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The excitation and propagation of lower-hybrid waves in an inhomogeneous, cylindrical plasma is studied
theoretically for finite-length electrostatic sources. The boundary-value problem for the electrostatic
potential in a cold, inhomogeneous plasma is solved numerically as a superposition of the radial
eigenmodes excited by a finite-length source. Radial eigenmodes are found numerically by an algorithm
which includes the case where the lower-hybrid resonance layer occurs in the plasma. The eigenmode
superposition is carried out for several phased-ring sources. The plasma response is found to be composed
of resonance-cone surfaces along which the potential is a maximum. When the resonance layer does not
occur in the plasma, the resonance-cone surfaces reflect from the column axis and at the plasma boundary.
For the case when the resonance layer does occur, the resonance-cone surfaces become asymptotic to the
resonance layer and do not penetrate to the center. The presence of damping causes the resonance-cone
singularities to dissolve axially leaving the lowest-order radial mode excited by the source.

I. INTRODUCTION

Radio-frequency plasma heating near the lower-hybrid
frequency has become important as a possible means of
providing supplemental heating in fusion devices. The
possibility exists that plasma waves launched by ex~
ternal sources may couple either l'mearly1 or nonlinear-
ly? to hot-plasma waves that may give rise to plasma
heating through collisionless damping processes. In
order to properly describe the excitation and propaga-
tion of externally excited lower-hybrid waves, it is
necessary to account for both the plasma density in-
homogeneity and the finite size of the plasma and the
source,

The results of previous theoretical studies®™® indicate
that electrostatic lower-hybrid waves launched by finite-
sized sources give rise to singularities in the wave
field in an infinite, cold plasma. In homogeneous plas-
ma the singularity due to a point source exists along
the surface of a cone with its axis parallel to the mag-
netic field lines,® Briggs and Parker! showed that these
so-called resonance cones are curved surfaces in an
inhomogeneous plasma and do not penetrate past the
resonance layer where the wave frequency equals the
lower-hybrid frequency., Simonutti’ and Bellan and
Porkolab® extended this work in planar geometry to in-
clude first-order thermal effects and the effects of
finite-sized sources, They found that linearly con-
verted hot-plasma waves appear as weak singularities
at the point at which the resonance-cone surfaces reach
the lower-hybrid resonance layer. The particular
character of the plasma response depends on the super-
position of plane waves excited by the source.

Not all of the waves excited by a given source may
necessarily penetrate the plasma due to the density and
magnetic field inhomogeneity. An accessibility condi-
tion has been derived by several authors which stipu-
lates a minimum allowable value for the parallel wave-
number k, for propagating waves, ’® Troyon and Per-
kins® showed that Landau damping of the lower-hybrid
waves imposes a condition on the maximum allowable
k. value for wave penetration. Hence, a window in the
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k. spectrum is formed by Landau damping and accessi-
bility through which a source should inject the bulk of
its power, Phased waveguide arrays have been pro-
posed!® for rf power coupling which concentrate the
excited &, spectrum in the penetration window,

The purpose of this paper is to examine the propaga-
tion of lower-hybrid waves in a cylindrical, bounded
cold plasma which are excited by an arbitrarily phased
array of electrostatic sources, In particular, attention
is focused on the properties of the resonance-cone sur-
faces in cylindrical geometry. The density is allowed
to vary radially and the electrostatic plasma response
is calculated for the source configurations and param-
eters of several recent experiments, In Sec. II the
boundary-value problem in cylindrical geometry is
developed, In Sec. II approximate solutions are dis-
cussed which show the relationship of the bounded-
plasma waves to resonance cones in an infinite plasma,
The effects of damping are also considered, The nu-
merical calculation of the eigenmodes of the bounded
system is discussed in Sec, IV, including the case
where the lower-hybrid resonance layer occurs in the
plasma, Full numerical results are then presented in
Sec, V for the total plasma response due to several
specific sources. The results are summarized in
Sec, VI,

. CYLINDRICAL BOUNDARY-VALUE PROBLEM

The plasma is taken to be an infinitely long cylinder of
radius ¢ with a uniform magnetic field imposed in the
z direction and a radially varying density profile, The
electrostatic source array is localized at a fixed radius
b with an arbitrarily specified axial and azimuthal rf
potential variation. A vacuum region may occur be-
tween the source and the plasma as shown in Fig. 1.

