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Calculations were made of the anisotropic translation drag coefficients of rigid assemblies of 
spheres in a variety of arrays, including lines, circular equilateral polygons, disks (polygons with a 
central sphere), and stacked squares. The objective was to compare results obtained using 
polynomial expansions for the two-body hydrodynamic interaction tensor truncated at the (a/r) 1 , 
(a/r)3, (a/r)S, and (a/r)71evels. Calculations were also made with the three- and four-body 
hydrodynamic interaction tensors recently obtained by Mazur and van Saarlos, thereby 
examining the relative importance of two-, three-, and four-body interactions. There are 
substantial cancellations between terms of order (a/r)s and (a/r)7, and between the three- and four­
body hydrodynamic interactions. For the arrays studied here the Rotne-Prager [two-body, (a/r)3] 
hydrodynamic interaction tensor gives results which are at least as satisfactory as the results 
obtained from the full Mazur-van Saarlos [four-body, (a/r)7] interaction tensors. 

INTRODUCTION 

The hydrodynamic properties of biological macromole­
cules of irregular shape have long been calculated by ap­
proximate methods. As shown by Bloomfield, de la Torre, 
and collaborators,1-3 one useful approach is to treat the ma­
cromolecule as an assembly of N small spheres. Calculations 
are based on algebraic or numerical solution of the hydrody­
namic interaction equations for the N spheres; these equa­
tions give 3N X 3N dimensional matrices which connect the 
forces, flows, and torques on the spheres. From these matri­
ces, one may calculate the anisotropic translational and rota­
tional dift'usion coefficients and the viscosity increment for 
the macromolecule of interest. More recently, Allison and 
McCammon4 have used Brownian dynamics to study the 
motion of a set of hydrodynamically interacting beads, find­
ing complete agreement with the results of the matrix meth­
ods. The Brownian dynamics scheme promises, however, to 
be applicable to problems for which the matrix approach 
would be impractical. 

A major variation in this series of calculations has been 
in the assumed form of the fundamental hydrodynamic in­
teraction tensor. Calculations have been made with the 
Oseen tensor 

Tij = _l_llSlj + _1_ [I + iij ilj](l -lSij) (1) 
61T"T/a 81T"T/rij 

in its full and spherically averaged forms, as well as with the 
modified Oseen tensor of Rotne and Prager 

1 1 
Tij = ~ IlSij + 8 (1 -lSlj) 

VII "a 1T"T/rij 

X [(I + rlj rlj ) + ~: (+ I - ilj i lj ) l (2) 

Here'lJ is the solvent viscosity, a is the sphere radius, iij and 
rlj are the unit vector and the distance between spheres i and 

·'This work supported in part by the National Science Foundation under 
Grant CHE82-13941. 

j, I is the identity tensor, lSij is the Kronecker delta 
(lSij = 1,i=j, and lSij =0,i#11, and ab denotes the outer 
(dyadic) product of the vectors a and b. 

It is well known that the Oseen and Rotne-Prager ten­
sors are the lowest order terms in a power series (in air) 
expression for the exact hydrodynamic interaction tensors 
for two spheres. Felderhof 6 has obtained a form for Tlj 
which includes terms through order (a/rf. If one extends the 
power series to incorporate terms beyond (a/ r)3, interactions 
between trios and quartets of spheres become mentionable. 
This author7 obtained the lowest-order [(a/r)4] term linking 
three interacting spheres. Simultaneously, Mazur and van 
Saarloos8 obtained all hydrodynamic interactions through 
order (a/rf, which requires taking into account forces link­
ing three or four (but not five) particles. Much of this work 
was anticipated in a little-noticed paper by Kynch.9 Mazur 
and van Saar1oos's work is further significant in that they 
went beyond the translation-translation couplings (in which 
a force exerted on the fluid by one particle leads to a force 
exerted by the fluid on a second particle). These workers also 
obtained the full set of translation-rotation, rotation-trans­
lation, and rotation-rotation couplings, in which the force or 
torque exerted on a fluid by one particle leads to a force or 
torque exerted on the fluid by a second particle. 

