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Several recent studies of ELMO Bumpy Torus (EBT) stability show that conflicting results can
emerge when different distribution functions for the hot-electron component are used. In this
paper the role of the distribution function is established by examining the stability of various
modes with the aid of two models. In the “slab”” model where the magnetic field curvature is
simulated by a gravitational force it is shown that the stability of the compressional Alfvén waveis
insensitive to the distribution function while the interacting interchange mode is sensitive. In the
“local” approximation in which the curvature effects enter in a natural way it is seen that the
interchange modes are insensitive so long as the anisotropy of the hot electrons is large, while
other modes reflect dependence on the distribution function. Finally it is demonstrated that in the
“deep well’ case the results for both modes are independent of the model and of the distribution

function.

I. INTRODUCTION

The potential of the ELMO Bumpy Torus (EBT) plas-
ma confinement device' as a fusion reactor depends critical-
ly on the beta {ratio of plasma pressure to magnetic field
pressure) value it can support since fusion power is directly
proportional to this quantity. The value of such parameter is
dictated by the gross stability of the system, and in recent
years several investigations have been aimed at ascertaining
such stability. In studying the magnetohydrodynamic
(MHD) stability of EBT, it is adequate to treat the relatively
cold background plasma by the fluid description, but the
hot-electron component, which can provide a stabilizing ef-
fect, should be addressed by the kinetic approach. In that
case the distribution function plays a critical role. In fact,
conflicting results>* concerning stability and the associated
beta limit have emerged as to whether a delta function distri-
bution is more or less stabilizing than a Maxwellian distribu-
tion for the hot electrons. A closely related question in this
regard is whether relativistic effects also play an important
role in the stability of EBT.*?

It has been pointed out®’ that at frequencies well below
the drift frequency of the hot electrons the interchange
modes dominate, and as the frequencies approach the curva-
ture drift frequency the compressional Alfvén waves and the
coupled modes begin to come into play. Examination of
these modes have been carried out either in the “slab” mod-
el,>* where the magnetic field curvature is simulated by a
gravitational force, or in a “local” model, in which the cur-
vature effects enter in a natural way. As will be shown below,
not only will the distribution function play an important role
but also the model in which it is employed will. It will be seen
that only in the “deep-well” approximation will the results
be insensitive to both the model and the distribution function
of the hot electrons.
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Il. ANALYSIS AND RESULTS

In this analysis short-wavelength, flute-like modes of
the form exp[/k, -r —iwt | will be considered. For such
waves the perturbed electric and magnetic fields can be ex-
pressed in terms of the scalar and vector potentials, ¢ and A,
as

E = — ik @+ (iw/cA,, B =ik XA, =ik A b,
b=B/B, (1)
where the Coulomb gauge V*A = 0 has been employed. The

perturbed distribution function for the hot electrons can be
obtained from the relativistic Vlasov equation,* i.e.,

t ’ 0

[ = —qf (E + IXB )-a—f—dt' (2a)
- ¢ adp

wheref(p? ,p, ,r,)is the equilibrium distribution function ex-

pressed in terms of the constants of motion, which, in this

case, are the guiding-center position r, and, p; and py» with

p=myv, y=(1+p/m’c*"? (2b)

and m being the rest mass. From Egs. (1) and (2) the per-
turbed distribution function can be written as

, ar° . (bxVfA,
S rPq pe B
A
+ iqwa (¢ =t l) dr, (3)
— o C

where we introduce

0 bV 7O
D amy &, B XBIY
ap? mQe

and observe that the integral is to be carried out over the
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unperturbed particle orbits. Performing such an integration
leads to*

I’ (bXVfO)'A
8.171 cB
+ qoD (‘PZ s I,k pV (K p)e'” — e+ ¥
T % w; —o+n2/y
v A, J i Jeln e+ i
e 21: o W, -—a)+nﬂ/7’)’

[ =2mypq —

4

where ¢ is the particle charge, p is its Larmor radius, w, is
the particle drift frequency due to the magnetic field gradient
and curvature to be defined later, and a and ¢ are phase
angles. The dispersion relation is then obtained by using the
quasineutrality condition:

fd qu"~§‘,qsfd p[2mr s

1+ nk, XbV In N /k?
—nfd./y

— a)Dz

@ — Wy
5 v, A

n® — ——-——J J.)1=0 (5)

and the perpendicular component of Ampere’s law, namely

kid, = ‘ic‘zk1 X Jb =’-‘c2 s qffd *p k,v,0D

>

(1 + nk, XbV lnN/kf)

