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Protein folding is modeled as diffusion on a free-energy landscape, allowing use of the diffusion
equation to study the impact of energetic parameters on the folding dynamics. The free-energy
landscape is characterized by two different order parameters, one representing the degree of
compactness, the other a measure of the progress towards the folded state. For marginally stable
proteins, fastest folding is achieved when the nonspecific interactions favoring compaction are
strong, resulting in a high folding temperature. Such proteins fold by rapid collapse followed by
slower accumulation of correct contacts. 197 American Institute of Physics.
[S0021-960607)50435-1

I. INTRODUCTION and Wolynes approached the requirements for a protein to be
able to fold rapidly using ideas adapted from spin-glass
The mechanism by which proteins fold into their native theory°-? According to this model, the folding transition
three-dimensional structures remains one of the central unémust compete with an alternative transition to a glassy state
solved problems of molecular biophysical chemistry. Strucwhere movement on the free-energy landscape becomes slow
tural organization occurs on a variety of size scales, includand non-Arrhenius and nonergodic in the thermodynamic
ing the generation of local structure with specific packinglimit. As the glassy state represents the impossibility of find-
interactions, the formation of the correct topology, and aning the native state, the important parameter is the ratio of
overall compaction. A number of phenomenological modelshe folded transition temperatufg to the glass transition
have been proposed that attempt to understand the relatlongmperatureT This ratio should presumably be large in
ship between these various processes that comprise foldingrder to ensure rapid folding. Wolynes and co-workers dem-
These models range from those proposing that local strugnstrated that, in the context of a particularly simple model,
tures form first, followed by the assembly of these pre-this could be accomplished by having the free energy of the
formed elements, as in the “framework model” of Kim and native state sufficiently low with respect to the distribution of
Baldwin,' to those proposing that collapse proceeds foldingthe free energies of the non-native stafe¥ Shakhnovich
as in the three-stage random-search process suggested & co-workers demonstrated that such a condition was suf-
Shakhnovich and co-workefsyith other models suggesting ficient to provide fast-folding proteins during lattice
a concurrent collapse and formation of structure, as in thgimulationst®~1"

“compaction-induced structure” and the hydrophobic zipper  In contrast, Thirumalai and co-workers argued for the
models of Dill and co-workerd? (For reviews of these and importance of the temperature of compaction transition,
other models, see Refs. 53 ®espite many experiments and as an  important  characteristic  of the protein
computer simulations that provide anecdotal evidence sughermodynamic$®!® According to their model, while pro-
porting one model or another, the basic questions regardingins need a large value &% relative toT, to fold quickly,
the relationship between the processes that occur during; has to be lower thai,. Assuming thaﬂ' and T, are
folding remain unanswered, especially given the great uncemoth only sensitive to the generic features of amino acid
tainties regarding the nature of the interactions that stabilizegequences rather than the exact specifics of the individual
the native structure. sequence, one can maximize the ratioTefto T, by mini-

One way to approach these issues is from an evolutionmizing the relative temperature gap betwe“ém and T,
ary perspective. The need to fold puts strong constraints ogliminating the need to model the more d|ff|c[|'|§
the properties of the protein sequence, constraints that must Govindarajan and Goldstein used the spin-glass optimi-
be satisfied during the process of natural selection. We cagation method of Wolynes and co-workers to obtain the op-
consider how evolution might produce proteins that solve theimal set of interactions for every maximally compact con-
protein-folding problem, and investigate the consequences dbrmation of a 27-residue protein confined toa3x3 cubic
this “solution.” More directly, such an approach can help usiattice? In addition to ignoring the role of noncompact con-
design proteins with specific functions and properties thatormations and the interplay of compaction and folding, they
can correctly and consistently fold. For instance, Bryngelsonvere only able to derive relative energy parameters, as all
maximally compact conformations have the same number of