It can be shown that the lower-hybrid waves are near-
ly electrostatic in all but a thin layer at the plasma
surface, ’ Hence, the electrostatic assumption may be
made provided that only those waves that satisfy the
accessibility condition are included. It is also assumed
that the plasma is moderately collisional in agreement
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FIG. 1, Sketch of the bounded-plasma system. A constant
magnetic field is in the 2 direction and the plasma density
varies radially.

with experimental conditions, "1} For the collisional
case Bellan and Porkolab® showed that the hot-plasma
waves are not appreciably excited and thermal effects
may be neglected.

The resulting electrostatic wave equation in the plas-
ma can be found from Poisson’s equation in a source-
free region

V- (K. V) =0, (1)
where ¢ is the electrostatic potential and K is the cold-
plasma dielectric tensor. Fourier transforming the
axial variation and Fourier analyzing the azimuthal
variation as exp(im#6) leads to the equation

Kmﬂ (Q&+§L>i¢l_<k‘a&,+i”l‘_igz 1”_21(1)4,:0, (2)

dr? \dar v jar v dr 7

where K,, K,, and K, are the elements® of K,

The potential in the vacuum region is described by solu-
tions of the modified Bessel equation which is given by

d% 1 d¢ 2 mE
art 'y dr (k‘ +72—)¢ =0. @)
To completely specify the solution, boundary conditions
at the plasma—vacuum interface and at the source are
required, At the plasma-vacuum boundary it is as-
sumed that the tangential components of E and the nor-

J

O la) -~ I.(k0) - K, (k)

K, (a) ¢, (a) —i—"z‘K‘@ dpla) =R IL(Ba) - FE K, (k)

0 1,(k,b) K, (k.b)

mal components of D are continuous. E, and E, are
continuous when

¢p (a) = ¢u(a)’ (4)

where the subscripts refer to the values on the plasma

and vacuum sides of the boundary, respectively, Con-
tinuity of D, requires
do,(a) .K.(a) de,(a)
i =
K {a) ——L—d'r z—‘—a me,(a) _L—dr . (5)
The source is Fourier analyzed as
¢, = 2 explimb) b (m, k,), (8)

m==co

where ¢ (m, &,) is the Fourier transform- Fourier
series coefficient, In order to match the source poten-
tial term-by-term in the Fourier series, the following
condition is required

(l)v(r:b, m, kz)'—‘(i;s(m; kz)° (M

The boundary conditions given by Egs. (4) through (7)
and Eqs. (2) and (3) constitute a well-defined boundary-
value probiem for the potential.

The eigenfunctions of this problem are of the form
¢, (Viexp(imd — ik,z), (8)

and it is necessary to find the radial function ¢,,(»)
from Egs, (2) and (3), In the vacuum region the solu-
tion is a linear combination of modified Bessel functions

¢, =By, (2,7} + B,K,, (k7). (9)

In the plasma there are also two independent solutions
denoted by ¢!’ and ¢2 and the general solution is

by =A1 00 + Ayl (10)

The functions ¢!’ and ¢’ cannot be given in closed
form because of the complexity of Eq. (2) which, in
general, has singular points at »=0, »—~ and at the
lower-hybrid resonance layer defined by K (#) =0.
Since »=0 is a regular singular point, series solutions
for ¢’ and ¢.2 can be found by the method™ of Fro-
benius. One of the solutions is analytic at =0 and the
other is singular; the singular solution is denoted by
2, It is assumed that the potential at this point is
finite and hence

A,=0.

Application of the boundary conditions yields the follow-
ing system of equations for the coefficients A;, B,, and
B,:

(11

Ay 0

(12)
B, | = 0 .
Ba és

The coefficients are well defined in terms of ?¢>s provided that the determinant of the coefficients does not vanish,
Vanishing of the determinant defines the dispersion relation for the eigenmodes of the system.