n O — Wy —nﬂs/y
A
x(wzq)— n 11;2), (6)
(4

where the first summation is over the species. It might be
noted at this point that the term

nk, XbVIn N /k?2,

which reflects the difference between the actual position and
the guiding-center position of the particle, is generally ig-
nored at low frequencies, but can become important for the
high-frequency modes.® A nonrelativistic, isotropic Max-
wellian distribution is chosen for the bulk species, and due to
their generally low temperature, the condition wd»w,,, is
also assumed. Since for the modes of interest the frequency w
is comparable to the ion gyrofrequency £2;, but much smaller
than £2,, it is sufficient to retain the n = 0, + 1terms for the
ions and the » = 0 terms for the background and hot elec-
trons. Moreover, if the guiding-center approximation,
k,p«1, is also invoked for all the species then Egs. (5) and (6)
can be put in the form

D fd pa. [

0 ,?bi 0D,

' —-0N? 0*—-07
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+6fd3pf0h( pi )w_‘w‘h]_i_CkiAl
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pi Za) —w*h ]
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k34
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where
Ts:‘Ts/Ti’ b,=ka,/m,.()';", ‘S:Nh/Ni’

@, = (T, /m2 )k, XbVInN,,
Ogie = — B/ D0 ye + (2T, ./m2 )k, (b X b-Vb),
ﬁl =Bi +Be +Bh9 ﬂs =ﬂON57-;/B2

From the above equation a set of algebraic equations for the
vector and scalar potentials can be generated, namely

kT,
DES + DC‘ = O)
4 (m 0, )
7
‘UONq ¢J = kJ.AlDem =0’
c m{)

which in turn give rise to the dispersion equation of interest,
ie.,
DesDem + (Bl/z)'D 31 = 0' (9)

In the above equations the following expressions have been
introduced:

D=y, — w217 4 2) 2B
_a,wi)()l 7—,,( fds fhw wd;.)
Dm=1+ﬂ(1+§;,—a, inz 2b,?1.(2,? wfn?)
+3+%‘ dsth(zml:Tlh)zz:Z::’

R 2F (1 @ g

w07 b, s _m

© — @y,

5|d3pf* ) .
* f »f (2m7TLh W — Dyp
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For the modes of interest, the compressional Alfvén
wave is magnetic, and the results for it can be obtained ap-
proximately by setting D,,, = 0. Although the interacting
interchange is not magnetic it has been shown,> using the
full dispersion relation, that the stability boundary for this
mode can nevertheless be given approximately by D,,, = 0.
Therefore for analytical purposes we will examine the influ-
ence of the hot-electron distribution using D,,, = 0, while
the full dispersion relation will be used to generate the nu-
merical results to be discussed later:

1 @? 1 o, )
14814 —
B( 2b, > -0 W07
+8, +BT”C"-0, (10)
where

C"=Id3pf"( P )zw_w*".
2myT,, ] o — oy,

It can readily be seen from Eq. (10) that the dependence on
the hot-electron distribution function appears in the last
term, specifically C*, and as a result it becomes the focal
point of the analysis.

If the usual assumption that the temperature of an EBT
plasma is considered constant, and the density profile of all
species is taken to be the same, then we can simply write

Wgp = Dpp + a)cv“, + wcv",,’

where
o B R ),
o 2\2myr, ) *"’
and o, and @, , combined represent the drift due to the

magnetic curvature. It should be noted at this point that w,,
andw,,  together constitute the familiar VB drift. The use of
the individual ., , and @, is for convenience and their
definitions depend on the model used to examine the prob-
lem.

A. The slab model24

In this model the magnetic field lines are assumed to be
straight, say in the z direction, with the curvature simulated
by a gravitational force in the x direction which is the same
direction as that of the density gradient. In that case the
curvature drift frequencies become

@y, =@y, =kT ,o/mR, o=1+}B, —Bn)s
@y, =By, =kT),/mOR,, k=Kk.§. (11)

It may readily be noted that modes that satisfy the condition
o — (o, + a)c,,"h)zo,

such as the compressional Alfvén waves,* are independent of
the hot-electron distribution function since for these modes

Ch:_w_w*h J‘d:;plf;,( pi )zwth'—w
Dy 2myT,, Dy
(12)
isa constant regardless of the distribution function provided,
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however, that it satisfied the ideal gas law. Moreover, it is
equally evident that for modes for which

0 — (wcum + a)w”h);éO,

such as the interacting interchange mode®* (where 0 €@, ),
the stability boundary is sensitive to the form of the hot-
electron distribution function, except when the deep mag-
netic well condition is invoked; a case which will be exam-
ined shortly. Finally, it should be noted that the bar over the
frequencies appearing in Egs. (11) and (12) denote evaluation
at thermal energies.