3Author to whom correspondence should be addressed. Pkat@763-  contacts. In this paper, Wwe use a simple analyt_ical mOdel to
8013; fax:(313764-3323; electronic mail: richardg@umich.edu extend the work of Govindarajan and Goldstein to include
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noncompact states, allowing us to determine the averageumber of contacts in the native state, which is assumed to
magnitude of the contact energies rather than just their reldbe maximally compactp is defined as the total number of
tive values. We do this by taking advantage of recent worknative contacts divided by the number of contacts in the
modeling folding as diffusion on a multidimensional free- native statep and » must satisfy the inequality<Qp<n=<1.
energy landscapg:?? Because we are interested in under-We first derive expressions for the free-energy and diffusion
standing the relationship between compaction and formatioooefficient as a function of the order parameters. We then
of correct structure, our analytical theory is based on twaconstruct an approximate reaction pathway through the con-
different order parameters, one representing the degree fdfrmational space, and solve the diffusion equation for a
compactness, the other a measure of the progress towards fhepulation of proteins folding from a random state to the
folded state. We first construct a one-dimensional reactioffolded state. The folding time is then computed for different
coordinate through the two-dimensional order parametevalues of the various interaction parameters.

space, compute the free-energy and effective diffusion coef- The derivation of the free energy closely follows the
ficient for motion along this reaction coordinate, and thenprocedure developed by Bryngelson and Wolylfesased
model the folding as diffusion along this coordinate. Thison Flory’s theory of excluded volunf@?® The derivation
allows us to compute how the dynamics depends both on thieegins by finding an expression for the entropy of an
temperature and the strength of the interactions. We find &l-residue protein as a function @f 7%, and energye. We
situation somewhat more complicated than the analysis oftart with the expression for the number of states of an
Thirumalai indicates. In general, for marginally-stable pro-N-residue polymer with an end-to-end distance betwRen
teins, the most rapid folding occurs with relatively strongandR+dR, explicitly including the effect of excluded vol-
average interactions. This is because such interactions reduagene by multiplying a spherically weighted Gaussian distri-
the entropy of the states competing with the folded statebution by the probability that any particular conformation
increasing the value of; relative toTy. Although T; is  with a given end-to-end distance would obey excluded vol-
increasedT] , is more affected, resulting inlarge difference  ume,

betweenT; and T, for the fastest-folding proteins.

oR1dRe e & SNCT[(RIe)3+1] [ 1
o RAR=CYI R FrRIo)—N+1] | Ry
Il. THEORY
L R\? 3[R\2
Wolynes and co-workers developed a description of pro- X|=—] exg—=|=] [dR, (1)
tein  folding as diffusion on the free-energy Ro 21Ro

0,11,21,22 : H
Iandsqapé. This model is based on the parallel as-\\herec is a constant of order one,is the number of con-
sumptions that folding occurs as the gradual buildup of struczy - mations for each residuer is the monomer radius and

ture, so that cha_nges of the relevant qrder parameters E_il&%zl\”z, where| is the average distance between mono-
smooth and continuous, and that the time that the protei, o .s \we assume that=I=1 in our model. Under these

remains trapped in any individual state is short relative to thpconditions the value o{/(_RZX the root-mean-squared value
overall folding time. Under these conditions, the ensemble Of¢ 1o end-to-end distance ,scales approximateljN$ as

states described by various values of the order parametels) \id be expected for a polymer obeying excluded volume
can be coarse-grained, resulting in a landscape that reprey 4 good solvert®

sents the free energy as a function of only these order pa- We can put this expression in terms gfby assuming

rameters. Using this model, the evolution of a population Ofyat the total number of contacts is approximately linear with

folding proteins can be described as a flux across the freqhe packing fraction, which varies witR to the negative
energy landscape, with changes in the order parameters Ch?lrﬁrd power

acterized by a diffusion coefficie@ which is a function of

the roughness of the landscape. Folding times can then be o\3

easily computed using the diffusion equation. We apply this 7= N(ﬁ) : 2

technique to measure how the folding rate depends upon the

strength of nonspecific hydrophobic interactions relative taSubstituting this expression into E(.) yields

the sequence—dependent interactions that determine the final

native state. By studying what conditions result in rapid fold-

ing, we can gain insight into how proteins that have evolved 1 N( 7;) N
14

N

ri—+1

to fold quickly might actually fold, and how fast-folding ar- Qo(n)dn= 3 N~2y72

tificial proteins can be designed. F(—— N+1
We characterize a protein conformation by two order 7

parametersz, reflecting compactness, amg a measure of 3 is a3
the similarity to the native state. For both of these param- xXexg — 2 (N"**n%)
eters, we focus on the number and types of contacts between

residues, as motivated by earlier work showing that locaWe assume the number of native contacts in the folded state
propensities are probably not the major cause of sta3ilif§.  is equal tazN, wherez is the average number of contacts per
7 is defined as the total number of contacts divided by theesidue divided by two, and is roughly equal to unity. The

dn. 3)
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total number of contacts is then equal 20ln, while the  native contacts constrain the protein from making other non-
number of native contacts is equalzblp. The total number native contacts, a cause of much of the cooperativity in pro-
of states witte Np native contacts andN(#z— p) non-native tein folding. We assume a simple quadratic form for this
contacts is simply equal to the total number of states withdependence, and write

zN# contacts times the probability thalNp of these con-

tacts are native, or Pra= Po(1+ ap?), (5)

