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Abstract

The surface ship path control problem is formulated as a multivariable,
linear state variable control problem subjected to measurement noise and non-
zero mean'distufbances. A multivariable generalization of integral control is
presented and then specialized to the surface ship path control problem. The
controller has the property of providing zero steady-state error to a constant
commanded set point. It is insensitive to errors in the knowledge of the sys-~
tem characteristics. The controller has a nonzero steady-state error to a
ramp commanded set point (nonzero heading straight path). This error is estab-
lished analytically which allows its calculation in advance. The effect of the
error can, therefore, be eliminated by simply shifting the time at which turns
are initiéted. The performance of the controller in straight steaming, lane
changing maneuvers, passing maneuvers, and a series of turns and straight path
segments is illustrated by digital simulations. The multivariable integral
controller shows promise as an effective and practical surface ship path con-

trol concept.
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1. Introduction

The problem of controlling surface ships along prescribed paths in re-
stricted waters is important from operational, safety, and environmental view-
points. In the Great Lakes system, the difficulty associated with the safe
movement of large bulk carriers through restricted waters such as the St. Marys
River below the Soo Locks is a controlling factor in the evolution Sf larger,
more economical vessels. The use of ships larger than the present 305 m (1000
ft) vessels may well be limited by a lack of maneuvering safety and/or exces-
sive dredging costs. Since these larger bulk carriers would be a small, dedi-
cated fleet, it might be practical for them to use onboard, microcomputer based
automatic path controllers in the most restricted channels such as the St.
Marys River. Precise, reliable, automated control might exceed the expected
day-to-day performance of human operators and thus permit the use of larger,
more economical vessels in more restricted channels with resulting reduced
dredging costs and/or increased safety. These reduced system costs could more

than offset the automatic control system costs.

In this report, we investigate the feasibility and effectiveness of using
a multivariable integral control law for the path control of a surface ship in
restricted waters. This type 6f control would be a potential candidate for use
onboard Gfeat Lakes bulk carriers. These ships are subjected to short-term,
essentiélly zero-mean disturbances due to passing ships, current and wind
variationé, waves, and bank and bottom changes. They are also subject to more
long-term, non zero mean disturbances due to current, wind, second-order wave
forces, and banks. The dynamic characteristics of the ships also change signi-
ficantly depending on depth-under-keel, draft, trim, and speed. Maneuvering
situations can place severe demands on the helmsmen and occur often in the
Great Lakes system due to the high percentage of the voyage time spent in re-

stricted waters.

In previous work, we have investigated the feasibility and effectiveness
of other control schemes for the path control of surface ships in restricted
waters. Our earliest work! investigated the use of nonadaptive, optimal
stochastic controllers for this purpose. These control systems consisted of a
steady-state Kalman filter and a steady-state optimal state feedback control-
ler. The Kalman filter uses noisy measurements to generate an unbiased

estimate of the state which is then used by the controller to generate the
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rudder command. In that work, the yawing moment and lateral force disturbances
acting on the ship were modeled using first-order shaping filters. These con-
trollers were shown to provide effective control when a ship is subjected to
short-term, essentially zero-mean disturbances. That work did not produce con-
trollers which could accommodate more long-term disturbances without a mean
offset from the desired path. We also showed the desirability of an adaptive
system which could automatically account for changes in the dynamic character-

istics of the ship due to changes in depth-under-keel or other operating condi-

tions.

Our more recent workZr3 investigated surface ship path controllers which
can accommodate long-term disturbances with a zero-mean offset from the path
and which can adapt for changes in the dynamic characteristics of the ship.
These control systems consisted of four major components arranged into two
loops. The inner or control loop consisted of a steady-state Kalman filter and
a steady-state optimal state feedback controller as used previously1 except
that we modeled the yawing moment and lateral force disturbances usingfa
brownian motion approach. The brownian motion approach assumes that the rate
of change of the unknown disturbances is white noise of known spectral density.
Standard optimal stochastic control techniques are then used to design a Kalmén
state estimator and state feedback controller. With the use of the brownian
motion disturbance models, the Kalman filter can effectively estimate both the
essentiélly constant and the stochastic disturbances which are acting on the
ship at any time. The controller using the brownian motion disturbance model
was shown to be very effective provided the ship hydrodyn&mic characteristics

were well known.

Since the dynamic characteristics of a ship will generally not be well
known in restricted waters, our more recent work2s3 added a second, outer or
gain update loop consisting of an on-line parameter estimator and a second
function which recalculates the Kalman filter and controller gains using the
latest estimates of the ship characteristics. A minimum variance parameter
estimation scheme was utilized. This approach has shown some promise but has
also shown the design concept to include seriously conflicting requirements.
For the parameter estimator to be fully effective it is necessary to cause the
ship to move dynamically about its desired path so that its rudder command and

resulting motion histories can be used to estimate the hydrodynamic character-
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istics. This motion is, however, in direct conflict with the objective of pre-
cise path control. Compromise is therefore needed between the accuracy of the

parameter estimates and the effectiveness of keeping the vessel on the desired

track.

A preferred approach for surface ship path control in restricted waters
would be a scheme which would be effective with known ship characteristics but
also "robust" or insensitive to changes in the ship characteristics from those
upon which the design was based. The multivariable integral control approach
studied here has these desired characteristics. Holley and Brysonl+ recently
completed a survey and evaluation of multivariable control techniques applic-
able to the automatic loading approach control of aircraft. This work has
served as the starting point for our current work. Holley and Bryson concluded
that a multivariable generalization of integial control provided effective con-
trol which allowed the zeroing of steady offsets due to essentially constant
disturbances. Further, the resulting systems were insensitive to model (dy-
namic éharacteristics) errors as are present in the ship path control problem
due to water depth, bank and speed changes if a nonadaptive controller is to be
used. This approach does sacrifice some performance compared with the optimal
stochastic controller using brownian motion disturbance models when the ship

hydrodynamic characteristics are correctly known.

This report is presented in four principal parts. First, the surface ship
path control problem is formulated as a linear multivariable control problem.
The selection of measurements and the definition of design process distur-
bances, which are used in the evaluation of system performance, are discussed.
Second, the derivation of the multivariable integral controller is presented in
general and then more specifically for the ship path control problem. The
steady-state error for this controller to a ramp commanded set point is estima-
ted using a deterministic approximation. Third, a multivariable integral path
controller is designed for a specific ship and its performance is evaluated us-
ing digital simulation. Finally, a revised approach using coordinate system
rotations is introduced and its performance is evaluated using digital simula-

tion. The report closes with conclusions based upon this work.



2. Problem Formulation

In this section, we formulate the surface ship path control problem as a
linear, state-variable control problem. The selection of measurements and

typical process disturbances are also discussed.

2.1 Equations of Motion.

Thg development of the linearized, state-variable equations of motion for
a surface ship moving in the horizontal plane presented here is based on the
formulation by Fujin05 and is presented in more detail in our earler work.!
The coordinate system for the problem is shown in Fig. 1. The 0 - &n system
is fixed in space with the desired ship path predominantly along the {-axis so
that the prescribed lateral offset nq could be programmed as a function of
€ « This approach is typical of many maneuvering situations where the ship is
to follow a series of straight paths or leading line segments along a general
direction. A more general approach without restriction on the prescribed path
will be utilized in Section 5. The G-xy system is fixed at the center of
gravity of the ship.v The positive sense of the drift angle B8 , heading angle
Y , yaw rate r , and rudder angle § are shown. WNeglecting the effects of

pitch and roll, the ship motion can be described by coordinates x, y, and ¢ .

desired
path x,X,u
u = dx/dt
v = dy/dt
U= (u2+v2)1/2
r = dy/dt

%
; » 7
o/ /
Figure 1. Coordinate System for Path Control

The exact equations of motion of the ship are integro-differential equa-
tions in which convolution integrals represent the memory effect of the fluid

to previous motion_.6 An alternative formulation yields differential equations
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with frequency dependent coefficients. Fujino7 has shown that for the maneuvers
of interest here the frequency dependence is negligible and constant-coefficient
differential equations can be utilized. This assumption becomes less and less
valid as the water depth to ship draft ratio H/T + 1 . When the equations of
motion are iinearized about the nominal path, the equation in the x-coordinate

decouples so that the ship motion can be given by,

dv

(m+my) EE

Yov + (-mU+Y,)r + Yeor + Ys6 + v , (n

ar
at

1}

+ + .
(1,,+3 ) Nyv + Ner + Nev + Ng§ + N, (2)

dn
dat

u(y=B) , (3)

which are valid for small deviations from the nominal path, £ =0 , and a con-
stant speed U condition. An external sway force Y and an external yawing
moment N are included to account for disturbances which act on the ship. 1It
is common and convenient to utilize drift angle B instead of the lateral velo-

city v so we can use,
v = =UsinB 2 -UB , (4)

to express eq. (1) and (2) in terms of the drift angle. These equations can

then be nondimensionalized as shown in the Nomenclature to yield,

)
%=r- , (5)

38!
Y ‘4t

-(m'+m YB'B' + (-m"+Ype)r' + va; + ¥Ygi8' + Y, (6)

! )_d_l_l'.'_'_ = NB'B' + err' + N°¢

zz) B'B' + Ngi8' + N' (7

(I' +J7
zz

dn' Y
'EE'T v B ' (8)

as' 1 . \
a' T (ac & (9)

r
where we have now included a first-order model for the steering gear dynamics.