It may rationally be suggested that the use of a low 
order (in air) approximation for Tlj , in calculations on a set 
of nearly touching spheres, is inappropriate. The series ex­
pansion for Tlj includes high as well as low-order terms; the 
high-order terms will be most important for spheres which 
are nearly in contact. Calculation using dift'erent approxima­
tions for Tij may therefore obtain substantially different nu­
merical results. On the other hand, while the higher-order 
forms for Tij have greater numerical accuracy than the 
Oseen and Rotne-Prager expressions, the computational ef­
fort needed to take account of three and four body interac­
tions is far greater than the effort needed to consider two 
body interactions. 

The objectives of this paper are: (i) to study the relative 

4046 J. Chern. Phys. 81 (9),1 November 1984 0021-9606/84/214046-07$02.10 @ 1984 American Institute of Physics 



George D. J. Phillies: Translational drag coefficient 4047 

numerical consequences of using different approximations 
for T; and (ii) to study the relative importance of two, three, 
and four body hydrodynamic interactions. Numerical com­
putations were made on lines, plane polygons, disks (a plane 
polygon with a central sphere), and stacked squares. The 
following section treats the general methods which are used 
here. Section III presents quantitative results for freely ro­
tating spheres. A discussion closes the paper. 

GENERAL METHODS 

Our basic approach differs but little from the ap­
proaches used previously. 1-3 In a suspension offreely rotat­
ing spheres, in which extemal forces Fj and external torques 
Tj are applied to the individual spheres, the induced velocity 
of each sphere is given by 

Vi = 2: fLYoFj + 2: fL~RoTj' (3) 
j j 

To obtain this equation it was assumed that inertial effects 
are negligible and that the external forces are independent of 
time. The hydrodynamic interaction tensors fLY and fL~R 
give the translation-translation and translation-rotation 
coupling between i and j. (i = j is allowed in the sum.) As 
shown in Refs. 1-3, Eq. (1) may be used to calculate the 
translational and rotational diffusion coefficients of a body 
of irregular shape. At the level of the Rotne-Prager tensor, 
the applied and resultant forces act at the center of each 
sphere, so induced torques do not appear; this leads to com­
plications for computations of rotational diffusion, which 
have been solved.2-4 

Neglecting torques and inverting Eq. (3), it is found that 

(4) 

Equation (4) is a matrix equation. For an N particle system, 
fLY is an N XN matrix whose individual elements are the 
tensors (3 X 3 matrices) Tij' One may equivalently view IlY 
as a 3N X 3N matrix whose first three lines refer to the x, y, 
andz axes for the first particle, whose next three lines refer to 
the x, y, and z axes for the second particle, and so on. The 
individual 3 X 3 element tensors Tij which comprise fLY are 
determined by the positions of all of the particles in the sys­
tem; these tensors may be written as sums of two, three, 
four,,,.body tenns, in which the i-j coupling is modulated by 
each of the other particles in the suspension. 

On requiring that all spheres move with unit velocity u 
along one of the hydrodynamic axes ofthe assembly, Eq. (4) 
becomes 

f= 2: Fj = Tr[ [fLY] -IoU]. (5) 
} 

Tr[ ] denotes the trace operator. f is the total force needed to 
produce unit velocity; the magnitude of f is numerically 
equal to the translational drag coefficient for motion parallel 
to u. To calculate the anisotropic drag coefficients lx, 1;" 
and fz of a sphere assembly, one only needs to obtain the 
individual 3 X 3 tensors Tij , and perfonn conventional ma­
trix operators. 