Qo(7,p)=Q0(7) EZIZI) pzeNpzin=pN (4) v_vhgrePﬂat is the probability of a contact being native in the
limit of p—0, assumed to be equal to the number of possible
P.a:is the probability of any formed contact being native andnative contacts divided by the total number of possible con-
Pron=1—P,ais the corresponding probability of the contact tacts, andx is a constant that will be determined by the need
being non-native. One advantage of using order parametefsr the conformational entropy of the completely folded state
based on contacts is that we do not have to use any artificidl;=1,0=1) to be zero. Using this approach, we are able to
constraints to prevent unphysical folded yet extendednodel the cooperativity through the calculation of the en-
statest? Instead, an additional complication is caused by theropy, rather than having to postulate cooperative energetic
fact that the probability of any contact being native will de- interactions.
pend upon how many other native contacts there are, in that Combining Eqs(4) and (5) yields

(zN9)'[ Pgal(1+ ap2)]sz[1_ P2a1(1+ ap2)]zN(7;—p)

The next step is to include the effect of intramolecular interactions by considering how many of these states have a given
energyE. Again following Bryngelson and Wolynes, we start by using the central limit theorem to represent the probability
of a polymer chain having total attractive energyas a Gaussian with an averageand standard deviatioAE that are
functions of  and p.*?

1 [E-E(7,p)]?

PE ) 2 AECn T exp{_w ' “
whereP(E|7,p) is the conditional probability that a protein with given values of the order paramgtarsi p would have
energyE. This results in the final expression

o r(gﬂ ,
Q(7,p,B)=Q0(7,p)P(E|7.p)= 3 vN(N) N N‘l’zﬂ‘zexr{— 5 (N‘1’377‘2’3)}
e
n
NP1+ ap?) M 1= Prof 1+ ap?) N7 1 _[E-E(n.p)7? o
[ZN(7—p)]! (ZNp)! 27AE(np) T2 P~ 2B |0 ©

In order to convert from a microcanonical ensemble withwhere So( 7, p) =109(Qo(7,0))-
a specified energl to a canonical ensemble with a tempera- Combining Egs(10) and (11), we finally arrive at the

ture T, we use the Legendre transformation expression for free energy as a function of temperatyre,
1 ( as) © andp
T |oE) — AE(7,p)”
F(T.7.p)=E-TS=E(n.p) = ——7 ——TS(n.p).
whereS(7,p,E)=In Q(7,p,E) to yield'? 12
2
E=E_(7;,p)— M_ (10) We are interested in understanding the relative impor-
T tance of nonspecific hydrophobic forces of compaction and
Substituting Eq(10) into Eq. (8) yields the temperature de- Side-chain specific interactions in directing the folding pro-
pendence of the entropy cess. For this reason, we model the energies of random in-
) teractions as forming a distribution with average interaction
S(To7p) = So(7.p) AE(7.p) (11  ©neray yo and standard deviatiody. y, then represents
e ' A these general forces of compaction, while the magnitude of
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Av characterizes the range of interaction strengths based ¢ 0.8
the properties of the individual residues. Following the -
“principle of minimal frustration,”®® we would expect the ERRENE
variation among the contact energies of native contacts to b piS
significantly smaller than the variation in the energies of ran- h
dom contacts. In fact, lattice simulations have indicated tha R
homogeneity of native interactions increases a protein’s abil 0.6- b
ity to fold rapidly?’ We neglect the variation in strengths of .
contacts formed in the native state, and assume that the:
contacts have the same interaction strength, givenyy T
+v0, Where yy represents the stabilizing strength of a na-
tive contact relative to the average of the non-native con
tacts. WithzNp native contacts an@N(»— p) non-native