The control is the comanded rudder angle §,' . The unit of nondimensional

time t' is the time it takes the ship to travel one ship length.
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Equations (5) through (9) can be transformed into state-variable form;

i.e. ’
Y r 1Tr 1 u T [ ]
P! 0o 1 0 0 O P! 0 0 0
5 r' | 0 f2o fa3 0 fy5 r' 0 Y21 Y22 .
d—ET B']l =10 f32 f33 0/f35 B'1 + 0 (Sé + Y31 Y32 - . (10)
n! 1 0 -1 0 O n' 0 0 0
8! 0 0 0o 0 -1/ 8 1/ 0 0
) L Tgl™ 1 L7y ! |
or,
nx1 mx 1 gx1
X =Fx+Gu +7T w . (11)

The coefficients of the open loop dynamics matrix’ fij and the disturbance
distribution matrix Yi4 are algebraic combinations of the stability deriva-
tives and mass and inertia terms in eq. (6) and (7).! The multivariable in-
tegral controller of interest here can handle disturbances with a nonzero mean.
We will therefore model these disturbances as the sum of two components; i.e.,
an unknown but constant part wg and an additive white noise disturbance w'e

Equation (11) then becomes,
X = Fx + Gu + Twg + Tw' . (12)
The problem thus has five states, one control, and four disturbance components.

For a particular example, we will utilize the data obtained by FujinoS>:8/9
for a model of the 290m (951 ft) tanker Tokyo Maru. This is obviously not a
Great Lakes vessel but is utilized here due to the availability of data and to
allow a direct comparison of the performance of the multivariable integral con-
troller with thap of the other approaches we have considered praviously.ll2
Systemmatic data for Great Lakes bulk carriers is only now becoming available
through a Maritime Administration sponsored project at Stevens Institute and
ARCTEC. Fujino conducted planar motion mechanism (PMM) and oblique tow tests of
the model at varidus water depth-to-draft ratios H/T. Selected characteristics
for this vessel are shown in Table 1. The coefficients f14 and Yj5 obtained
for the Tokyo Maru at 12 knots full-scale at H/T values of 1.30, 1.50, 1.89,
2,50, and « are given in Table 2. As shown by Fujin05 this vessel is course

unstable for the intermediate depth-to-draft ratios from about 3.0 down to 1.75



as is typical of many large vessels.

Fujino's
characteristic model prototype

linear scale ratio, A 145.0 -
length between perpendiculars, m 2,000 290
breadth, m »3276 47.5
draft, m +1103 16.0
displacement 58.4 kg 179,100 LT
block coefficient 0.8054 0.8054
rudder area 3,390.0 mm?2 71,29 m?2
propeller diameter 53.8 mm 7.80 m

P/D 0.740 0.740

expanded area ratio 0.619 0.619

number of blades 5 5

Table 1. Characteristics of Tokyo Maru Model and Prototype.
H/T 1.30 1.50 1.89 2.50 ©
1Y) -1.6508 -1.7136 -1.7657 -1.8177 -1.9515
fa3 9.3157 6.6235 5.7359 4.6112 3.1591
fis -0.55543 -0.79235 -0.88074 -1.0416 -1.0410
Y21 346.69 385.98 477.68 536.00 567.13
Y22 4.8040 -2,2145 -5.0043 -5.8625 2.3365
f3; 0.02974 0.13890 0.17199 0.23621 0.31507
f33 -1.0388 -0.71895 -0.52766 -0.54560 -0.63651
fi5 -0.,09995 -0.12092 -0.15607 -0.16639 ~0.16163
Y31 11.825 14.230 21.141 21,942 16.844
Y32 ~19.216 -23.123 -28.233 =-31.490 -37.384

Table 2. Coefficients of Tokyo Maru versus H/T at Fh=0.116

(12 knots full-scale)

The output of the system, eq. (12), will be given by,

y=Tx .,

where T is the output selection matrix.

(13)

We will take the lateral offset as



the output here so Y is just a scalar and T becomes the row vector,
T=1[0,0,0, % 0] . (14)

2.2 Measurement Selection.

All of the states in the ship path control problem as formulated in

eq. (12) are available for measurement. The heading ¢' can be ohtained from
a compass; the yaw rate r' can be obtained from a rate gyro; the drift angle
B' = =v' can be obtained from a doppler sonar; the rudder angle &' can be
obtained from the rudder stock or less accurately from the steering gear rams.
The lateral offset from the desired path n' must be obtained using navigation
aids such as’DECCA Hi-Fix or radar. Each of these measurements may be subject
to bias and zero-mean measurement errors and system transmission noise. In the
presence of this measurement "noise" and with the measurement of only selected

- states, the complete state vector can be estimated using a Kalman filterl,10,11

provided all of the states are observable with the chosen measurements.

The authors have previously studied the observability of the ship path
control problem.1 It was shown that it is necessary to measure the lateral
offset n' . Additional measurements improve the ability of a Kalman filter
to estimate all the states and thus improve the effectiveness of an optimal
state feedback controller. The yaw rate r' 1is the next most effective mea-
surement. The heading V' 1is readily available and is the next most effective
measurement. The drift angle B' measurement was shown to add little to the
effectiveness of a ship path controller which already measures n' , r' , and
V' « With the steering gear model used in Section 2.1, there is little need
to measure the rudder angle since the state is known exactly given ény initial
condition §'(t,) and the subsequent rudder command history Gé(t) r t 32 t, .
In any practical application, the steering gear would have its own, separate’
feedback system; the first-order model included in eq. (12) is just a means of
introducing a realistic rudder time response into our study. For the purposes
of the controller design, it is reasonable to assume a measurement vector con-
'sisting of measurements of ' , r', and n' each contaminated by Gaussian,

white noise; i.e.,

px1 10000 vy
z =[01000x+ |vy |=Hx+ Vv . (15)
00010 vy
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The final part of measurement definition is to establish reasonable levels
for the measurement noise V . The white noise power spectral density needed
in our continuous system design approach can be estimated by assuming the noise
to be exponentially correlated with an RMS noise level 03 and a correlation
time Ty o The 75 should be much faster than‘the time constants of the ship
and less than the system sampling time for the white noise model to be valid.
The power spectral density can then be estimated by,

rjj = 2(0j)2Tj . (16)

To evaluate the control system effectiveness in this study, we use digital sim-
ulation with a fixed-stepsize Euler integration scheme. This has the effect of
approximating the continuous Gauss-Markov process, eq. (12), eq. (14) and eq.
(15), by a discrete Gauss-Markov process. In these simulations, the covariance
of the computer generated random measurement noise must be selected to be con-
sisteﬁt with the design noise power spectral density. To provide equivalent
state estimate error covariances, it is necessary that the simulation measure-

ment noise variance given by,

Y.
0502 =41 (17)
At

where At is the integration stepsize.l/l12 Thig can also be considered from
a more direct viewpoint. If the controller is 1mp1emented‘digitally in an on-
board computer with the system sampled at each At + the measurement noise will

be a white sequence with variance oj'z .

The reference measurement noise levels used in this work are shown in
Table 3. In view of our earlier comments about the rudder model included in
eq. (12), we assume exact knowledge of the rudder angle. Astr;m and Kgllstr;ml3
note that all sensors have dynamics with time constants less than 1 sec. and
that the measurement errors are about 0.1° in ¥ , 0.02°/s in r . Millersl%
uses RMS errors of 0.2° in ¢ , 0.01°/s in r and 10 m. in n . Cannerl®
states that DECCA Hi-Fix crosstrack errors are as low as 1 m. when the baseline
_ is along the desired path as is done at the entrance to Europoort. Astrgm and
’ Kallstrom13 and Bystrom and Kallstrom16 have found errors in r of less than
0.0020/s3 in systems identification of full-scale experiments. In view of this
data, thé reference levels assumed in Table 3 seem reasonable. The values for

ry4 and oj' are nondimensional. The oj' are calculated by eq. (17)
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assuming At' = 0.005 (At = .24 s) which we use in our simulations. A noise
correlation time of 0.1 s. and a sampling of .24 s. imply some correlation but
the resulting values for cj' yield reasonable covariances for a white measure-
ment noise sequence. Dimensionally, the oj' are about 93 percent of the

assumed values for oj .

measurement source cj Tj ry4 oj'
UL compass 0.1° 0.1s. 1.298x10~8 1.611x10~3
r' rate gyro 0.001%/s 0.1s 2.860x10~7 7.563x10~3
n' DECCA Hi-Fix 3m 0.1s 4,559x10~7 9.549x10~3

Table 3. Reference Measurement Noise Characteristics

2.3 Design Process Disturbances.

While operating in restricted waters, a ship can be subjected to a wide
range of disturbances. Many of these can be characterized as being short-term
relative to the time constants of the ship and as having essentially a zero
mean value. First-order wave forces, wind gusts, and passing ships can be in-
cluded in this category. Other disturbances remain long enough relative to
the time constants of the ship that they must be considered to have nonzero
mean value. Second-order wave forces and the effect of a lateral current,
bank, or steady wind are included in this category. For the purposes of this
study, we utilize two typical or design process disturbances in digital simu-
lations to evaluate the performance of the path controller. These design dis-
turbances were defined in our previous work.2 These definitions are repeated

here for completeness.

Passing Ship. The lateral force Y' and yawing moment N' due to a

passing ship were selected as a typical short-term, essentially zero-mean dis-
tufbance. The assumed design disturbance is shown in Fig. 2. This disturbance
is based on results originally presented by Newtonl? for two Mariner vessels
passing in deep water. These results are considered to be representative
forces and moment histories and thus are reasonable for use in comparisons
here. Yungl® and Abkowitz, Ashe, and Fortsonl? show that the magnitude of the
disturbances increase in shallow water as H/T + 1 so the magnitudes in Fig. 2

are known to be low at the shallower depths. 1In Fig. 2, the nondimensional
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time scale is in ship lengths and the ships are beam~to-beam at t' = 0 .
These lateral force and yawing moment histories are assumed to be independent

of depth under keel in our simulations.