What are suitable fonns for the Ti}? The Oseen and 
Rotne-Prager approximations for the components ofTIj are 
given in Eqs. (1) and (2). Mazur and van Saarlos have ob­
tained the two-, three-, and four-particle hydrodynamic in­
teraction tensors for groups of spheres which need not all 
have the same radius. These tensors differ from those given 
in Eqs. (1) and (2) in that T contains tenns which depend on 
the coordinates of particles other than i and j. Specifically, 
from Ref. S one may write 

Tii =~ (I + 2: biJ + 2: 2: bilk) (6) 
fo I#i k#i,ll#i.k 

while for i=/=j, 

T - T(2) ~ Tl3) ~ Tl4) 
i} - i} + £- lim} + £- limn}' (7) 

m m.n 

Denoting 10 = 61T'TJa, where a is the radius of a sphere (all 
spheres are assumed in this paper to be the same size) 

and 

75 a7 

bikl = [ [1 - 3(r ik orkil2] 
16 t7kriclrii 

X [1 - 3(rk1oru)2] + 6(rik orkil2(rk1 oru)2 

- 6(rikorkl)(rklorU)(r/iorik)} rikr/i' (9) 

For i=/=j: 

Tl~ = ~ {4
3 

....!!...- [I + iiiii] 
Jo rij 

1 ( a )3 [I 3A A] 74 ( a )7 A A } +- - - r··r·· +- - r··r .. 
2 'J 'J 4 'J 'J ri} rij 

(10) 

is the two-particle interaction tensor truncated at (a/rf. If i, 
m and j refer to distinct particles, rim being the vector from i 
to m, and r = rim'S = rm ), r = Irim I, etc., one has 

TI~j(r,s) = - 15a4/(Sr.r)[1 - 3(i-W] rs + 3a6/(Srs4)[(1 - 5(roW)n + 2(ros)rr] 

+ 3a
6
/(Sr4.r)[(1 - 5(roW)n + 2(ros)ss] + a6/(64~s3)[ [49 - I 17(ros)2] 1 - [93 - 315(roW] 

X(ii + §§) + 54(f.§)si + [729 - 1575(roW](H)rs. 

Ifi, m, n, and jrefer to different particles, with r = rim'S = rm", and t = r"l' one has 

TI~nj(r,s,t) = 75a7/(16rt 3.r)[ [1- 3(i-t)2] [1 - 3(toW] + 6(rot)2(t-s) - 6(rot)(t-s)(sor)j rs. 

I 

(11) 

(12) 

Physically, the tensor bil describes the retardation in 
the motion of a particle i due to the presence of each of the 

other particles t. The tensor bikl describes the additional re­
tardation of the motion of i due to all additional pairs k,t of 
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particles in the system. The tensors n~), T1~l' and Tl~"j de­
scribe the motion of a particle at point i due to a force applied 
to the fluid at point j. n~ gives the particle motion due di­
rectly to the force Fl , while n~l and Tl~"l describe how the 
modification offluid flow by the freely rotating and translat­
ing particles m and n modify the flow pattern at i. The modi­
fications are linear, so that the effects of particles mlO 
m2, ... ,n., n2, ... are simply linear. Felderhof gives a simple 
physical picture for these tensors, in which the Oseen tensor 
describes how an applied force sets up a flow in the fluid, 
other particles simply moving with the flow; the scattering of 
the nonuniform flow by other particles m, n, .. .leads to the 
higher order corrections in band T. As emphasized by Fel­
derhof, the velocity of a sphere in a spatially nonuniform 
flow is not the same as the velocity which the fluid would 
have had, at the point occupied by the center of the sphere, if 
the sphere were not present. The tensors b and T give the 
velocity of a particle at i, not the fluid velocity induced at rj 
by the same forces. This distinction has important physical 
consequences; in particular, V· Tij #0 if one goes beyond the 
Rotne-Prager approximation. 

NUMERICAL RESULTS FOR ROTATING SPHERES 

In this section, numerical results for assemblies con­
taining as many as 16 spheres are discussed. The spheres are 
taken to be freely rotating, as required ifEqs. (8HI21 are to 
be applicable. The assemblies which were studied include: 

(i) linear arrays of up to 16 spheres; 
(ii) equilateral circular polygons containing 3 to 16 

spheres; 
(iii) disks, a disk being an equilateral circular polygon 

with an additional sphere at the center of symmetry. As 
spheres cannot overlap, the polygons had to include more 
than five spheres; 

f 
fo 

4 

2 
1 ---
3--
5 ........ ··· 
7,-,-, 

FIG. 1. Translational drag coeffi­
cients 1110 for linear arrays of N 
spheres, using a two-body hydrody­
namic interaction tensor truncated 
at (alr)ft, for n = I, 3, 5, and 7. III 
and .h denote the drag coefficients 
for motions parallel and perpendicu­
lar to the c ~ axis of symmetry of the 
arrays. 