B. The “local” model358

In this model the field curvature enters in a natural way.
Unlike the slab model, the field lines are allowed to bend
and, for the cases of interest modes that are localized in re-
gions of bad curvature, are considered. Accordingly, the cur-
vature drift frequencies become

ko ( P )
Dy, = s
* 7 mOR, \2my

2
w, = __k_(ﬂ), k =Kk,
" mOR \my

where 0 is a unit vector in the poloidal direction. In view of
this we can write

2 2
Dgp = £ L ( — ﬂ + z ) + k (ﬂ), {(13b)
2my mi2 24 R m{IR. \my

<

(13a)

where
A7 '=|VInN|

is the half-width of the hot-electron ring. When the tempera-
ture anisotropy (T, /T},) is large as expected for the hot
electronsin EBT, then C” of Eq (10) can be approximated by

Tf,, Zm;/ @
“'W wcv”,, ?

1+ —+|—] +..]. (14)
7] w

- wcv“, =0 — (E)bh + E)cvlh)(pf /zmyTlh )’

where

D= — @y,
= 2

Dy, = wcu”,,(Pn /myT,,).

If, in addition to neglecting terms of order (7}, /T ,)?, we
consider modes with

WDy s Dy sO gy 5

as in the interacting interchange mode, then Eq. (14) may be
expressed as

ch= f dopf*
Dy + wcvl,, Pf

( pl _ cv";. P )
2myTy,, @ + @, myT,
_ (29 {l _ Cl)cv",, ) (15)

Dpp + wculh \ Wpp + wcu“,
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which is clearly independent of the distribution function. It
should be kept in mind that the above result is valid for low
frequencies and as long as terms of order (7, /T, )? or high-
er can be neglected. Since the next-order (NO) correction
term to the above equation is

’ (Pﬁ /myT), )

0., O

ch — wh ey, J- d?

T R
it is clear that this term reflects sensitive dependence on the
hot-electron distribution function.

For modes for which the frequency @ cannot be neglect-
ed in comparison with the hot-electron drift frequency, as in
the compressional Alfvén waves case, the quantity C* can be
expanded to read (with 7, = 0)

(16)

C h f f;. [ pl w
@4y 2m7’Tm @ gp
+ ( @ ) + ]
@an /) Pi /2myTih
_ _ w t Ct)*h [1 " _a)
@D 4p @4

G o) )

which clearly reveals dependence on the distribution func-
tion unless terms of order (w/@,, )* or higher can be neglect-
ed.

We conclude this section by noting that, in the local
model, modes for which w €w,;,, are insensitive to the distri-
bution function as long as the anisotropy is large; and that
modes for which w~w,, show dependence on it.

C. The “deep-well” approximation5

Since stabilization of the interchange modes occursas a
result of the magnetic “well” which the hot electrons dig, it is
often convenient to invoke the “deep-well” approximation
in the stability analysis. Such a condition is given by

B./24>(0 + T, /Ty, )/R,,

and, as we shall shortly demonstrate, the stability boundary
for modes with w & Dy, + Ocy, is insensitive not only to the
distribution function but also to the models discussed above.
To see this we follow Ref. 5 and carry out the following
expansion:

I 1 <l_w%+www —m)
W= Wy — W, — By, o Dy, ’
(18)
and, since in the slab model
Oeoyyy = Dev,yy Doy, = E)c”uh’

the quantity C" becomes in this case

Dy 2myTy, Dy,

bt o — E)cu - E)w
= Dun of 4 Lun i ) (19)
WDpp \ Wpp
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If we do the same thing in the local model, the result would
be

Ch:a)*i—w[( _ cvlh)fdpfh pl
@pp, 2myT,,

a)cu n 2
U f 3pfrtl_ Py +_ifd3pfh]
@y, m?’Tuh Wy,
{ culh - a)cv »
— 1 + — B, (20)
WDy Wpp

which we readily note to be identical with (19) thereby vali-
dating the assertion that in the deep-well case the results are
independent of the model and of the distribution function. If,
for example, we use the parameters employed by Nelson? in
his slab model analysis, namely

T,/T, =1 A4/R =01, B,=1,
then it is clear that the deep-well approximation
(1+ Ty, /T.4)24 /B, R.) = 0.4

is not satisfied even for 8, = 1, and as a consequence his
delta function and Maxwellian distributions do indeed give
rise to different results.