In the nonsingular case the eigenfunctions ¢, K,, and I, may be used to find the total plasma response due to
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an arbitrarily specified source ¢,. The potential in
real space is found as a superposition over all possible
axial and azimuthal modes and is given by

o, 8,2)= Z explim#) f dkexplik,z)

T e
Oy, k,) 0=r=a

X{Bllm(k,r) +BK, (b,?), a=r=b 13)

with the coefficients specified by Eq. (12). In general,

the integration in Eq. (13) must be found numerically
and the results for several specific sources are pre-
sented in Sec, V, It is first useful, however, to ex-
amine approximations to Eq, (13) for simplified cases,

Hi. APPROXIMATE UNIFORM-COLUMN SOLUTIONS

It is found that the superposition of bounded-plasma
eigenmodes implied in Eq. (13) gives rise to resonance-
cone surfaces similar to those found in infinite plasma.
To show this the case is considered where the plasma
is homogeneous with no surrounding vacuum region and
with w >w,,. The superposition integral of Eq. (13) is
given by

o(r, 8, 2)

I (R 7) r)

:—— Z exp(zme)f dk, explik, z)¢ (m, k)J " o)

T jpzaco

where (14)

kZ=— KK, /K,) (15)

and J,, is the Bessel function of the first kind of order
m resulting from the solution of Eq. (2) for the homo-
geneous plasma, The integral in Eq. (14) can be eval-
uated as a residue sum over all the poles:

© . 1/2 ©
¢(7,0,2)= Z i (—%) exp(ime)zl: exp(ik,,z)

Mm==oo

Jp[Dpalr/a)]

X b (m, k 16
¢s(m, z) Jr’n(pmn) » ( )

where the poles are given by the eigenvalue equation
In( Prn) =0, P =hecn a7

obtained by equating the determinant of Eq, (12) to zero
and

_p K 1/2
ey =L (‘FL) . (18)

The potential given by Eq. (16) will be recognized as a
sum of Trivelpiece~Gould eigenmodes!® for the homo-
geneous plasma waveguide, In the case of an inhomo-
geneous plasma the Bessel functions are replaced by the
eigenmode solutions ¢,,(») of Eq. (2).

To show that resonance cones arise from the eigen-
function superposition in Eq, (13), the homogeneous
plasma solution given by Eq. (14) is again used, The
integral may be approximated by the substitution of the
large argument expansion of the Bessel function which
is given by

1 T
I, (%) ZraE cos [x— ry (2m+ I;J . (19
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Since %, 7>> 1 except at small values of %, and 7, the use
of this expansion does not introduce a large error into
the integration, Since the integrand is an even function
of k,, the equivalent cosine transform may be used and
the potential may be expressed as

o(r,0,2)~ E a, exp(zm9) f dk‘k i3 ( )1/2

m==c

7
X cos b,z sin L cos[k,r- (2m+ 1) 4]
. .

, (20
cos[k,,a -(2m+1) %]

where the z dependence of the source has been taken to
be constant for |z{<L/2 and zero for tz|>L/2, In

this case it is assumed that the azimuthal dependence

of the source may be expanded in a Fourier series with
expansion coefficient g,. Expanding 1/cos x in the form

_ . n .

o =2exp(- zx)"; (= 1)" exp(- 2inx) (21)
and expressing the remaining trigonometric functions
as complex exponentials puts Eq. (20) into a form that
may be evaluated by the saddle-point method. It is
found that the integrand is an infinite sum of exponen-
tials each having the form of

explik,f, (7, 2)], (22)

where f, is a function of spatial variables only, Ac-
cording to the saddle-point method, the integrand will
be highly oscillatory and the oscillations will largely
cancel except when

folr,2)=0, n=0,1,2,... . (23)