f 
fo 

5 

4 

2 ,.bodles 
2--
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FIG. 2. Translational drag coeffi­
cients for linear arrays of N 
spheres, using a hydrodynamic in­
teraction tensor truncated at (aIr)' 
and including all hydrodynamic 
interaction terms involving n or 
fewer particles for n = 2,3, or 4. III 
and .h are as in Fig. 1. For linear 
arrays, .h is perceptibly indepen­
dent of n. Also plotted is lil calcu­
lated from two-body hydrodyna­
mics at the Rotne-Prager [(alr)l] 
level; this relatively crude form for 
the hydrodynamics is seen to pro­
vide a reasonably good approxima­
tion for lil' 

(iv) square lattices: sets for four spheres in a square, with 
further squares of four spheres stacked above the first 
square. The first two square lattices are the simple square 
and the cube. 

In most cases, the spheres in an array were assumed to 
be touching, so that the distance R between a sphere and its 
nearest neighbors was 2a. However, it is well known that the 
inversion ofthe matrix ~T! can be troubled by singularities; 

f 
10 

5.---'r--.--~r---r--.---. 

N 

... -.......................... =.::.=.=~~. 
4 

3 

____ -------------J-
IL-__ -L~~~--~--~~~~--~ 
2.0 2.1 2.3 2.4 2.5 2.6 

Ria 

FIG. 3. Longitudinal drag coefficient of arrays of N spheres of radius a, as a 
function of the center-to-center distance R of the spheres. Calculations were 
made using two-body hydrodynamic interactions with truncation at (aIr)'. 
Computations were made at intervals..:1R = 0.02; lines connect the comput­
ed points. 
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FIG. 4. Expanded sections of the N = 6 and N = 11 curves of Fig. 3, with 
III 110 being evaluated at intervals..:1R = 0.0020. 

we therefore also studied the behavior of arrays of spheres as 
the distances between the spheres were gradually increased. 

Figures 1-4 present results on linear arrays of identical 
spheres, using various approximations for the hydrodyna­
mics. In Figs. 1 and 2, the nearest-neighbor distances are all 
20, so that each sphere touches its neighbors. In Figs. 3 and 
4, the dependence of the friction factor on the nearest neigh­
bor distance R was examined. For a linear array, there are 
two anisotropic drag coefficients, the longitudinal drag coef­
ficient iii (for motion parallel to the axis of symmetry) and 
the transverse drag coefficient II (for motion perpendicular 
to the axis of symmetry). 

Figure 1 shows I I/o as a function of the number of par­
ticles N. Calculations were made using the two-body hydro­
dynamic interaction tensors T\~ and bi/ ofEqs. (8) and (to), 
with truncation of the power series at several levels, includ­
ing the Oseen [(alrn Rotne-Prager [(alr)3], (alr)s, and Ma­
zur-van Saarlos [(air)'] levels. These computations are indi­
cated as n = 1,3,5, and 7, respectively. For transverse 
motion, all four approximations to Tij give nearly the same 
numbers. For III ' the results are somewhat more complex. If 
the Oseen tensor is used for T;j' nearby singularities in 
[ JLJJ] - 1 lead to an irregular and unphysical dependence of 
iii I/o on N. \0 The Rotne-Prager and (alrf approximation 
lead to very similar numbers for iii I/o, but the (alr)S approx­
imation gives substantially larger values for iii I/o than do 
the other approximations. 