It is perhaps useful at this junction to provide some
physical insight regarding the sensitivity (or lack of it) of the
results to the distribution function in the various models dis-
cussed above. These effects can be traced back to the me-
chanisms that give rise to the various instabilities which we
will now attempt to analyze using the single-particle picture.
For this purpose we recall from Eq. (13b) those portions of
the hot-electron drift velocity relevant to the mechanism of
interest, namely with (7}, = 0)

v, = (pl/4m’y24)( — B, + 240/R,), (21)

where we note that the first term represents the well dug by
the background plasma, and the second represents the cur-
vature effect (force). It is the competition between the stabi-
lizing effect of the curvature and the destabilizing effect of
the background plasma well that leads to the instability of
the interacting interchange mode. In the local model, Eq.
(21) remains valid and for stability we require

B. <240/R,
for all distributions since in this case all the particles move in
one direction. In the slab model, however, Eq. (21) is re-
placed by

L(_ /JL)+ ol
2my2\ 24/ mQR.’

where it is seen that the hot electrons feel the same stabilizing
effect due to curvature (~ T,,,) while they experience differ-
ent effects due to the driving force (~pl). As a result the
stability boundary would indeed be sensitive to the distribu-
tion function as indicated earlier. This is borne out in the
results of Refs. 2 and 4. It is also clear why such analysis also
reflects the relativistic effects brought forth in Ref. 4. One
can repeat the same argument to explain the sensitivity, or
lack of it, of the other modes examined earlier as well as the
cases when T, is included.

Vg =
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We conclude this section by remarking that the local
model is physically more meaningful since in this model the
curvature effect enters in a natural way from the equations of
motion and pressure balance, while in the slab model this
effect is simulated by a gravitational force resulting in the
loss of many details, particularly when kinetic theory is em-
ployed.

fll. NUMERICAL RESULTS

In an effort to corroborate the above conclusions, we
have chosen to generate stability results for the following
hot-electron distribution functions using the full dispersion
equation [Eq. (9)] in the local model:

T 2T,
fhl — ‘U“ I S(Uﬁ o _rl'!l_h)a(vi —_ lh), 721.

mm? m

This distribution yields for the relevant integrals in C* the
quantities

fd3pf"w“w*"=w_w*",
D — Wy @ — Dy
fa”pf"( 7 )“"“’*"=“"“_’*", (22)
2myTy, ) @ — oy, Q0 — Dy
e e e
2myT,, ) @ — @y o — Dy,

The second distribution function is of the form

2
h2 _ [U“' 5(02 _ﬂ) ex (_ mvl) ~1:
4 2om’T,, N m) N\ ar,) T

which in turn gives

J aprolun _ O7 Ban ,-ap )
@ — WDy @py + Wy,
fd%f”( 20 L
2myT,, } W — @y,
= 2% [ —ge E,(a)], (23)
Bpp + a)cu“,
[aror (o) a2
2myT,,] o0 —wy,
= — 27 %" [14a—de “Ela)],
WDppy + a)cv“,

where a = [w — Dy, |/ [@on + @, | and E,(a) is the fa-
miliar exponential integral. For the third distribution func-
tion we choose

fh3 ( o )1/2 e~ 5(17 )
\87) miPK,,0)
where
8=mc*/T,,, v=I(1+p>/m*)"?

and K, ,,(6 ) is the modified Bessel function. This distribution
function represents a highly anisotropic, relativistic hot-
electron species for which it can be shown that*
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fd3pf"w—a)*h _ Ao —w,,) 6
0 — Wy Opp + By, 1+ 0
1
X (5 + ——[e“ba + IE(G)
6 v—ua

— e by 1E )

Jd3pf”< L L
2m7’Tu.}ﬁ)-(0dh
_ W= Wy 6*? (1+b+ 1

O+, 1+6\ 6 67

+ [e~C(b%a + b)E,(G)

v—Qa

—e b4 bIEMH)] ), (24)

Jd3pfh( i )2“"“’*"
2myT, /] o —@a
1 o—w, 6°

2 By + @, 146
b(1+b)  2+b 2 1
X + +=+
( 6 6> 6 v—a

X [e™ (b + bUE(G) — e~ 6%y + BAEH)] )
where
b=2/8)w/ @y, + B,,,), a=(b/2)—4b*+4"2,
v=b/2+(b>+4)"? G=6@—1), H=60(v—1)

It might also be noted that in the nonrelativistic limit, i.e.,
0— o, Eqgs. (23) and (24) become identical when T,,/T, is
set equal to zero.