Thus, the integral will have a maximum in real space
on the infinite set of discrete surfaces defined in Eq,
(23). These surfaces are the resonance-cone surfaces
in the cylindrical, bounded plasma. Equation (23) may
be written explicitly as

v v
zt%ir(—%) i(2n+1)a<-%l) =0, n=0,1,2,...,

(24)
where any combination of signs is allowed, The azi-
muthal mode number m does not appear in Eq, (24) but
enters in a phase factor multiplying a,, exp(im8) in Eq.
(20). This factor is important because it may affect
the § variation, In Fig, 2 the projection of these sur-
faces is plotted on the »— z plane for »<gq., It is found
that there are two sets of resonance-cone surfaces;
one from each end of the source, at the cone angle de-
fined by

tan%, = - K, /K. (25)

This angle was discussed previously by Fisher and
Gould for the upper-hybrid frequency, * Similar re-
sults were found for the lower-hybrid frequency in an
infinite plasma for a finite-length source, >® It is also
seen from Fig, 2 that the resonance-cone surfaces ap-
pear to reflect at the column axis and at the plasma
boundary. For asymmetric excitation the m-dependent
phase factor in Eq. (20) indicates that the resonance-
cone surfaces reflect only from the boundary and pass
through the axis, retaining the asymmetry of the source,
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FIG. 2. Projection of the
resonance-cone surfaces in

the r-z plane corresponding
to saddle points in the integrand
of the superposition integral

as given by Eq. (24). The
figure is symmetric about the
axes.
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whereas the axisymmetric mode reflects at the axis.
The superposition integral may thus be interpreted in
terms of a sum of Trivelpiece—Gould eigenmodes and
in terms of resonance-cone surfaces., It may be shown,
by use of a Green’s function technique, that it is en-
tirely equivalent to view the response in a bounded
plasma as a superposition of Trivelpiece—Gould modes
or as a superposition of resonance cones from a collec-
tion of point sources,

It is possible to evaluate the effect of damping on the
resonance cones in a homogeneous plasma using the
superposition integral of Eq. (14) in the residue series
form of Eq., (16). If it is assumed that

2 2
wi Kwi<w,w, (26)

and v/w << 1, then k,, may be written as

_y
wi-wf +z6wf,

k,,,z"—;n n=1,2,..., (27)

Wpe
where v is the Krook-model collision frequency for ion-
neutral collisions, Since the imaginary part of &, is
positive and increases with the radial mode number =,
the higher-order radial modes are more strongly
damped than the lower-order modes, This implies that
damping reduces the sharpness of the resonance-cone
singularity as the distance from the source is increased,
After a sufficiently large axial distance, the resonance-
cone surfaces can be expected to disappear altogether
leaving the lowest-order radial mode excited by the
source,

Although the results of this section were derived for
a homogeneous plasma, it is found from the numerical
results that the same behavior is characteristic of in-
homogeneous plasma.
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IV. EIGENMODES

In order to find the total plasma response for a given
source, the ¢!’ eigenfunctions must be found in the
range 0= 7 = a at every &, value. To expedite the nu-
merical calculations a Lorentzian density profile is
chosen as

:%“_—)—’—2%+N1, (28)
where ﬁ’o is the peak density, ﬁl is the minimum den-
sity, and y is the profile parameter. The densities
are normalized to unity at the lower-hybrid density,
With some manipulation the dielectric tensor compo-
nents can be written as

_1=Np+ (1= N)y?r?

1 14427 , (29)
1- a2Ny+ (1 - 02N,y 2r?
I{Il = 1+'y21,2 i (30)
and
N o Mo, 292
L No+ Ny %
Kx—iTIc 1+,y2,;,2 ’ (31)
where
1.2
0.8 No=N,=0.9
0.4
(a) -
o \//\\//\
sl \/
-0.8—
1.2
0.8 No=0.9, N=0.1
0.4—
(b) =
0 \/
-0.4
08 | l | |
0 4 8 12 16 20
RADIUS, mm
FIG. 3. Radial eigenfunctions for m =0. (a) Homogeneous case

(Trivelpiece—Gould mode) and (b) inhomogeneous case. The

Trivelpiece—Gould mode is evaluated at the peak density, Nj.
All values of the potential are given in arbitrary units but are
plotted oln the same scale unless otherwise noted (v/w=0 and
k,=4 m™).
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2 (w2 wi)(w?-w?)