Computations were also made, with truncation at the 
(air)' level, after including three-body interactions, and after 
including both three- and four-body interactions. A com-

parison of the importance of two-, three-, and four-body in­
teractions is shown in Fig. 2. The transverse drag coefficient 
is not significantly affected by the addition of three- and 
four-body terms. As was also seen in Fig. 1, the longitudinal 
drag coefficient is substantially more sensitive to singulari­
ties in the matrix inversion than is the transverse drag coeffi­
cient. Incorporation of three-body terms leads to an iii I/o 
with an irregular dependence on N. These irregularities are 
largely suppressed when the four-body terms are added to 
the two- and three-body terms. Use of a hydrodynamic inter­
action tensor which is complete through order (alrf (which 
includes forces between as many as four bodies) results in an 
iii I/o which is not much different than the iii I/o obtained 
from the Rotne-Prager tensor. For linear arrays, including 
both the three and four particle interactions thus does not 
appear to have a substantial effect on f The irregularities 
seen in the three-particle calculation may be due to a lack of 
symmetry in the way the calculation was performed. Many 
three-body terms are simply four-body terms in which the 
first and last bodies in a sequence are taken to be the same. 

Figures 1 and 2 indicate that the longitudinal drag coef­
ficient does not always show a smooth dependence on N. If 
the irregularities were simply due to a lack of complete con­
vergence of the power series expansion for T, so that the 
short-range approximation for T was not sufficiently accu­
rate, iii 110 might be better behaved if the spacing between 
adjacent spheres were increased. To test this hypothesis, 
iii 110 for linear arrays of spheres was recalculated, using Eq. 
(to) for T;j' as the distance R between adjoining spheres was 
increased from 2.Oa to 2.60. Results of this calculation are 
shown in Fig. 3. Computations were made at intervals of 
0.020; the indicated lines connect points of fixed N. In re­
gions in which iii is changing rapidly, the lines may not be 
good approximations to the actual analytic dependence of I 
on R. For R > 2.40, iii I/o depends gently on R, as would be 
expected for a physical system. For R < 2.40, iii 110 can de­
pend markedly on R. It is not expected that the real bodies 
modeled by the sphere assemblies would show this behavior 
experimentally. For R > 2.40, these anomalies are weak or 

TABLE I. Drag coefficients of N-particle ring assemblies with order (alrf 
m-particle hydrodynamics. 

In plane Out of plane 
M 

2 3 4 2 3 4 
N 

4 1.963 1.752 1.760 1.881 1.863 1.863 
5 1.944 1.867 1.931 2.143 2.125 2.125 
6 2.062 2.028 2.089 2.407 2.394 2.394 
7 2.244 2.218 2.255 2.669 2.664 2.664 
8 2.431 2.418 2.426 2.927 2.930 2.930 
9 2.619 2.623 2.602 3.182 3.194 3.194 

10 2.807 2.828 2.780 3.433 3.453 3.453 
11 2.993 3.032 2.962 3.681 3.709 3.709 
12 3.177 3.234 3.140 3.926 3.960 3.960 
13 3.360 3.433 3.320 4.168 4.209 4.209 
14 3.541 3.630 3.500 4.408 4.455 4.455 
15 3.721 3.824 3.678 4.644 4.697 4.697 
16 3.900 4.016 3.857 4.879 4.937 4.937 
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absent. Physical values of III for R < 2.4a may apparently be 
obtained by extrapolation from larger R. 

As is apparent in the N = 6 curve, III may be essentially 
normal when the spheres touch and then become anomalous 
as the spheres move apart. The anomalies in III are therefore 
not due simply to inaccuracies in the interaction tensors 
[Eqs. (8H 12)] at short distances. If one were to calculate the 
drag coefficients of a single assembly with a single R, the 
presence of an anomaly might not be obvious. By repeating a 
computation while using a series of slightly different sphere 
spacings, resonance-like features in Imay readily be identi­
fied. It is interesting to note that if a value of R leads to an 
anomalous curve for iii for some value of N, then the behav­
ior of iii for N + 3, N + 6, .. .is also anomalous. For example, 
near R = 2.16a, anomalies are seen for N = 3, 6, 9, 12, and 
15. 

Figure 4 shows a calculation of iii I/o for N = 6 and 
N = 11, with calculations being made at intervals 
..1R = O.OO2a. Over a narrow range ofvaues of R, the anoma­
lies can be rather deeper than is suggested by Fig. 3. As the 
anomalies are primarily of mathematical interest, we did not 
expend the large amounts of computer time needed to gener­
ate, for all of Fig. 3, curves as accurate as those shown in Fig. 
4. 