N'x105 Y'x10%
50 ..

Figure 2. Design Passing Ship Disturbance.

Lateral Current. The effect of a lateral current was selected as a

typical long-term, nonzero-mean disturbance for use in our ship path controller
simulations. 1In a steady current, the ship assumes an equilibrium condition
~with §' =0 and YP' = B' sSo that the effective drift angle relative to the
water Bga' 1is zero. 1In this condition, there is no external hydrodynamic
lateral force or yawing moment on the ship. In our ship maneuvering equations,
we have assumed to this point that the drift angle B' 1is with respect to the
earth. 1In shallow water, a doppler sonar would actually measure lateral velo-
city relative to the bottom. 1In a lateral current ve' without an additional
disturbance, eq. (6), (7), and (8) should properly be written,

dB.'

-(m' + my')E;$- = YgiBe' + (-m' + Y, u)r' + Yf,f' + Y58, (18)
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dr' °
(I;z + J;Z)EE',' = NB'Be' + Nper' + Né'Be' + Ngib' (19)

d ]
v -8t (20)

Now if the drift angle relative to the earth B' 1is introduced,
Be' =B' + v.' , (21)
eq. (18), (19), and (20) become as follows in a steady current:

-(ml + myn )_32_:
t

YgiB' + (-m' + Yp)r' + Yf-f' + Y58 + Ygive' . (22)

dr' 2
(I;z * J;Z)EET = NgiB' + Nprr' + Né.s' + Nge§' + Ngivg' (23)

Thus when using the drift angle with respect to the earth in eq. (12), a steady

current has the effect of applying an external lateral force and yawing moment

given by,

Y' = yg've' (25)
and,

N' = Ng've' & (26)

For design evaluation purposes, we have used eq. (25) and (26) to esta-
blish the lateral force and yawing moment produced by a 1 knot lateral current
on the Toyko Maru moving at 12 knots in an intermediate water depth H/T = 1.89.
This disturbance was assumed to be constant for 15 ship lengths and then to
reduce linearly to one half this value at 20 ship lengths. This design dis-
turbance is shown in Fig. 3. These lateral force and yawing moment histories

are asgsumed to be independent of depth under keel in our simulations.
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3. Derivation of Integral Controller

In this section, we derive the multivariable integral controller which is
evaluated in subsequent sections. The general development follows that given
by Holley and Bryson" except that it is more general in that it can accommodate
a nonzero initial command without a startup transient. The general deveiop—
ment is followed by a specialization to the ship path control problem. The
section closes with an estimation of the steady-state error of the controller

to a ramp commanded set point.

3.1 General Derivation.

The multivariable integral control law can be taken as a state variable

feedback plus a feedback on a fictitious output y, ; i.e.,
U=Cyx +Cy Yo - (27)

At this point, y, can be defined as the difference between the desired
steady-state output y3 and y, , the output due to the constant disturbance

¥g o
Yo = ¥a = Yw (28)

Substituting this expression into eq. (27), we arrive at an alternative expres-

sion for the control law;
U =Cyx +Cy (Yq = Yu) (29)

Note that when the constant disturbance component wg is zero, its correspon-
ding output y,, should also be zero, y, becomes identical to yq and the

control becomes,
u(wg = 0) = Cyx + Cyyq (30)

This provides a heuristic justification for the presence of the second term in

the control law.

The steady-state condition of the system in the presence of the constant
portion of the disturbance wg can be used to derive an expression for the
feedback gain matrix Cy +« In the steady-state, we have i =0 . We can
designate the steady-state values of the gstate and control by the subscript s

and the perturbations from these values by a prime; i.e.,
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1%
I

= X, + X'
=== (31)
u=ug+u .

Substituting eq. (31) into eq. (12), we obtain the following system:

x' = Fx' + Gu' + w' ,
- - - - (32)
0 = FES + GES + I‘ES .
The steady-state solutions, if any exist, must then satisfy,
(F + ch)és + ch XO + P_V!S = 0 . (33)

If the system (F,G) is controllable, (F + GCy) 1is negative definite so,
Xg = =(F + GCx)"1(GCy yo + Twg) (34)

and the steady-state output is,

¥s = TXg = =T(F + GCx)"1(GCy y, + Twg) . (35)
Defining,
L = =T(F + GC,)~1 , (36)

this becomes,
Y¥g = LGCy yo + Llwg . (37)

If we now require that the steady-state output Ys Dbe equal to the desired
output y4 , comparison of eq. (37) and eq. (28) yields,

Yw = Llwg , (38)

and
6C, =1 , (39)

where I is the identity matrix. Equations (36) and (39) allow the calculation
of the gain matrix Cy from F , G, Cy , and T .

Estimating "Yw ¢« In practice wg the nonzero bias component of the dis-
turbance is rarely known. Therefore both the state X and y, are unknowns
in the control law, eq. (29). A recursive scheme can be utilized to provide
an on-line estimate of Yuw o .Here we will present an argument which will show

heuristically how one can arrive at a particular form for this estimation
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scheme. Starting with a linear estimate approach:

L]
~ A

Yw = Ky(¥w = Yw) = = KyL(Twg - Twg) , (40)

~ A

where wg; is an estimate of wg and Yy 1is an estimate of y, . From

eq. (12), Twg is approximately equal to,

Twg 2 x -~ Fx - Gu ,
or using eq. (27),

Twg 2 X - (F + GCy)X - GCy yo o (41)
Substituting eq. (41) into eq. (40) yields,

L]
A

Yw ¥ - KyLx + KyLI(F + GCyx)x + GCy Yo + Twgl
or using the definition of L, eq. (36), and eq. (39),
Yw ¥ = KyLk - Ky(Tx = yo - Llug) . (42)

Recalling from eq. (37) that,

Ya = Yo *+ Llwg ,

we can replace wg by wg in eq. (42) and it can then be rewritten as,

°
~

Yuw ¥ - KyLx = Ky(Tx - yq) (43)
We can now define a new state variable v by the differential equation,
¥=Tx-y3 - (44)

This new state is thus the integral of the output error. Substituting eq. (44)

into eq. (43), we obtain the following linear estimation scheme for Y ¢

L]
a

Yw = - Ky(lx + v) . (45)

Equation (45) can be integrated to give,

A~

Yw = - Ky(Lx + v) + yo (46)
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where y. 1is the constant of integration which can be obtained from the ini-
tial conditions of the system.

In eq. (40), it can be seen that if the gain matrix Ky is selected to
be negative definite with eigenvaiues to the left in the complex plane compared
with the other closed-loop eigenvalues, this estimator will provide a rapid

estimate with y, + y, . Substituting eq. (46) for y, in the control law,
eq. (29), yields,

U =Cyx + Cy yq + Cy(lx + v) - Cy Yo (47)
where,
Cv = CyKy . (48)

This final control law is comparable with that obtained by Holiey and Bryson'
except that they omitted the final term. This additional term resulted from
the constant of integration in the integration of eq. (45). It is necessary
to allow the startup of the system with a nonzero desired output without an
undesirable startup transient. This will be illustrated by simulation results

presented in Section 4.

Augmented System. In equations (12), (13), and (44), the system states
X and the integral error states v are only available through the noisy mea-
surements of the states, eq. (15). The system is also subjected to the process
disturbances wg and w' . 1In this situation, we can utilize the Separation
Theorem!® and estimate the states of the augmented system by the system of
Kalman filters,

X =Fx + Gu + Ke(z = Hﬁ) '
. (49)
v =T - yq + Ky(z - Hx) ,
and then utilize these estimates in the control law,
u = Cx§ + nyd + CV(LE + X) - Cch o (50)

From eq. (40) it can be seen that the eigenvalues of Ky will determine the
dynamics of the estimate of Yw independent of x . These will also be eigen-
values of the closed-loop system. The other eigenvalues will be those of the

closed-loop controller (F + GCx) and those of the state estimator (F - K.H) .
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The remaining Kalman filter gains K, can be determined to produce a zero mean
output error TXx - yq even when the system is subjected to measurement noise

and process disturbances. Holley and Bryson! show that this condition will

result if,

(T = KGH)(F - KH)T =0 (51)
This can be used to obtain Ky

Summary. The complete multivariable integral controller is defined by
equations (49) and (50). The control gain Cx and state estimator gain K,
can be obtained using optimal control methods such as eigenvalue decomposi-
tion20,21,22 55 yged in our previous work. The gain matrix Ky can be obtained
by pole placement. The matrix Cy is defined by eq. (39) with matrix L from
eqg. (36); i.e., the solution to,

~T(F+GCy)~lec, = 1 . (52)

The matrix C; can then be obtained from eq. (48). The matrix Ky can be
obtained from eq. (51). This control concept will produce a zero steady-state
output error with respect to a nonzero desired output when subjécted to a con-
stant disturbance. This result is independent of errors in the knowledge of
the system matrices F , G, and T as will be present in the ship path con-
trol problem. The system can accommodate zero mean measurement noise and pro-
cess disturbances. A schematic block diagram of the complete system is shown

in Fig. 4.