contacts, the values &(#»,p) andAE(%,p) are given by

E(7,p)=zZN(nyo+pyn) (13

and

AE(7,p)?=2zN(n—p)Ay>. (14

We can characterize the free-energy landscape by look
ing at the types of minima that exist. At large temperatures
the entropic terms dominate, and the protein will exist pre-
dominantly in an unfoldedsmall » and p) state. At Iow  FiG, 1. Folding temperaturg; (—) and compaction transition temperature
temperatures, the dominant thermodynamic state will be th&, (---) as a function of the average interactigg.
folded (large  and p) state. For large negative values gf
there is a range of temperature where a compact but unfolded
state(large %, smallp) is thermodynamically dominant. Such
a state might correspond to the molten-globule state ob- The folding temperatur&; is defined as the temperature
served either transiently or at equilibrium in acidic condi- where the Boltzmann-weighted sum of folded states is equal
tions in the presence of denaturants. We can also determine half of the total Boltzmann-weighted sum. Similarly the
which values of the parameters result in a free-energy barriefompaction transition temperatufle, represented the tem-
between the unfolded and folded states. If such a barrier dogserature where the Boltzmann-weighted sum of compact
not exist, folding would be diffusion limited, corresponding states represents half of the total population. The dependence
to the “type 0 folding described by Wolynes and of T; and T, as a function ofy, for the parameter values
co-workers?® Folding under conditions where a barridwes ~ described above are shown in Fig. 1.
exist would correspond to “type I” or “type II” folding. We are interested in studying the transition from the un-
There is some degree of disorder even in folded proteins, anidlded state to folded state, with the order parametgand
the minimum in the free energy corresponding to the foldedp changing as the protein compacts and folds. In order to
state is generally not ay=p=1. We define all states with simplify the computation, we first derive a reaction coordi-
p=0.8 as “folded,” while all states withy=0.5 are defined nate by computing an approximate reaction pathway. The
as “‘compact.” totally unfolded initial state is modeled as the state of maxi-

In order to connect more directly with the theory devel-mum entropy. We then find the saddle points in the free-
oped by Govindarajan and Goldstein, we use parameter vaénergy landscape, and calculate an approximate reaction
ues representing those appropriate for a 27-residue protejmathway by calculating the trajectories of steepest slope from
confined to a cubic lattice. For a cubic lattice=5. The the unfolded state and all of the saddle points to the closest
maximally compact conformations make 28 contactszso minima. The various piece-wise continuous segments are
=28/27. With a total of 156 possible contacts between nonthen assembled into a continuous reaction pathway. Move-
adjacent residue®?, = 28/156. Setting the value of the con- ment along this path is associated with the reaction coordi-
formational entropy ap=#n=1 to zero setsy in Eq. (5) to  nateé, with the value of¢ corresponding to the folded state
2.703. As all energies are relative, we set the width of thgp=0.8) defined astr. This approach is in the same spirit of
distribution of random compact statéddE(n=1, p=0) the concept of minimum-energy path in chemical kinefts.
=\zNAy) equal to one, oAy=0.19. We set the value of Typical reaction pathways fof/T;=0.8 and various values
yn= —0.45 based on the work of Govindarajan and Gold-of y, are shown in Fig. 2.
stein, which suggested that the largest possible value of Bryngelson and Wolynes demonstrated that under cer-
T¢/T4 would occur when the the stability of the folded statetain assumptions the diffusion coefficient for changes of the
relative to compact unfolded statesNyy /+zZNA y) is equal  reaction coordinates in a model such as ours can be repre-
to the square root of the number of possible cont#t1s. sented with the Ferry-law expression
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1.0

FIG. 2. Folding pathway showing changes in the order parametarsd p
corresponding to movement along the reaction coordigater T/T;=0.8
and various values ofg: yo=-—0.2 (---), yo=—0.4 (- — ), y,=—0.6

(-me-e- ), Yo= —0.85 (optimal condition (—), and yo=—1.0 (—---—--*).
AE*(7,p)
D(7,p,T)=Dg eXF{—W : (15

where D, is related to the time-scale for conformational
changes of the proteftt. The conceptual basis of the super-
Arrhenius behavior is that as the temperature decreases, t
system is more likely to populate lower energy and thus
deeper local minima, reducing the ability of the system to
escape these minima more than would be predicted with
simple Arrhenius law. This also assumes that the protein i
sufficiently optimized for folding to avoid glassy behavior.
We use this expression in our model, although the assumj
tion made by Bryngelson and Wolynes, that the transitior
states representing escape from local traps have an ener
distribution equivalent to the ensemble of states for the pro
tein with that value ofp and » becomes questionable as the
strength of the contacts increases. We assume that this d
fusion coefficient is appropriate for motion along the reac-
tion coordinate¢, whether this involves portions of the
reaction pathway involving predominantly compaction-
creasingy) or folding (increasingp). The free-energy profile
and diffusion coefficient along the folding pathway for

