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Protein folding is modeled as diffusion on a free-energy landscape, allowing use of the diffusion
equation to study the impact of energetic parameters on the folding dynamics. The free-energy
landscape is characterized by two different order parameters, one representing the degree of
compactness, the other a measure of the progress towards the folded state. For marginally stable
proteins, fastest folding is achieved when the nonspecific interactions favoring compaction are
strong, resulting in a high folding temperature. Such proteins fold by rapid collapse followed by
slower accumulation of correct contacts. ©1997 American Institute of Physics.
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I. INTRODUCTION

The mechanism by which proteins fold into their nati
three-dimensional structures remains one of the central
solved problems of molecular biophysical chemistry. Str
tural organization occurs on a variety of size scales, incl
ing the generation of local structure with specific packi
interactions, the formation of the correct topology, and
overall compaction. A number of phenomenological mod
have been proposed that attempt to understand the rela
ship between these various processes that comprise fold
These models range from those proposing that local st
tures form first, followed by the assembly of these p
formed elements, as in the ‘‘framework model’’ of Kim an
Baldwin,1 to those proposing that collapse proceeds foldi
as in the three-stage random-search process suggeste
Shakhnovich and co-workers,2 with other models suggestin
a concurrent collapse and formation of structure, as in
‘‘compaction-induced structure’’ and the hydrophobic zipp
models of Dill and co-workers.3,4 ~For reviews of these and
other models, see Refs. 5–9.! Despite many experiments an
computer simulations that provide anecdotal evidence s
porting one model or another, the basic questions regar
the relationship between the processes that occur du
folding remain unanswered, especially given the great un
tainties regarding the nature of the interactions that stab
the native structure.

One way to approach these issues is from an evolut
ary perspective. The need to fold puts strong constraints
the properties of the protein sequence, constraints that m
be satisfied during the process of natural selection. We
consider how evolution might produce proteins that solve
protein-folding problem, and investigate the consequence
this ‘‘solution.’’ More directly, such an approach can help
design proteins with specific functions and properties t
can correctly and consistently fold. For instance, Bryngel

a!Author to whom correspondence should be addressed. Phone:~313!763-
8013; fax:~313!764-3323; electronic mail: richardg@umich.edu
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and Wolynes approached the requirements for a protein t
able to fold rapidly using ideas adapted from spin-gla
theory.10–12 According to this model, the folding transitio
must compete with an alternative transition to a glassy s
where movement on the free-energy landscape becomes
and non-Arrhenius and nonergodic in the thermodynam
limit. As the glassy state represents the impossibility of fin
ing the native state, the important parameter is the ratio
the folded transition temperatureTf to the glass transition
temperatureTg . This ratio should presumably be large
order to ensure rapid folding. Wolynes and co-workers de
onstrated that, in the context of a particularly simple mod
this could be accomplished by having the free energy of
native state sufficiently low with respect to the distribution
the free energies of the non-native states.13,14 Shakhnovich
and co-workers demonstrated that such a condition was
ficient to provide fast-folding proteins during lattic
simulations.15–17

In contrast, Thirumalai and co-workers argued for t
importance of the temperature of compaction transition,Tu ,
as an important characteristic of the prote
thermodynamics.18,19 According to their model, while pro-
teins need a large value ofTf relative toTg to fold quickly,
Tf has to be lower thanTu . Assuming thatTg and Tu are
both only sensitive to the generic features of amino a
sequences rather than the exact specifics of the individ
sequence, one can maximize the ratio ofTf to Tg by mini-
mizing the relative temperature gap betweenTu and Tf ,
eliminating the need to model the more difficultTg .