3.2 Application to Ship Path Control

The general form of the multivariable integral controller has been derived
above. This can now be specialized to the surface ship path control problem
as represented by equations (10), (14), and (15). We have the following system

from above:

L]

X Fx + Gu + Twg + Tw' ,

z

]
g
+
<

~

(53)
Y=o ,

where,
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Output Integral Error Estimator Gain XK,. In this problem, the output
Y = n , the desired output y3 = ngq , and therefore the output integral error
v are all scalar quantities. With three measurements, the gain X, is then

a vector of dimension three which drives the estimator,

vV ="Tx=-yq+ Ky(z + Hx) . (54)
This gain vector can be obtained from a system of two equations produced by,
(T - K H)(F - RyH)T =0 (55)

The solution to this equation is a one-dimensional subspace because we have
three measurements of a system which is subject to two unknown disturbances.
The state estimator gain XK, is in general a full matrix and we can designate
its elements as kij +« We have shown previoualylr2 that for the system model
used here the rudder angle is known exactly from knowledge of its initial value
and the commanded rudder history. The last row of the state estimator gain
matrix K, is, therefore, zero for the statistical steady-state filter; i.e.,

kg1 = kg2 = kg3 = 0.

We can define the matrix,

5x2
M = [mij] = (F = Kxﬂ)r ’ (56)
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which has the elements,
myq = (1 = kq2)¥29 roomp2 = (1 - kq2)v22

my1 = (£22 = k22)Y21 + £23Y31 +» mpy = (£33 = ka2)v22 + £23v32

m31 = (£32 = k32)v21 + £33Y31 , m33 = (£33 - k33)Y2 + £33Y32
mgq = =kq2Y21 = Y31 ’ mgq = -k42Y22 = Y32
m5q = ~ksY21 = 0 » M52 = ~ksayzp = 0 .

If we now let the gain matrix Ky = [kq, k2, k3] , eq. (55) becomes,
[‘k1, -kz, 0, 1=~ k3, oO)M=0 |,

which yields the following system of equations:

-k1m11v- komaq + (1 = k3)mgq

=0 ’
~ ~ ~ (57)
~kqmqz = komay + (1 = k3)mgy = 0 .
The resulting one~-dimensional solution is,
~ Mg qmao=myomy 4 -
kqy = - (1 - k3) ,
Mqqma2-mq2m21
(58)
- mqqMma=mq2my 4 -
k2= (1-k3) [

Mqqm22=Mq2m2 4

where k3 1is free to be selected by the designer. This indicates that an op-
timization process could be utilized to determine the value of k3 which would
minimize the ITAE (integral of time multiplied by the absolute value of the

error) or a similar transient response performance index.23

In this report, we will consider the simple special case where ky =1
so that eq. (58) yields,

~ ~

kq = kg =0

and,

l .
F;I
o
-
o
~
-
S
.

(59)
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In this case, integral error state v has the definition,
v=n- ng

from eq. (44) and the estimator for this state, eq. (49), becomes simply

L d
~

V=23 -Ng . (60)
Thus v is the integral of difference or error between measured lateral off-

set and the desired lateral offset. We therefore have a proportional plus in-

tegral control as desired.

Feedback gains Cy and Cy . These two gains are used in the feedback
control law, eq. (50). The gain Cy which multiplies the desired output vy,
is a scalar. From eq. (50), the gain Cy will also be a scalar since u and
v are scalars. Using eq. (39), we have,

c - (61)

Y 16 '
wvhere L and GT are each (1x5) vectors. The state feedback gain matrix Cy
can be obtained using an optimal control technique such as eigenvalue decompo-
sition which yields the statistical steady-state controller given F , G, a
design cost function, and assumptions for the spectral densities of the measure-
ment noise and process disturbances. This gain matrix can be represented here
as Cy = [Cq, C2, C3, C4/s C5] . Using equations (36) and (53), the gain Cy is
given by,

1
=[0 0 0 1 0] (F+GC,)"!

Cya

Noooo

1 T,

We therefore need only the (4,5) element of
be shown to equal T, /C4 . The gain Cy th
Cy = -Cq4 (62)

and eq. (48) yielads,

CV =2 - C4Ky . (63)
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Integration Constant y, . The scalar Yo appeared as the constant of
integration in the integration of eq. (45). Substituting Yqa = Ng  eq. (62),
and eq. (63) into the control law, eq. (50), we have,

U = Cyx = C4qnq = CgKy(Lx + v) + Cqye (64)
Using, x = [y, r, B, n, 81T ,
and, L= [%q, 22, 23, R4, 51T ,

this becomes,

)

u = (Cq = CgRyfq)¥ + (Cy = CgRyla)r + (C3 = CgKyl3)B
+ (Cg - C4Ky£5)5 + C4(n = ng) - C4Ky24n + Cyye - C4KYV . (65)

This equation permits a solution for y, given any set of initial conditions
on the states x(0) = x(0) and the control u(0) . For the typical case
where the ship is to begin on a straight course with an initial offset ng,

from the &-axis, we have,
Ya=Nd =No
and,
x(0) = x(0) = [0, 0, 0, ng, 0IT ,

v(0) v(0) =0 .

Without a disturbance the commanded rudder angle control will also be zero,

i.e.,
u(0) = §,(0) =0 .
Substituting these initial conditions into eq. (65) yields,

Ye = Ky£4no ’ (66)

so that the subsequent control law becomes,

A A A

u = Cyx - Cyngq - C4KY(L§ + v) + C4Ky24no . (67)

From eq. (36) and eq. (53), 4 can be seen to be just the negative of the
(4,4) element of the matrix (F + GCy)~! which can be shown to yield,
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Cq
248‘— '
Cq

so that eq. (67) becomes,

U = CyXx - Cqng = Cgky(Lx + v) + CiKyny (68)
We noted earlier that Holley and Bryson“ omitted the last term in their develop-
ment of this multivariable integral controller. Without this term, a startup
of the system in an equilibrium position at n, will produce a transient away

from the equilibrium such that v will generate a value which will produce the

same effect as the final term; i.e.,

Cino
Cq

. (69)

We will show below that this startup transient can be quite large. Including
the last term in eq. (68) avoids this undesirable startup transient. This
completes the development of the multivariable integral path controiler for a
surface ship. 1In Section 4, this controller will be designed for the Tokyo

Maru and its performance will be evaluated using digital simulation.

3.3 Steady-State Error to a Ramp Commanded Set Point

In most practical situations, the prescribed ship path ngq is defined by
a series of straight lines or leading line segments. 1In general, most of these
will not be parallel to the {-axis and thus the commanded set point yg = ng
will be a ramp function and not a constant. The controller developed above
will produce a zero mean error for a constant commanded set point but its per-
formance will deteriorate when Yq 1s time-dependent. It is therefore of in-
terest to study the common case where the commanded set point yq is a ramp
which corresponds to the case where the desired path is a straight-line with a

nonzero heading Y4 . In this case,
Yq = at' , (70)

where a 1is a constant. To establish the behavior of the output error of this
controller when subjected to eq., (70), the closed-loop equations can be rear-
ranged so that y45 appears as an input and then the steady-state error to a

ramp input can be established.
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The problem of interest here is stochastic with random measurement noise
V and process disturbances w' . To simplify this section, however, we will
treat only the deterministic problem V=w' =0, This greatly simplifies
the evaluation of the error and reveals the essential character of this type
of controller. For the deterministic case without a constant disturbance, we

have,

1%
[

Fx + QE ’

Qe

]
12

[]
o

(71)

with the control law,

[+
(]

CxX = Cqvgq = CgKy(Lx + v)

when n, 1is taken as zero. Substituting this control into eq. (71) yields,

X = (F + GCx - CGgKyL)X = GCgKyv - GCqvg
\.7 = TE - yd ’
or,
a (F + GCyx - GCy L) (=GC4Ky,) ~GCy
i) v " g A T 2+ Ya o (72)
T 0 v -1

where the prime for nondimensional time is omitted here. If we now define
an augmented state variable £ = [x, vIT and let T' = [0, 0, 0, 1, 0, 0] ,
we have the systenm,

E=A+Byy ,

(73)
y=T7T%¢ ,

where A and B are defined by comparison with eq. (72). Equation (73) is a

single-input, single-output system for which the transfer function can be ob-
tained.

If we let Y(s) and Y4q(s8) be the Laplace transforms of y(t) and

Ya(t) , respectively, eq. (73) can be expressed as,

Y(s) = {T'[sIg - A]~1B}Y4(s) = H(s)Y4(s) |, (74)
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where Ig 1is the 6x6 identity matrix. The transfer function H(s) can be
further expressed as,
BO + 818 + see + Bmsm

H(s) = . (75)
ao + a18 + s00 + ann

The steady-state error e(t) due to a ramp input Yq = at can be defined as,

e(t) = lim
t>0

a

Yd(t)'Y(t)I

or,

Yd(t)-Yss(t)

a

e(t) = . (76)

Chen2" ghows that the steady-state response of a system with the transfer func-

tion eq. (75) to a ramp input is given by,

Bo apBq - aqBp
yss(t) = — at-+-——————5———— a P
ag ag

so that the steady-state error becomes,

B agBq - aqB
e(t) = ‘(1 L Y ()
Qg Qg

Thus, if ag # Bg , the steady-state error to the ramp input is unbounded. If

ag = Bgp # 0 , the steady-state error reduces to the bounded result,

81-(!1
a9

e(t) = | . (78)

Using eq. (74), the transfer function H(s) can be evaluated. This yields
the following results for the first two coefficients in the denominator and

numerator, respectively:

ag = Tr(f33f5 - fa3f35)agg (79)
@y = Trl(f33f35 - £33f35)asq + (f32f25 - f22f35 - fa5)asel (80)
Bo = Tr(f33fz5 - £33f35)agg (81)
B1 = C4(f33fa5 - f23f35) + Tr(f32fp5 - £22f35 - f25)asg (82)
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where ag4 and agg are the elements of matrix A in eq. (73); i.e.,

C4-C1K
agy = __;;__X. , (83)
C4K
a56 s - Y . (84)
Tr

Note that ag = Bg # 0 so the steady-state error to the ramp input is bounded.
Substituting equations (79), (80), (82), (83), and (84) into eq. (78) yields,

. (85)

This simple result is extremely important. This indicates that even though the

multivariable integral controller has a steady-state error with a ramp commanded

set point, this error is bounded and known in advance. The controller can,
therefore, be programmed to compensate for this error by simply changing the

| poiht at which a turn is initiated. Notice also that a control law which

minimizes C4 , the feedback gain on the heading, will have a minimum steady-

state error. The error can be eliminated with Cq =0 .



