it should be re-
called that the asymptotic expansion (4.57) has been derived
assuming no other information about the potential W (x) ex-
cept the smoothness properties implied by the condition
WeF 3

In the physics literature an asymptotic procedure simi-
lar to the one used in this section but applicable to quantum
field theory in curved space-time may be found in DeWitt>®
and Christensen.*° In the r = 1 case, formula (4.57) is given
in Ref. 30 and obtained heuristically. The treatment in Ref.
30 gave no estimate of the remainder nor a determination of
the allowed z domain. In the d = 3, r = 1 case, Buslaev®
found a formula equivalent to (4.57). Specifically for a C*
rapidly decreasing potential Buslaev succeeded in finding a
bound of |T,,| for z lying on the spectral boundary
(z=A + 70). This bound decreases as A— + «. Agmon and
Kannai*! have obtained a somewhat related expansion for a
general class of elliptic differential operators defined on a
compact manifold.

L _exp ( _
(4mq|B )*7*
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