Folding in model proteins

0.0 02

I3

FIG. 3. Free-energy profile along the folding pathway fofT;=0.8

and various values ofy: yo=—0.2 (---), yo=—0.4 (- ——), yo=—0.6

), vo=—0.85 (optimal condition (—), and yo=—1.0 (—---—-*).

& represents the value of the reaction coordinate for the folded state
(p=0.8).

Once the free-energy landscape has been constructed,
the reaction pathway defined, and the diffusion coefficient
calculated, we can use a simple diffusion equation to model
the population of the folding proteir8(&,t)

0.8

0.6

D/Dy, 0.4

0.2+

T/T;=0.8 and various values af, are shown in Figs. 3 and FIG. 4. Relative diffusion coefficierD/D, along the folding pathway for

4. As we are only interested in relative rates, we do no
attempt to estimat®,,.

J. Chem. Phys., Vol. 107, No.

T/T¢=0.8 and various values of;:yq

T’Y0=
(—

02 (), yo=—04 (- =),
), ¥o=—0.85 (optimal condition (—), and y,=—1.0

0.6 (
—).
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50 12

FIG. 6. Time evolution of the population of proteins along the reaction
pathway P(&/&:) for T/T;=0.8 and y,=-0.85. (1) t=0; (2) t
FIG. 5. Folding timer; as a function ofy, for various values ofl/T;: =0.05D,; (3) t=0.25D,; (4) t=0.50D,; (5) t=1.00D,; (6) t
TIT=0.7 (——), TIT{=0.75 (), TITy=0.8 (=), T/T4=0.9 (--),  =1.50D,; (7) t=2.00D;; (8) t=2.50D,.
andT/T;=21.0(----- ). Folding times are scaled by the unknown diffusion
coefficientDg.

P& J [D(f)rp(g’t) N P(&t) aF(g)“ (16 29e interaction between two residues is quite large relative to
ot d€ o0& kT o€ ' the variation in random non-native interactio(sy=0.19
The initial population is set equal to a narrow Gaussian dis2nd the strength of the native interactions refative to the non-
tribution of ¢ values centered around the point of maximum"atve interactions ¢y = —0.45). A typlf:al t|m_e evolution of
entropy. P(§) is set equal to zero at the value &fwhere P(¢) fqr T/Tf:Q'S z_;md Yo equal to its optimal value O.f
p=0.8, as folded proteins are removed from the population._o'85 IS shown in Fig. 6. We can similarly plot the relative
The length of time necessary for the remaining population Opopulanon of unfolded(»<0.5), _compact but unfoIQed
nonfolded proteins to decrease t@ bf their original popu- (772_0'5p<0'8) and f0|d?d pODUIat'OmPZQB) asa fgpcﬂon
lation is defined as the folding time;. Because of the of tlme, as shown in Fig. 7. U”der optlmal conditions, the
boundary conditions ap=0.8, this time reflects the mean prptem quickly 'contracts, forming a relatively compact state
first passage time. Similarly, the time required for the popu-W'th_ a compaction timer,=0.06D,, fOIIOW.Gd by a slower
lation of noncompact proteins to decrease te &f their folding with 7¢=2.05D,. The fastest folding corresponds,

original value is defined as the compaction ti unsurprisingly, to type 0 folding, _vvhe_re Fherg s no free-
g P me energy barrier and the rate of folding is diffusion limit&d.
Il RESULTS The compact state with a low amount of correct structure

corresponds to the smallest value of the diffusion coefficient,

In general, for temperatures around the temperature disAE? is proportional toy—p in this simple model. It is this
the folding transition, increasing the temperature generallcompact unfolded state that corresponds to the “kinetic
decreases the folding time, providing one more possible exbottleneck.” Our results suggest that under optimal condi-
planation why proteins are only marginally stable. The valudions, proteins would collapse quickly to a relatively compact
of T/Ts is then determined by requirements other than thestate with limited correct tertiary structure, similar to what
need to fold quickly, such as the necessity for the unfoldedhas been postulated to exist in the so-called “molten-globule
state to be sufficiently thermodynamically inaccessible sctate.” Such results have been observed both
that the protein is not overly susceptible to proteolysis. Weexperimentallj°~2*and in computer simulatiorfs>>~4°
are then interested in trying to find the optimal valueygf As theT/T; is reduced below 0.8, the dependence of the
when T/T; is determined by such thermodynamic criteria. folding time on y, becomes more complicated. In fact, at
Figure 5 displays the main results of this paper, the foldingl/T;=0.75 there are two different optimal values-yf with
time 7 as a function ofy, for various values off /T;. almost identical values af; ; yo= —0.75, where the dynam-