4, Controller Design and Evaluation

In this section, we design a multivariable integral path controller for
the Tokyo Maru using the characteristics defined in Section 2. The performance
of this controller is then evaluated through a series of digital simulations.
As noted in Section 2, the tanker Tokyo Maru is used because of the availability
of data and to allow a more direct comparison of the performance of this con-

troller with that of alternative concepts studied earlier.

4.1 Controller Design

The characteristics of the 290 m tanker Tokyo Maru are given in Tables 1
and 2. The only undefined parameter is the rudder time constant T, which we

have taken as 10 seconds. 1In the nondimensional form used here this becomes,

Ty = 0.21287 , (86)

at Fp = 0.116 or 12 knots full-scale. The first step in the design process

is the calculation of the state feedback gain matrix Cy and the state estima-
tion Kalman filter gain matrix Ky . These can be taken as the optimal steady~
state solutions to the stochastic Linear Quadratic Gaussian (LQG) problem,2'1°'25

X=Fx+Gu+Tw ,

(87)
zZ = Hx + vy,

— -—

where w and V are vector white noise processes with power spectral density
matrices Q and 'R, respectively. The design cost functional is defined as
the expected value of the integral,

te
J = E[% (E?AE + g?gg)dt] ' (88)
ts

where A and B are now weighting matrices which can be initially established
by the designer to reflect the relative acceptability of errors in the various

states and the use of the various controls.

All four matrices Q , R, A, and B are diagonal with some nonzero
elements. We have previouslyzra defined these matrices for the design of other

optimal, stochastic controllers for the Tokyo Maru and use the same values

-28~-
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here. Detailed discussion of the choice of these quantities can be found in
the earlier work so only brief comments will be included here. The power spec-
tral density for the process disturbance Q is based upon the passing ship
disturbance shown in Fig. 2. We calculated the root mean square values of N!'
and Y' between t' = ~2 and t' = 1,4 and using an assumed first-order-pro-
cess correlation time of one ship length for each disturbance established the

diagonal terms,

qqq = 1.548 x 1078

(89)
8.970 x 10~8 .

922

The diagonal terms of the measurement noise power spectral density matrix R
/
are given in the fifth column of Table 3. The nonzero diagonal terms of the

A and B matrices were taken as,

(ng)~2 = 772.5 ,

244

]

ags = (85)°2 = 131.3 , (90)

B =byq = (§55)"2 = 131.3 ,

based on a dimensional use of 5° of rudder when the lateral offset error be-

comes 10.43 m (slightly less than one-quarter beam).

The solution to this optimal, stochastic control problem requires the
closed-form solution of two matrix Riccati equations? which can be obtained
from Potter's algorithm using eigenvector decomposition.20,21 qhig technique
bwas developed into a practical design tool by Bryson and Hall22 in their OPTSYS
computer program. The Michigan Terminal System (MTS) version of the OPTSYS
program has been used here to produce the state feedback gains Cy; and the
Kalman filter gains Ky 1listed in Table 4. This design was developed for the
characteristics of the Toyko Maru at the water depth to ship draft ratio H/T
= 1.89, which is the least course stable depth for this ship. We have previous-~
ly shown! that if a nonadaptive optimal, stochastic path controller is to be
used, the best overall performance is obtained if the controller is designed

for the ship's least course stable water depth.
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controller gains CxT

Kalman filter gains Ry

5.5421
2.6601
6.3895
2,4252
-0.8499

4.6883
20,9479
2,7730
0.1239
0.0000

0.9507
109, 7887
2.0086
-0.7579
0.0000

0.0035
-0.4755
-8.6949

4.1275

0.0000

Table 4. Optimal Gains for Tokyo Maru at H/T = 1.89 and Fn = 0.116

The closed-loop eigenvalues for the Tokyo Maru at H/T = 1.89 when control-

led by the optimal, stochastic controller given in Table 4 are as follows:

Ay, A3 = -0.52137 * 0,870331 ,

A3 = -6.64361
Ag = -0.97623 |,

-2032090 .

>
(&4}
]

Recall from Section 3 that the gain

respect to the eigenvalues of the closed-loop system

(F + GCy)

Ky can be chosen by pole placement with

Here, we

place Ky at the eigenvalue furthest to the left in the complex plane; i.e.,

Ky = -6.64361 .

This will cause the estimate

to the time response of the system.

taken as the simple form,

Ky = [0, O, 1] ,

as developed in Section 3,.2.
eq. (62) and Table 4; i.e.,

Cy = =Cq = -2.4252

Equation (63) then gives the

Cy = =CgKy = 16,1121

(91)

of 1y, (through v) to converge rapidly compared

The value for the gain C

gain ¢C, as,

The output integral error gain K, was

(92)

y can be obtained from

(93)

(94)

Finally, the steady-state error of the system to a ramp commanded set point

can be evaluated numerically using eq. (85) and Table 4; i.e.,



-31-

¢4 5.5421
ess = I - — = - = 2,285 . (95)
Cq 2.4252

This completes the design of the multivariable integral path controller for
the Tokyo Maru. The performance of this design is evaluated in a series of
digital simulations which follow.

4.2 Verification of Need for C1Kyno__Term

We noted in Sections 3.1 and 3.2 that the development of the multivariable
integral controller presented by Holley and Bryson“ omitted the last term in

the control law derived here. We derived,

u= Cxé - C4ngq - C4KY(L£ + ;) + CiKyNo (68)
for the special case where the ship begins controlled operation in equilibrium
on a straight path offset ng, from the E-axis. The simulations described in
this section were performed to show the general performance of the controller
and to verify the need for the final term in u . We noted above that without
this term, the ship would undergo an undesirable startup transient which could

be prevented if the initial state were known.

In both these simulations, the Tokyo Maru controlled by the multivariable
integral controller designed in Section 4.1 is operating in a water depth H/T
= 2.50. Thus, the ship is not operating in the water depth for which the con-
troller was design and the simulations show the robustness of the design to
errors in the knowledge of the dynamics of the system. We use an incorrect
water depth here only as a mechanism to introduce a rational set of errors in
the system dynamics. The errors in the system model could actually be due to
any cause. At the water depth H/T = 2.50 the ship is still course unstable;
the change in system coefficients between the design depth H/T = 1.89 and H/T
= 2.50 can be seen in Table 2. The desired path is a straight line offset one-
half beam y3 = ng =ng = 0.0819 from the {-axis. The ship begins in equi-
librium for this condition; i.e.,

x(0) = [0, 0, O, 0.0819, 0]T ,

There is no initial disturbance but the ship is subjected to the design passing
ship disturbance defined in Fig. 2 with the ships beam-to-beam at t' = 7 .
The measurements are contaminated with the measurement noise defined in Table 3

throughout the simulations.
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Startup without the CiKyno Term. The Tokyo Maru was simulated as de-
scribed above using the control law eq. (68) but without the Ci1Kyno final
term. The results of this simulation are illustrated by Figures 5 and 6. With=-
out the final term the commanded rudder angle u = 8o at time t = 0+ was
3.016 rad. The actual rudder angle was driven to a maximum of 0.664 rad. which
would exceed full rudder on ocean going ships and certainly exceed the vaiidity
of the linear modeling upon which the design is based. The resulting commanded
and actual ship paths are shown in Fig. 5. (Note that the plotter routine has
rounded the labels on the vertical scale; the line spacing is 0.008.) The
startup transient caused by the lack of the CiKkyny term in the control law
causes the ship to deviate 0.076 or 22 m from the commanded course before re-
turning to the commanded course. This transient is needed for the variable v
to develop a value, eq. (69), which will compensate for the truncation of the
control law. The influence of the passing ship disturbance on the path is lost
in the final part of this transient. The rudder history during this simulation
is shown in Fig. 6. The rudder activity due to the passing ship is evident at
t' = 7 . The rudder activity due to the measurement noise is about +1° after

the ship returns to the commanded course.
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Figure 5. Commanded and Actual Ship Paths in Nonzero Set Point Startup with

Incomplete Control Law
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Startup with Complete Control Law. ‘The Tokyo Maru was simulated as de-
secribed above using the complete control law eq. (68) to show the effect of
the final term. The results of this simulation are illustrated by Figures 7
and 8. The commanded and actual ship paths are shown in Fig. 7. The ship be-
gins in equilibrium on the required path and remains very close to the path.
The maximum deviation occurs at about t' = 8 due to the passing ship distur-
bance. This deviation is less than 1 m. In comparing Fig. 7 with Fig. 5 note
that the scale of Fig. 7 is expanded 20 times compared with that on Fig. 5.
The intéqral controller provides effective control with zero mean disturbances
such as the passing ship. This performance is at H/T = 2.50 and thus with in-
correct knowledge of the dynamics of the ship. The final term in the control
law correctly handles the effect of the nonzero initial set point. The rudder
history during this simulation is shown in Fig, 8. The maximum rudder angle
is abbut 7.5% in response to the passing ship. The rudder activity level in

response to the measurement noise is again about 10 as would be expected.
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4.3 Performance with a Bias Disturbances

To evaluate the performance of the multivariable integral controller with
a bias or nonzero mean disturbance, the Tokyo Maru was simulated under the
control of the controller designed in Section 4.1 while operating in deep H/T
= © water. The controller was designed for H/T = 1.89 so again the ship is
operating with errors in the knowledge of the ship dynamics. The change in
ship characteristics between H/T = 1.89 and the stable depth H/T = = can be
seen in Table 2. The simulation begins with the ship in a no lateral current
equilibrium condition on the commanded straight path at ng = 0 . The ship is
Subjected to the "design lateral current" disturbance shown in Fig. 3. This
disturbance is constant for the first 15 ship lengths and then reduces linear-
ly to half this value by 20 ship lengths. The disturbance then remains con-
stant again after 20 ship lengths. The initial magnitude is established to be
a one knot lateral current when the ship is operating in a water depth H/T
= 1.,89. The disturbance does not represent a true lateral current disturbance
at any other water depth. When the simulation begins, the ship and controller
are in effect subjected to a step change in yawing moment and lateral force.