Computations were also made on circular equilateral 
polygons, with or without an additional sphere at the origin. 
Polygons were previously studied by Paul and Mazo l1 at the 
Oseen tensor level. Figure 5 presents the drag coefficients 
lop (for motion perpendicular to the plane of the polygon) 
and /;p (for motion in the plane of the polygon) for plane 

5 

4 

f 
To 3 

2 

20 

Ria 

FIG. 5. In- and out-of-plane drag coefficients for equilateral circular poly­
gons of N spheres, computed with two-body hydrodynamic interactions 
and truncation of the power series at (aIr)" for n = 3, 5, and 7. Note that the 
changes from n = 3 to n = 5 and from n = 5 to n = 7 have substantial but 
cancelling effects on the in-plane drag coefficient (lower lines). 

polygons of N spheres. Separate computations were made 
with Tij truncated at the n = 3, 5, and 7 levels. For lop, 
n = 3 and 5 are essentially indistinguishable, while n = 7 
gives perhaps 2% larger values for f For /;p, results with 
the Rotne-Prager and Mazur-van Saarlos forms are very 
similar, though truncation at the (alr)S level gives rise to a 
significantly bigger /;p. For N> 4, there is no indication of 
the singularities which were observed in calculations on the 
linear arrays. A square is, of course, a pair of parallel lines; 
results for squares do indicate singularities as treated below. 

By placing a sphere at the center of a polygon, one can 
study hydrodynamic shielding. It is well known that nearby 
non-point-like particles can modify fluid flow around a given 
particle, so that a particle in the middle of an assembly will 
not be greatly affected by an external flow field. Polygons 
containing 6 to 15 spheres were modified by placing an addi­
tional sphere at the origin: the drag coefficients of the disk­
like arrays were then recalculated. The extent of screening is 
given in Fig. 6, which plots the increase in /;p and lop when a 
sphere is added to an N-sphere polygon. The additional 
sphere makes only a very small change, typically less than 
0.02 10' in either /;p or lop. This confirms the importance of 
hydrodynamic screening for reducing the hydrodynamic 
importance of interior spheres, even when the distance 
between the ring and its central sphere becomes fairly large 
(as much as several sphere radii). 

Figures 7 and 8 present the drag coefficients for square 
arrays of spheres containing 4,8, 12, or 16 spheres, the inde­
pendent variable being the distance R between the spheres. 
Here /;p refers to motion in the plane of a given square, while 
lop refers to motion perpendicular to the plane of symmetry 
of a single square. For the cube these two drag coefficients 
are equal. Computations were made with two body hydro­
dynamics at the Rotne-Prager and (alrf orders of precision 
and with four-body hydrodynamics at the (alrf level. For 
the square these three approximations to T give virtually 
identical values for f For larger sphere assemblies, there are 
discrepancies. In the figures, the dashed halftone lines give 
results from the Rotne-Prager tensor. In all cases Ishows a 
smooth dependence on Ria, with no indication of singulari-

.08 

-tip 
--- t.l 

.06 

6 II 

N 
15 

FIG. 6. The fractional change II 
10 in the drag coefficients of an N­
sphere ring polygon occasioned 
by adding to the assembly a 
sphere placed at the origin. Com­
putations were made at the (aIr)' 
level using two., three-, and four­
body forces. A ring polygon al­
most completely screens a sphere 
at its center from the surround­
ing fluid flow, even when the po­
lygon radius is several times the 
radius of the spheres. 
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FIG. 7. Plot showing the in·plane drag coefficient of n (n = I, 2, 3, or 4) 
stacked squares as a function of the nearest·neighbor center-ta-center dis­
tance R, in units of the sphere radius a. The plane is the plane formed by the 
four spheres of a single square. Computations were made with twa-body (a/ 
r)7 interactions (black lines), the full n-particle (a/r)7 interaction tensors (sol­
id gray lines), and the Rotn~Prager tensor (dashed gray lines). 

ties. If one extends Tij to include pairwise interactions at the 
(a/rf level, one finds the results indicated by the black lines; 
there are strong singularities in both drag coefficients, ex-
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FIG. 8. The out-of-plane drag coefficients of n (n = I, 2, 3, or 4) stacked 
squares asa function of the nearest-neighborcenter-to-center distanceR fa. 
Other details are as in Fig. 7. 

tending out to substantial (R > 2.3a) sphere separations. Al­
most all of these singularities are eliminated if three- and 
four-body interactions are taken into account, though the 
fop of the 16-sphere assembly is still strongly anomalous 
when the spheres are in contact with each other. 