For marginally stable proteingvith T/T; between 0.8 ics resemble that discussed above, with fast compaction fol-
and 1.0, the optimal values o, are in the range 0f-0.85 lowed by slower folding, ang,= —0.20, where compaction
to —0.95, indicating that the magnitude of the optimal aver-and folding proceed more simultaneously. At even lower val-
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FIG. 8. Folding timer; as a function ofy, for various values ofyy , with

FIG. 7. Population of unfolded state-), compact unfolded state--) and TIT, set equal t0 0.8:yy=—0.35 (——-), yn=—0.37 (),
folded staté—) as a function of time foil/T{=0.8 andy,= —0.85. Times, =—0.40(-----), yy=—0.45(—), and yy= _0.56 (---). Folding timés are
shown on a log scale, are multiplied by the unknown diffusion coel‘ficientscaled by the lmlzlnown diffusioyn coeff?cielbb

Do.

coefficient can be larger, even with a reaction pathway that
proceeds through increasingly rougher areas of the free-
energy landscape. As a result, for marginally stable proteins,
(}he folding time decreases with increasingly negatiyg
until y, is large enough so that there is little further change
in T, as shown in Fig. 1. It is only under these circum-
stances that the other effects start to become more dominant,
and the folding time increases with further changes{n

Thirumalai argued that fast folding sequences have small
V. DISCUSSION values of(r=(T9fo)/TH.18’.19We find that the situation is

a bit more complicated. While making, increasingly nega-

We can understand the existence of an optimal value ofive increasedT;, it has a much larger effect of,. The
vo by considering all of the various factors that change@s result is that the large negative valuesf under optimal
is modified. There are three major factors. As the compactolding conditions correspond to quite large values oof
folded state has more contacts than the unfolded state, makhat is not to say that our results directly contradict the re-
ing vy increasingly negative increases the overall gradient ofults of Thirumalai. Ify, is mostly determined by the ge-
the free energy, as can be seen in Fig. 3. This effect of thiseric properties of amino acids, it still may be true thatis
change is modulated by the fact that for larger negative valroughly a constant for all biologically relevant sequences.
ues ofy,, the folding pathway proceeds with an initial rapid Under these more specific conditions, there may be more of
compaction, and then through the generation of correct cora connection betwees and the folding time.
tacts maintaining a roughly constant degree of compaction. It is interesting to note that the results of this simple
As a result, the free-energy gradient for the latter, slowemodel so closely resemble experimental observations of pro-
parts of protein folding is actually reduced. A second effecttein folding. We find that under optimal folding conditions, a
is due to the fact that as the protein compacts more quicklystate similar to a molten-globule state results, where there is
the protein folding pathway passes through regions of incompaction and a relatively small amount of tertiary struc-
creasedn—p, where AE is a maximum and the diffusion ture. Folding then involves the search for correct contacts
coefficient is a minimum. The major effect, however, is duewithin this ensemble of compact structures. These results are
to the change i with y,, as shown in Fig. 1. Ay, is  consistent with models such as the three-stage random-
made increasingly negative, the ensemble of unfolded statesearch model proposed by Shakhnovich and co-workers for
becomes more and more dominated by compact states, aschall proteing. (The effect of nucleation, possibly important
the entropy of the unfolded state decreases. Folding can thén the folding of larger protein¥, cannot be incorporated
occur at a higher temperature. This means that the diffusiomto the current model.These results also suggest that the

ues of T/T;, faster folding is observed with moderately
negative values oy,.

In the above plots, we fixegly at the approximate maxi-
mum value consistent with the lattice model. We can als
explore how the dependence of the folding time gfis
affected by the value ofy . As shown in Fig. 8, the general
results of the theory are not overly affected by changes i
this parameter.
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