This simulation, therefore, represents a severe startup test for the controller.

The results of this simulation are illustrated by Figures 9 and 10.
Figure 9 shows the commanded (ng = 0) and actual ship paths. The maximum
deviation due to the step change in disturbance is about 60.9 m or 1.3 beams.
The controller then returns the ship to the commanded path. The maximum devia-
tion due to the ramp change in disturbance beginning at t' = 15 is about
17.4 m or less than 0.4 beam. The controller returns the ship to the commanded
path after the disturbance has stabilized. The rudder activity associated with
this maneuver is shown in Fig. 10. The maximum rudder angle in the startup
transient is about 330 which stretches the validity of the linear model but
this step change in disturbance is a design test which is unrealistically
severe. The equilibrium, mean rudder angles are about § = 0.131 prior to
t' = 15 énd § = 0.0655 after t' = 20 ., If the simulation had been conducted
at H/T = 1.89 so that the disturbance would correspond to a true lateral cur-
rent, these equilibrium, mean rudder angles would then have been zero and the
equilibrium, mean state would have been ¥ =8 , r =0 . The controller pro-
vides effective control when the ship is subjected to constant disturbances even

when operating with errors in the knowledge of the ship dynamics.
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In our previous work,2 the best performance for the simulation shown in
Figures 9 and 10 was achieved with a controller which used brownian motion pro-
cesses to model the unknown yawing moment and lateral force disturbances. This
design was restricted toistraight path ng = 0 operation. Comparison of
Figures 18 and 19 of reference 2 with Figures 9 and 10, respectively, show com-
parable responses with the multivariable integral controller described here
having éomewhat\superior performance. The maximum deviation at the startup are
60.9 m and 63.5 m and the maximum deviation due to the ramp change in distur-
bance are 17.4 m and 18.5 m for the multivariable integral controller and
brownian motion disturbance model controller, respectively. This improvement
in performance is achieved without any attempt at this point to optimize the
transient response of the multivariable integral controller through the selec~
tion of i3 # 1 in eq. (58). This controller shows considerable promise and

greater general capability than the brownian motion disturbance model controller

studied earlier.

To ensure that there is not an unacceptable change in the performance of
the multivariable integral controller when subjected to a bias disturbance if
the commanded set point is nonzero, the simulation described in Section 4.2 was
repeated using a constant "lateral current" disturbance at a value corresponding
to 1 knot at H/T = 1.89. As in Section 4.2, the ship was operating in a water
depth H/TA= 2.50; the complete control law eq. (68) was utilized. The commanded
set point is a half beam offset, ng = 0.0819 ., The constant disturbance is
applied in a step at the start of the simulation; i.e. the initial state and
control are for the no disturbance condition. The results of this simulation
are illustrated in Figures 11 and 12, Figure 11 shows the commanded and actual
ship paths: The maximum deviation from the commanded path is about 42.9 m or
about 0.9 beam soon after the startup. The rudder angle history for this simu-
lation is shown in Fig. 12. The equilibrium, mean rudder angle in Fig. 12 is
nonzero because again this design disturbance is not a true lateral current at
the simulation water depth of H/T = 2,50. The controller provides effective
control with no noticeable deterioration of performance with a nonzero commanded

set point.
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4.4 lLane Changing Maneuvers

A common maneuver in restricted waters is the change from one straight
path to a second, parallel straight path. This can be extended to a second
change back to the original path as would occur in a passing or overtaking
maneuver. A series of lane changing maneuvers were simulated with various
disturbances to evaluate the performance of the multivariable integral ship

path controller.

Lane Change with Passing Ship. In this simulation, the Tokyo Maru under
the control of the multivariable integral controller designed in Section 4.1
was simulated to be operating at a water depth H/T = 1.30. The controller was
designed for H/T = 1,89 so this simulation is with "incorrect" knowledge of
the ship dynamics. The change in ship characteristics from H/T = 1.89 to H/T
=y1.30 can be seen in Table 2; the ship is very course stable at H/T = 1,30,
The commanded ship path is ngq = 0 for the first 10 ship lengths, varies
linearly to 4 beams, ngq = .655 , at 20 ship lengths, and then remains constant
at ngq = .655 after t' = 20 . The central portion of the maneuver represents
a heading change of only 3.75°. More extreme heading changes will be illustra-
ted below. The simulation was initiated with the ship in equilibfium on the
commanded path. The ship was subjected to the passing ship disturbance shown
in Pig. 2 with the ships beam~to-beam at t' = 7 ,

The results of this simulation are illustrated by Figures 13, 14, and 15.
The commanded and actual ship paths are shown in Fig. 13. A small perturbation
due to the passing ship is evident at about t' = 8 ; this only a little over
1 m. The ship turns to the transition course smoothly and completes the lane
change with an overshoot of less than 2 m. The dominant feature of the response
is the continuous error in the path during the transition phase. This is the
steady-state'error to a ramp commanded set point property of the controller
studied in Section 3.3. The actual path lags the commanded path by about .15
or 43.5 ms These results compare exactly with the analytical results from

Section 3.3. 1In Section 3.3, we found that for a ramp commanded offset,
yq = at' ,

the steady-state error will be given by,
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For the design developed in Section 4.1, the steady-state error was found to
be,

ess = 2,285 .

For the simulation shown in Fig. 13, the slope a is 4 beams in 10 ship
lengths or a = 0.06552 , Using the definition of the steady-state error,
eq. (76), the steady offset error will be,

Y4 - Y = 2.285a = 0,1497 , (96)

for this particular maneuver. These results correspond almost exactly with

the simulation results. With this knowledge available in advance, the maneuver
could simply be initiated 2.285 ship lengths "earlier™ than shown in Fig. 13
and thus the steady-error in this maneuver can be eliminated as a practical
concern. This can be illustrated further by Fig. 14 which shows the path error
during the lane change shown in Fig. 13. The error during the transition can
be seen to be about 0.15. Shown on Fig. 14 as a dashed line is the revised
zero point for the path error if the turn were actually programmed to be initi-
ated 2.285 ship lengths earlier than shown in Fig. 13. The zero point would
then effectively be 0.1497 between t' = 10 and t' = 20 as shown on Fig. 14.
(Actually the whole maneuver would be shifted 2,285 to the left.) There would
be farily large errors as the ship completed the two heading changes smoothly
over three ship lengths after t' = 10 and t' = 20 . The error between

t' =13 and t' = 20 during the transition would then be 1.3 m or less.
Recalling that the controller is operating with incorrect knowledge of the

ship dynamics, this is highly effective path control.
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The rudder activity in the maneuver shown in Fig. 13 is shown in Fig. 15.
The maximum rudder is due to the passing ship disturbance and reaches a magni-
tude of about 8.3° just after the ships are beam-to-beam at t' = 7 . The
rudder angles to initiate the two heading changes reach magnitudes of about

5.2° and 4.0°. The general level due to the measurement noise is within *1.5°.
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Figure 15. Rudder Angle in Lane Change with Passing Ship Disturbance

Lane Change with Bias Disturbances. This simulation is similar to that
just described except that (1) the ship is subjected to the design lateral
current disturbance shown in Fig. 3, (2) the ship is operating in a water depth
H/T = 2,50, and (3) the lane change is for a 0.5 ship length offset in 10 ship
lengths. In this situation, the commanded set point slope a = 0.0500 during
the transition and the resulting offset error corresponding to eq; (96) is
0.1143. The results of this simulation are illustrated in Figures 16 and 17.
The commanded and actual ship paths are shown in Fig. 16. The corresponding

rudder activity is shown in Fig. 17.
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As in the simulation with the design lateral current illustrated in Figures
9 and 10, the ship is subjected to a step change in yawinq moment and lateral
force disturbance at the start of the simulation. The ship path shown in Fig. 16
therefore, includes a transient from the commanded path which reaches a maximum
offset of about 43.5 m or 0.9 beam at about t' = 3 . The ship enters the
transition effectively and the path lags the commanded path by about 2.285 ship
lengths with a path error of about 0.1143 during the constant disturbance prior
to t' = 15 . The period of time-varying disturbance between t' = 15 and t'
= 20 , however, appears to introduce an additional time lag of about 0.7 ship
lengths and introduce additional path error. If the turn had been programmed to
be initiated 2.285 ship lengths earlier to eliminate the steady-state error prior
to t' = 15 , the resulting cross-track error at t' = 20 would have been about

11.8 m or one-quarter beam.