DISCUSSION 

We have here presented extensive numerical computa­
tions of the drag coefficients ofsymmetric arrays of spheres. 
Contrasts have been shown between different possible levels 
of truncation of the power series expansions for the two­
body hydrodynamic interaction tensor. The consequences of 
including three- and four-body hydrodynamic interactions 
were also studied. The magnitude of hydrodynamic screen­
ing effects were obtained by comparing drag coefficients of 
rings and disk-like arrays. 

Our major result is that there are substantial fortuitious 
cancellations between terms of different order in (a/r), and 
terms involving hydrodynamic interactions between various 
numbers of bodies. For most of the arrays studied here the 
Rotne-Prager two-body hydrodynamic interaction tensor 
gives results which are within a few percent of the results 
obtained using (a/rf hydrodynamics, either at the two- or 
four-body level. For stacked arrays of squares, expressions 
for T ij more sophisticated than the Rotne-Prager often give 
far less plaUSible results for ///0. The treatment of an irregu­
lar body as an assembly of freely rotating spheres is at best a 
good approximation. In calculations of / //0' it would there­
fore appear the Rotne-Prager tensor is to be preferred to 
more sophisticated expressions for Tij' 

Instances were found in which ///0 shows anomalous 
behavior. In these cases the drag coefficients depend strong­
ly but not monotonically on the sphere spacing R. These 
anomalies are greatly reduced if four as well as three-body 
interactions are taken into account, and are suppressed if the 
distance between neighboring spheres is increased. Thus, by 
testing the dependence of /upon R, one may recognize the 
presence of singUlarities in J.I. -1. At larger R (R > 2.40), ///0 
only depends weakly on R. It may therefore be possible to 
calculate / /10 for relatively large values R, and then extrapo­
late inwards to smaller values of R. (The inversion of a ma­
trix with near-zero eigenvalUes can lead to difficulties when 
finite-precision arithmetic is performed. Some of our anoma­
lous or normal results may therefore change if calculations 
are repeated at a different level of precision.) 

There exist problems of theoretical interest in which the 
above conclusions do not apply. First, this paper only con­
siders translational motion. For problems in which molecu­
lar rotation is important, such as the calculation of rota­
tional diffusion coefficients, a separate analysis is necessary. 
In much previous work, expressions for J.I. TR and .... RR were 
not available; to express the effect of the torque, applied to 
the fluid by a given body, on the rotation of a second body, it 
was necessary to model each body as an array of spheres. By 
using the translation-rotation and rotation-rotation tensors 
of Mazur and van Saarlos,8 the rotational coupling of two 
spheres may be described. 

Second, this paper has assumed that the spheres were 
freely rotating. If the spheres had fixed orientations, the 
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higher-order approximations for bij and Tij would be modi­
fied. With these modifications, there is no guarantee that the 
Rotne-Prager tensor is still a good approximation for T. Fix­
ing the orientation of the spheres of an assembly requires 
that the assembly be able to transmit nonhydrodynamic (me­
chanical) stresses, which stresses would in general affect the 
effective drag coefficients of the assembly. 

Third, these results do not apply if one is interested in 
the interactions between several independently moving bo­
dies. As may be shown by direct analytic computation the 
translational diffusion coefficients for a set of interacting 
Brownian particles may (for short-range direct interactions) 
be given a virial-like expansion in the concentration c. 12 The 
c1 term depends only on pair interactions. The c2 term is 
modified by the three-body interactions b;kl and T;mp but 
there cannot be a cancellation of these interactions by the 

T;mnj tensor, because T;mnj first appears in the calculation at 
the c3 level. The internal modes of polymer molecules might 
show similar behavior. 
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