In order to compare the stability results associated with
the above three distributions on an equal basis it is necessary
to demonstrate that they all have equal pressure moments.
The perpendicular pressure is given by

n?
Py, = f w2 2w, dp. dp), (25)

which in the case of the first distribution function f*' be-
comes

© ® 2T
P =" g s [t o2~ 2 oz, 2
0 o m

When the second distribution function £*? is used the result
becomes

nm® [, 5 (7 22— mui/2T,
P_I_h :T dl)” 5(()”) dUL vie :nTLh’ (27)
0 0

where integration by parts has been carried out on the sec-
ond integral. In contrast to the first two distribution furc-
tions, which are nonrelativistic, the third f** is relativistic,
for which the perpendicular pressure can be written as*

P z(i)"z____” r dp, 8(p, )
Lh 877 m2C2K3/2(9) — If il

2
myv,

xf 2mp, dp, ZTL oo (28)
0
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FIG. 1. Interchange mode stability boundary (a) for a highly anisotropic
distribution function, (b} for a moderately anisotropic distribution function,
and (c) for a nearly isotropic hot-electron distribution function.

where ¥ and p had been defined earlier [see Eq. (2b)]. If we let
y = cosh x and p, = mc sinh x then the last integral in the
above equation assumes the form®

w©

oo
J P dpimyvfe”79=m3c4f e 9"~ ginh® x dx
0

o

= mn%“[(%)mez(ﬁ )] .

kil
In view of this, Eq. (28) simply becomes
P, =nmc*/6 =nT,,, (29)
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FIG. 2. Dependence of (a) compressional Alfvén wave on the distribution
function and (b) compressional Alfvén wave at stronger coupling.

and we see that all of the distributions produce the same
dependence of the perpendicular pressure on 7, . It should
be kept in mind that agreement on p,, among the three dis-
tributions is obtained when T, = 0, due to the fact that the
relativistic distribution was constructed deliberately to be
highly anisotropic. When T, #0 then agreement is ob-
tained for distributions 1 and 2 only.

In obtaining the results shown in the figures, the follow-
ing common parameters were used:

T,/T, =0, T,/T,=2000, k,p,=0.1,
A/R, =006, 0=0.1, p,/4= — 0.06;

and the following definitions for the frequencies appearing in
Eqgs. (22)-(24) were also employed:

kT, B. +Bu) kT,
Wyp = y Wpy — ———
ma24 2 maA
- kT,,0 kT,
Wy, =7 Wqy ——"
* mOR, " mfR,

Figure 1(a) shows the upper limit on the interacting inter-
change mode as well as the lower limit for the background
plasma interchange, and as predicted analytically earlier
there is no sensitivity to the distribution function for the
interacting interchange since the hot electrons in this case
are extremely anisotropic {i.e., 7,/7,, =0). This figure
also shows no coupling to the compressional Alfvén wave
since k /k, = 0.2 which is small. Figures 1(b) and 1(c) reveal
different results as the anisotropy condition is relaxed, i.e., as
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FIG. 3. Dependence of stability boundary on the hot-electron distribution
function in the slab model.

T,,/T,, becomes larger (keeping in mind that the relativistic
distribution is not valid for finite 7\, /7 ;). They also show
that for large 5,,, the upper limit for the interacting inter-
change mode for distributions 1 and 2 become almost the
same thus confirming the “deep-well” limit of Ref. 5. When
contrasted to Fig. 1, Figs. 2(a) and 2(b) display the stronger
coupling to the compressional Alfvén waves that results
from increasing the value of k /k , which in turn means a
smaller angle between the direction of propagation of the
Alfvén wave and the curvature drifts; a condition that belies
stronger coupling. Although the upper limit on 3, for the
interacting interchange is the same for all distributions, Figs.
2(a) and 2(b) show that the stability boundary for the
compressional Alfvén waves is quite sensitive to the distribu-
tion function with the anisotropic Maxwellian (2) being the
least stable while the delta function (1) showing the most
stability. Once again, these same figures indicate that at larg-
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er B, , corresponding to the deep-well case, the sensitivity to
the distribution function practically disappears. Figure 3 has
been included for purposes of comparison and it shows that
in the slab model the upper limit for the interacting inter-
change mode is quite sensitive to the distribution function
while the lower limit for the compressional Alfvén wave is
not, in agreement with the earlier analytical predictions.
Finally, it can be seen from Figs. 1(a) and 3 that the results
for the delta function distribution is independent of the mod-
el; and n all cases the background plasma interchange is
completely independent of the model and distribution func-
tions as expected.
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