The additional path error introduced by the time-varying disturbance be-
tween t' = 15 and t' = 20 appears in Fig. 16 to be decreasing near the end
of the transition. To ensure that the time-varying disturbance does not intro-
duce a change in the steady-state error to a ramp commanded set point, we re-
peated the simulation shown in Figures 16 and 17 with the second turn a£ t!
= 20 eliminated. The resulting commanded and actual ship paths are shown in
Fig. 18; the path error is shown in Fig. 19. The time-varying disturbance can
be seen to perturb the ship path but not alter the steady-state error properties.
The maximum cross-track error would be only 11.8 m or one-quarter beam at t'
= 20.4 if the turn were programmed 2.285 ship lengths early to accommodate
the known steady-state error. The controller is, therefore, effective with
both bias disturbances and large time-varying disturbances as might be expected

from banks or current changes.



-45-

AN

0.7

ETR ¢ YD

AN

8 /

o //

sl AN

L / \\

. N

Tow 400 8.00 12.00 16.00 20.00 24.00 28.00 32,00 36.00
TIME

Figure 18. Commanded and Actual Ship Paths in Single Turn with Design

Lateral Current

0.36

6.28

>

PATH ERR

0.04
]

-0.04
/‘

steaay error U.lisg
s 3

-0.12

0.20

0.0 4.00 8.00 12.00 18.00 2000 24.00 2.0 3200 36.0
TIME

Figure 19. Path Error in Single Turn with Design Lateral Current



Passing with a Bias Disturbance. As a final illustration of the effective-
ness of the multivariable integral controller with a bias disturbance, the
Tokyo Maru under the control of the design developed in Section 4.1 was simu-
lated to pass another ship using two 0.5 ship length lateral transfers requir-
ing 10 ship lengths each. The transfers were commanded beginning at t' =5
and t' = 25 . This simulation was conducted in a water depth H/T = 2,50.
The ship was subjected to yawing moment and lateral force step disturbances
with magnitudes corresponding to a 1 knot lateral current in H/T = 1.89; i.e.,
Fige 3 with t' < 15 . The commanded and actual ship paths are shown in Fig. 20,
Again the performance is very good. The time lag and steady-error properties
can be seen to be independent of turn direction and bias disturbance magnitude.
Each of the four turns could be initiated 2.258 ship lengths early tb eliminate
the steady-error during the two transition periods. The overshoot at t' = 19
and t' = 39 isg about 3 m.
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Figure 20. Commanded and Actual Ship Paths in Passing with Bias Disturbance

4.5 St. Marys River Turns

The purpose of this simulation was to test the effectiveness of the multi-
variable integral controller with larger magnitude turns typical of a general

transit in restricted waters. Based upon a discussion with the Captain of one
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of the 304.8 m (1000 ft) Great Lakes ore carriers,25 the series of three turns
in the St. Marys River between Sand Island and Moon Island in the Wesﬁ Neebish
Channel was selected as the prototype for this simulation. These turns were
identified as some of the most difficult in the Great Lakes system for the large
bulk carriers. This path is the downbound lane and is shown in Fig. 21. The
second leg of this path is the Rock Cut which has vertical cut stone walls.

The channel at this point is roughly three beams wide for the largest ships in
the system. For the purposes of the simulation reported here, only the path

was utilized from the prototype. The simulation maneuver is defined in Table 5.

segment length heading turn at end of segment
1 13.38 Y =0 370 turn to port
2 14.76 Y = =379 289 turn to starboard
3 13.79 Y = =90 40° turn to port
4 8.07 Y = -490

Table 5. Simulation Maneuver Based Upon St. Marys River

For this simulation, we continued to utilize the Tokyo Maru under the con-
trol of the controller developed in Section 4.1. The simulation was performed
at a constant depth of H/T = 1.89. Thus, the operating and controller design
depths wefe the same. Bank effects and current were not included in this par-
ticular simulation. The passing ship disturbance shown in Fig. 2 with the ship
beam-to-beam at t' = 7 was included for test purposes even though the proto-
type is actually a single direction channel. The simulation was started in
equilibrium on the commanded path. The results of this simulation are illu-
strated by Figures 22 and 23. The commanded and actual ship paths are shown
in Fig. 22. Because of the coordinate system defined in Fig. 1, the plot of n
versus "t' appears as a mirror image of the actual path. For clarity of the
results, the turns were not initiated 2.285 ship lengths "early" but this could
have been done to eliminate most of the path error in the final three segments
when the commanded heading is not zero. The analytical path error y3 - vgg
for the second, third and fourth segments are 1.722, «362, and 2.629, respec-
tively, when the turns are not programmed to be initiated 2.285 ship lengths

early.
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Sample results from the simulation are shown in Table 6. The resulting
path error with the 2,285 ghift in the turn commands is shown in this Table.
In general, the performance is excellent. The larger error at t' = 50 is
still only .15 beam for this ship. This error seems to result from the presence
of the transient initiated at the start of the segment since the error at t'
= 47, 48, 49, and 50 is +.025, +,004, -.025, ~0.25, respectively. Allowing
for the shift of 2.285; the maximum overshoot after the first turn is .094 or
27.3 m. This corresponds to a crosstrack overshoot of 21.8 m or .46 beam. The
maximum overshoot after the second turn is .082 which corresponds to a cross-
track overshoot of 23.5 m or .49 beam. The maximum overshoot after the third
turn is .121 which corresponds to a crosstrack overshoot of 23.0 m or .48 beam.
The rudder angle in these turns is shown in Fig. 23. The maximum rudder angle
at the start of the first turn is 23.99; maximum rudder angle at the start of
the third turn is 30.0°. In the next section, we investigate an approach for

reducing both the overshoot and maximum rudder angles.
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Figure 22. Commanded and Actual Ship Paths in St. Marys River Turns
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simulation analytical path error with
t! Ya = ng n* yqa = n Y4 - Yas 2.285 shift
26 -9,506 -7.787 1.719 1.722 «003 = 0.9 m
28 -11.013 -9,295 1.718 1.722 «004 = 1.2 m
39 -12.842 -12.48 «362%,005 +362 «000 = 0.0 m
41 ~-13.158 -12,80 «358+,005 +362 004 = 1.2 m
48 -20.283 -17.65 | 2.633%,005 2,629 004 = 1.2 m
50 -22,584 -19,98 2,604%,005 2,629 0025 = 7.3 m

*printed simulation results have only four

*.,005

Table 6.

significant figqures so results are

Sample Results in St. Marys River Turns Simulation

4.6 Cubic Turn Command

In order to reduce the path overshoot and reduce the maximum rudder angles,

the commanded turn can be a smooth curve rather than a discrete change of head-
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ing as used in Fig. 22. To investigate the effectiveness of this approach,
the first turn in the St. Marys River turns simulation described in Table 5
with the passing ship disturbance shown in Fig. 2 was repeated using a cubic
turn command. For simulation convenience, however, the 37° turn was made to

starboard. The commanded path was as follows:

Yya=>0 , t' < 10 ,
Yq = +0086704 (t'-10)3 + .0056385(t'-10)2 , 10 < t' < 15.17 |,
¥q = 75355 (t'-13.38) 15.17 < ' .

This cubic transition path reaches the desired 37° path beginning at t' = 13.38
at t' = 15.17 with the correct 37° heading. The commanded and actual ship
paths for this turn are shown in Fig. 24. As in Fig. 22, the turn is not pro-
grammed to be initiated 2.258 ship lengths early in order to eliminate the
steady-state error. Analysis of the simulation results allowing for the 2.258
shift in the actual path shows that the response has a maximum overshoot of
about .0511 at t' = 18.3 . This overshoot can be seen in Fig. 25 which shows
the path error for the turn shown in Fig. 24. With the 2.258 ship length shift,
the effective path error after the turn is completed would be with respect to
the steady-state error value of 1.722. Dimensionally this overshoot is 14.8 m
compared with the 27.3 m overshoot in the first turn of Fig. 22; the crosstrack
overshoot is 11.8 m or one-quarter beam compared with 21.8 m in Fig. 22. The
cubic turn command, therefore, provides a significant reduction in path over-
shoot. The rudder activity in the turn shown in Fig. 24 is shown in Fig. 26.
The maximum rudder angle magnitude in the initation of the turn is 5.69; the
maximum rudder angle used in checking the turn is 8.9°. These values compare
favorably with the 23.9° and 14.7°, respectively, shown in Fig. 23 for the first
turn. The cubic turn command, therefore, provides a significant reduction in
the rudder angle magnitudes used in turns made under the control of the multi-
variable integral controller. Controller implementation of this control law
could include both the 2.258 ship length shift and cubic turn commands. The

resulting controller shows considerable promise.
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5. Turning by Coordinate Rotations

In the previous section, a cubic turn command was utilized to reduce rudder
usage and overshoot in turns under the control of the multivariable integral
controller derived in Section 3. 1In this section, we study an alternative
approach in which the turn is achieved by a series of coordinate rotations with-
in the control computer without a specific turn command. The necessary coordi-
nate transformations are developed and then the effectiveness of this approach

is illustrated by digital simulation.