= 2
© 7 wiw? = wewey) (32)
and
_wl(wg — wyy)
Me Tw = WeeWey ) (33)
Hence, the eigenmode equation becomes
where
1 2ry 4Ny - N))
plr ko) T U1y A =Ryt (1 - Ny 2rf) (35)
and
2 287 2ny 2,.2
m 1- a?Ny+ (1 - 2Ny 2r
q(r k) =~ 77 TR = No+ (1= N)y?r?
+——E—1[——L~°——r—2" my(F, - Ny (36)
(1+9%r)[1-Ny+ 1 = Ny%r?] *

It is noted that Eq. (34) has a regular singularity at
7=0 and, for the case of Ny>1 and N, <1, at 7,

=y [(¥,-1)/(1-N)]¥2 Equation (34) can be solved
numerically for the eigenfunctions as an initial-value
problem by integrating from =0 to r=a. The values
of ¢, and ¢, at =0 required to begin the integration
may be found by a Frobenius expansion for ¢, about
this singular point, If the resonance layer occurs in

12
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FIG. 4. Inhomogeneous plasma eigenfunctions for m=0, (a)

Electrostatic potential and (b) corresponding radial electric
field. The resonance layer occurs at ;=10 mm, The real
parts are the solid lines and the imaginary parts are the dashed
lines (v/w=0, Ny=1.9, N;=0.1, and &,=4 m™).
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FIG. 5, The effect of collisions on inhomogeneous plasma
modes. (a) Potential and (b} radial electric field. The real
parts are the solid lines and the imaginary parts are the
dashet}i lines (v/w=0.02, Ny=1,9, N;=0.1, m=0, and &,
=4 m™).

the plasma, damping may be included to remove the
singularity at r=7,, When the damping is zero, a con-
nection formula can be derived from the Frobenius ex-
pansions about the singular point at »=»,. The con-
nection formula can be used to continue the solution
through the resonance layer, !’

The numerical results indicate that the eigenfunctions
fall into two classes, depending on whether or not the
resonance layer occurs in the plasma, Since it is as-
sumed that N, <1, the resonance layer will occur in the
plasma when N;>1. A comparison of an eigenfunction
for the homogeneous plasma with one for an inhomo-
geneous plasma with the same parameters is shown in
Fig. 3 for Ny<1. The inhomogeneous plasma eigen-
functions closely resemble the Trivelpiece—~Gould
modes, The main difference is that the radial wave-
length increases as the density decreases., For the
case of N> 1, the potential and radial electric field of
an eigenfunction are shown in Fig. 4. A logarithmic
singularity occurs at the resonance layer at »=v,. The
solution is oscillatory on the low density side and is
evanescent on the high density side. It is noted that
the boundary value of ¢, is complex even in the ab-
sence of collisions, In Fig. 5 the eigenfunction found
by numerical integration of Eq, (34) through the reso-
nance layer is shown for the same parameters but with
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FIG. 6. Potential response from a single m =0 source in a
homogeneous plasma for Ng<1, The characteristic lines from
Eq. (24) are shown as dashed lines, Reference positions for
each curve are taken at the corresponding axial positions on the
ordinate. Values of the potential are given in arbitrary units
but all curves are plotted on the same scale unless otherwise
noted (v/w=0.3 and Ny=0.99=N,).

finite damping, The value of the potential at the reso-
nance layer is decreased while the boundary value in-
creases, In general, it is found that damping effects
the higher 2, modes more than the lower 2, modes.

V. NUMERICAL RESULTS FOR PHASED-RING
'SOURCES

In this section results are presented for the plasma
response due to one or more split-cylinder sources
that are concentric with the plasma at the radius »=g¢
=b and that have arbitrary relative polarity. When
the cylinder halves are driven in phase, the excitation
is purely m =0, For out-of-phase drive the azimuthal
variation is approximated by the |m| =1 modes, When
more than one ring is used, it is assumed that adjacent
rings are driven out-of-phase and in the =0 mode,

The first case considered is that of a single m=0
cylinder of length 2. 0 m as considered in Sec, IlI. The
results for a homogeneous plasma with Ny<1 are shown
in Fig. 6. The damping parameter v/w is chosen for
a weakly ionized low-density plasma., It is seen that
weak singularities emanate from the source along the
characteristic lines predicted by Eq. (24). A region of
enhanced potential occurs at the point where the reso-
nance cones reach the column axis and reflect outward
again. The resonance-cone singularities are strongly
damped axially and after sufficient distance disappear
altogether leaving the lowest-order modes excited by
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the source.