5.1 Derivation

In the results presented in Section 4, turns were at discrete locations

and were initiated as discrete changes in heading; i.e., ramps in commanded off-
set, or were initiated using cubic transitions in the éommanded,offset followed
by a ramp commanded offset. This approach included a steady-state error to the
ramp commanded offset which will occur with any constant nonzero heading. Xnow-
ing the steady-state error in advance we noted that this could be taken into
account by simply initiating the turns 2.258 ship lengths early for the specific
design studied. This approach would be practical for a series of discrete turns
with intermediate periods of constant heading as in the St. Marys River turns
simulation. In more complex situations involving more closely spaced turns or
perhaps continuous turning, this would become difficult to manage. An alterna-
tive approach would be to rotate the coordinate system used by the controller

so that it is aligned with the desired heading. This could be implemented in
small, discrete steps consistent with the cycle time of the control computer.
Since the final condition will always have the ng = 0 with respect to the in-

ternal coordinate system, there will be no steady-state error.

In this approach, we will be dealing with two coordinate systems. The
global system (X,Y) is fixed to the earth. It is utilized to keep track of
the position of the ship with respect to the navigational charts. The local
system (E,n) is generally aligned with the channel with the E-axis along
the centerline or desired track. The control law Qill be based on the local

system since the state vector will be computéd with respect to the local system.

Rotation of Local Coordinates. The geometry associated with a discrete
rotation of the local coordinate system at a time ty is shown in Fig. 27.
Point G is the center of gravity of the ship. The desired path can be construc-

-54-
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ted as a series of straight segments separated by the rotation points Ay » At
the rotation time t; , the local coordinate system (E4, ny) 1is at an angle
¢; with respect to the global X-direction. The local lateral offset is ny

= EIE in Fig. 27. At ti{ , the local coordinate system is rotated through an
angle a; to a new local coordinate system (Ej49, Nj+q) which is at an angle
$i+1 with respect to the global X-direction. The new local lateral offset is
Nit+1 = EI:TE + The aﬂgles ®3 and 83,9 locate the rotation point Aj with
respect to the ship using the Nij= and nj;q-axes, respectively. A reasonable
logic for establishing the rotation time ty would be when 6; = 26;,4 for
the particular geometry shown in Fig. 27. Suitable equivalents could be devel-
oped for the other combinations of @ and ny .

Einl

ship path =

commanded path

$i+1

Figure 27. Rotation of Local Coordinate System

If we define GHi positive in the direction of positive ni and define
dy = HlAi and dj4q = Hj4qA; positive in the direction of positive £; and
Ei+1 + respectively, we have,

di

tan~! — , (97)

01

dj+
tan~! ._i_l , (98)
“Ni+1

B1+1

and,



a; =04 - ei+1 . (99)

The rotation time t; might then be taken when 041 = aj for the geometry
shown in Fig. 27. After the rotation, the new lateral offset is,

Ni+1 = =GAj cos B4

== /ny2 + 432 cos(By - a3 ) . (100)

The new heading angle V344 will be related to the prerotation heading angle
by,

Vit1 = V3 + a3 . (101)

The other states will be unchanged so the state vectors before, x3y , and after,
Xj+1 » the rotation at tj; will be given by,

= [yy, xr, B, Ny, aT o, (102)

X
i ty

Xi+1 N = [Vi+1, x, B, Ni+1s §1T ' (103)
i

with the new nj4q and " VYi+1 given by eq. (100) and eq. (101), respectively.
At t4 , the system model is switched from the system i ; i.e.,

Xy =Fxqy +Gu+Tv ,

Z; =Hxy +v ,

P TR

to the system i+1 ; i.e.,
Xi+1 = FXy4q + Gu + Tw
Zi41 = HRyq + ¥
Yi+1 = TXj4q1 o

Since the state vector xj(tj) contains all past history of the system prior
to t; , xj+¢(ty) from eq. (103) can be used as the initial condition for
systemv i+1 . The validity of the switching process is guaranteed by the Semi-
Group axiom of system theory.27 Finally, the error integral state v in the

integral controller should continue undisturbed; i.e.,



-57-

t ti+1
vit) = oa0 + (ny - Ng,lat' + (Mjsq - Nd4,q)dt" + oov
ti-1 ty

Global Coordinate Transformation. With the rotation of the local coordi-
nate system it is necessary to have a transformation from the local to global
coordinates to be able to keep track of the position of the vessel. The re-
quired geometry is illustrated in Fig. 28. The ship center of gravity G and
projection H on the £j,q-axis are shown for the rotation time t; and a
later time t . 1If we assume that the ship path is never at a large heading
with respect ﬁo €i+1 and that speed is constant as in the initial develop-

ment of the linear model, the nondimensional time t will have units of ship

shi ath
vi P P

—p=X

Figure 28, Global Coordinate Transformation

lengths along the £;44 axis. At the time of the rotation t; , the distance
di+1 from Hiyq to A; is established. Thus, the coordinates of Hi+q in

the global system (Xj,Y{) can be established. The position of H(t) is then

given by,
Xg(t) = (t - ty)cos ¢i4q + X; o
(104)
Yu(t) = (¢ - ti)sin ¢j4q + Yy .

The position of the ship in the global coordinates is then given by,
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Xg(t) = Xg(t) + njpqs8indieq
(105)
Yg(t) = Yy(t) = nj4qcosdisq o
In a treatment using the full nonlinear equations of motion the E-coordinate
equation could be utilized and speed changes could be accounted for. The treat-
ment here is restricted to the linear, constant speed model. The prime has

been dropped from the nondimensional time in the above development.

5.2 Simulation Results

In this example, the Tokyo Maru under the control of'the multivariable in-
tegral controller designed in Section 4.1 is simulated through a 37° turn which
is initiated using the coordinate rotation approach. The ship is operating at
the controller design depth of H/T = 1.89 . The commanded set point yg = ng
= 0 throughout since the turn is created by the coordinate rotations. A singlé
rotation of 37° would produce unrealistically large rudder commands. The turn
is therefore created in a series of 40 equal rotations at each 0.1 ship length.
The turn begins at t' = 11.38 and is thus completed at t' = 15.38 . The
passing ship disturbance shown in Fig. 2 with the ships beam-to-beam at t' = 7
is included in this simulation. The :esults are illustrated by Figures 29, 30,
and 31. Figure 29 shows the global path for the turn. The 37° heading final
track beging at Y =0 at X = 13.38 as in the first turn of the St. Marys
River turns simulation. The local commanded and actual ship paths are shown in
Fig. 30. 1In this approach, the commanded path is always ng = 0 so the local
path represents the path error. There is no steady-state error in this ap~-
proach. The maximum overshoot occurs at t' = 17.5 with an overshoot of .1526
or 44.3 m. This is a crosstrack overshoot of 35.3 m or .74 beam compared with
11.8 m for the cubic transition turn shown in Fig. 24 and 21.8 m for the discrete
379 first turn shown in Fig. 22. The rudder angle in the turn is shown in Fig.
31. Using coordinate rotations, the rudder magnitude reaches about 280 at two
points in the turn. This dompares unfavorably with the maximum rudder angle mag-
nitude of 8.99 shown in Fig. 26 for the cubic transition turn and 23.9° shown for
the first turn in Fig. 23. The coordinate rotation approach does not offer im=-
proved turning performance. It could be used periodically, however, to realign

the local coordinate system and eliminate the steady-state error.
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6. Conclusions
The following are the principal conclusions based upon this work:

* The multivariable generalization of the integral controller presented
here follows that of Holley and Bryson" except that we have obtained an addi-
tional term in the control law which results from a constant of.integration.
This additional term in the control law allows the controller to accommodate

nonzero initial setpoint commands without a highly undesirable startup transient.

* 1In the specialization of this controller to ship path control, we have
studied at this time only the special case where the integral error variable
Kalman filter gain is K, = [0, 0, 1] . The design of this gain contains the
free variable ;3 which can be selected to optimize the transient response of
the controller with the other elements of K, = [;1, ;2, ;3] then obtained
using eq. (58). We hope to investigate the effect of optimizing ;3 on the

performance of this controller in the near future.

* The multivariable integral controller has the property of zero steady-~
state error with a constant commanded set point when subjected to disturbances
and measurement noise. 1In ship path control, a common situation is a nonzero
heading straight path which corresponds to a ramp set point command. In this
case, the multivariable integral controller has a nonzero steady-state error
which can be interpreted as a time shift in the turn response. We derive a
simple analytical expression for this error, eq. (85), which allows its calcu-
lation in advance. The effect of this error can then be eliminated by simply

initiatihg the turn a fixed time earlier than would normally be expected.

* 1In simulation results presented in Section 4, we show the value of the
additional term in the control law in eliminating unwanted startup transients if
the initial commanded set point is not zero. With the complete control law, per-
formance with a constant set point is excellent even when the ship is subjected
to large time-varying disturbances and when the design is based upon incorrect
knowledge of the characteristics of the ship. The nonoptimized controller stud-
ied here shows superior performance to the path controllers we have developed

earlier? using brownian motion disturbance models.

* The multivariable controller provides effective control in lane changing

and passing maneuvers provided the time shift needed to offset the steady-state
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error to a ramp commanded set point is implemented. This performance is not
sensitive to errors in the knowledge of the dynamics of the ship. The control-

ler is effective when subjected to large bias or time-varying disturbances.

* The multivariable controller provides effective control in larger mag-
nitude turns between straight path segments as included in the St; Marys River
turns maneuver defined in Table 5. The time shift must be included to offset
- the steady-state error to ramp commanded set points when the path heading is
nonzero. Cubic transition set point commands can be introduced to reduce the

overshoot and rudder activity in the turns.

* The use of coordinate rotations was introduced as an alternative means
of eliminating the steady-state error to a ramp commanded set point and possib-
ly reducing the overshoot and rudder activity in the turns. The latter objec-
tive was not realized, but this approach could be used periodically to "update"
the local coordinate system in the controller and to accommodate continuous

turning situations.
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