The response to |m| =1 excitation is similar except
that a potential minimum occurs at the column axis due
to the antisymmetric excitation as shown in Fig. 7,

The qualitative behavior of the resonance-cone surfaces
is in close agreement with previously reported experi-
mental results, !

The results for a 1 m long, m=0 source in an in-
homogeneous plasma with Ny<1 are shown in Fig. 8.
The response is qualitatively similar to the homogeneous
plasma response except that the resonance-cone sur-
faces are curved due to the inhomogeneous density.
The damping appears to have a stronger effect on the
resonance-cone singularities in this case. The plasma
response for the same parameters but with Ny>1 is
shown in Fig. 9. The resonance layer is chosen to oc-
cur midway between the axis and the plasma boundary.
In this case the resonance-cone singularities become
asymptotic to this layer and do not penetrate to the
column axis., This behavior is the same as that found
for the planar-geometry case by Simonutti® and Bellan
and Porkolab,® For the cases shown in Figs. 5-9, the
electric field is mainly radial except near the ends of
the source and near the column axis,

The case of an inhomogeneous plasma driven by
eight m = 0 rings with alternating polarities is shown

22
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FIG, 7. Potential response from a single | m| =1 split-cylin-
der source in a homogeneous plasmaforNy<1, The character-
istic lines are the dashed lines (v/w=10.3 and Nj=0, 99=1§7,).
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FIG. 8. Potential response from a single m=0 source in an
inhomogeneous plasma for Ny< 1, The dashed lines are the
characteristic lines (v/w=0.2, Ny=0.9, and Ny=0,1).

in Fig, 10, A sinusoidal wave with the periodicity of
the source is enclosed within the resonance-cone sur-
faces from the ends of the source in agreement with

the experimental results of Bellan and Porkolab, 1z

The damping included in this model causes the wave to
disappear axially and radially, leaving the lowest-order
radial mode excited by the source,

Vi. SUMMARY

The boundary-value problem was formulated and
solved for the electrostatic potential in a cold, colli-
sional, inhomogeneous, cylindrical plasma, It was
shown theoretically that the response in a bounded plas-
ma from a finite-sized source is characterized by
resonance-cone singularities composed of a superposi-
tion of bounded-plasma eigenmodes. It was found that

35

5.0

A
o

»
o

o
L)

AXIAL DISTANCE z, m, OR POTENTIAL MAGNITUDE K]
= N N o
[3) [e) &) o

o

05

o]
RADIUS, mm
FIG. 9. Potential response from a single m =0 source in an
inhomogeneous plasma for N, >1. The dashed lines are the
characteristic lines (v/w=0.2, Ny=1.9, and Ny=0.1).

a transition between the well-defined resonance-cone
surfaces and the lowest-order eigenmodes takes place
over a finite axial distance as the higher-order eigen-
modes are damped, Examination of the approximate
superposition integral shows that the resonance-cone
surfaces reflect from the plasma column axis for
axisymmetric sources, but for an azimuthally localized
source the resonance-cone surfaces appear to pass
through the axis and reflect from the boundary, If the
resonance layer is present, the resonance-cone sur-
faces approach the resonance layer but do not penetrate
to the center of the plasma, The results are found to
agree qualitatively with those of the planar, infinite
plasma theory and with recent experiments in low-den-
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FIG. 10. Potential response
from eight m =0 rings with
alternating polarity in an in-
homogeneous plasma for 1\70
<1 (¥/w=0,05, Ny=0.9, and
Ny=o0.1).
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sity weakly ionized plasmas,
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