Govindarajan and Goldstein used the spin-glass opti
zation method of Wolynes and co-workers to obtain the
timal set of interactions for every maximally compact co
formation of a 27-residue protein confined to a 33333 cubic
lattice.20 In addition to ignoring the role of noncompact co
formations and the interplay of compaction and folding, th
were only able to derive relative energy parameters, as
maximally compact conformations have the same numbe
contacts. In this paper, we use a simple analytical mode
extend the work of Govindarajan and Goldstein to inclu
/97/107(11)/4408/8/$10.00 © 1997 American Institute of Physics
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4409T.-L. Chiu and R. A. Goldstein: Folding in model proteins
noncompact states, allowing us to determine the aver
magnitude of the contact energies rather than just their r
tive values. We do this by taking advantage of recent w
modeling folding as diffusion on a multidimensional fre
energy landscape.21,22 Because we are interested in unde
standing the relationship between compaction and forma
of correct structure, our analytical theory is based on t
different order parameters, one representing the degre
compactness, the other a measure of the progress toward
folded state. We first construct a one-dimensional reac
coordinate through the two-dimensional order parame
space, compute the free-energy and effective diffusion c
ficient for motion along this reaction coordinate, and th
model the folding as diffusion along this coordinate. Th
allows us to compute how the dynamics depends both on
temperature and the strength of the interactions. We fin
situation somewhat more complicated than the analysis
Thirumalai indicates. In general, for marginally-stable p
teins, the most rapid folding occurs with relatively stro
average interactions. This is because such interactions re
the entropy of the states competing with the folded sta
increasing the value ofTf relative to Tg . Although Tf is
increased,Tu is more affected, resulting in alarge difference
betweenTf andTu for the fastest-folding proteins.

II. THEORY

Wolynes and co-workers developed a description of p
tein folding as diffusion on the free-energ
landscape.10,11,21,22This model is based on the parallel a
sumptions that folding occurs as the gradual buildup of str
ture, so that changes of the relevant order parameters
smooth and continuous, and that the time that the pro
remains trapped in any individual state is short relative to
overall folding time. Under these conditions, the ensemble
states described by various values of the order parame
can be coarse-grained, resulting in a landscape that re
sents the free energy as a function of only these order
rameters. Using this model, the evolution of a population
folding proteins can be described as a flux across the f
energy landscape, with changes in the order parameters
acterized by a diffusion coefficientD which is a function of
the roughness of the landscape. Folding times can the
easily computed using the diffusion equation. We apply t
technique to measure how the folding rate depends upon
strength of nonspecific hydrophobic interactions relative
the sequence–dependent interactions that determine the
native state. By studying what conditions result in rapid fo
ing, we can gain insight into how proteins that have evolv
to fold quickly might actually fold, and how fast-folding ar
tificial proteins can be designed.

We characterize a protein conformation by two ord
parameters:h, reflecting compactness, andr, a measure of
the similarity to the native state. For both of these para
eters, we focus on the number and types of contacts betw
residues, as motivated by earlier work showing that lo
propensities are probably not the major cause of stability.23,24

h is defined as the total number of contacts divided by
J. Chem. Phys., Vol. 107, No
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number of contacts in the native state, which is assume
be maximally compact.r is defined as the total number o
native contacts divided by the number of contacts in
native state.r andh must satisfy the inequality 0<r<h<1.
We first derive expressions for the free-energy and diffus
coefficient as a function of the order parameters. We th
construct an approximate reaction pathway through the c
formational space, and solve the diffusion equation fo
population of proteins folding from a random state to t
folded state. The folding time is then computed for differe
values of the various interaction parameters.

The derivation of the free energy closely follows th
procedure developed by Bryngelson and Wolynes,12 based
on Flory’s theory of excluded volume.25,26 The derivation
begins by finding an expression for the entropy of
N-residue protein as a function ofr, h, and energyE. We
start with the expression for the number of states of
N-residue polymer with an end-to-end distance betweenR
andR1dR, explicitly including the effect of excluded vol
ume by multiplying a spherically weighted Gaussian dis
bution by the probability that any particular conformatio
with a given end-to-end distance would obey excluded v
ume,

V0~R!dR5CnNS s

RD 3N G@~R/s!311#

G@~R/s!32N11# S 1

R0
D

3S R

R0
D 2

expF2
3

2 S R

R0
D 2GdR, ~1!

whereC is a constant of order one,n is the number of con-
formations for each residue,s is the monomer radius an
R0

25Nl2, where l is the average distance between mon
mers. We assume thats5 l 51 in our model. Under these
conditions the value ofA^R2&, the root-mean-squared valu
of the end-to-end distance, scales approximately asN0.6, as
would be expected for a polymer obeying excluded volu
in a good solvent.25

We can put this expression in terms ofh by assuming
that the total number of contacts is approximately linear w
the packing fraction, which varies withR to the negative
third power

h5NS s

RD 3

. ~2!

Substituting this expression into Eq.~1! yields

V0~h!dh5
1

3
nNS h

ND N GS N

h
11D

GS N

h
2N11D N21/2h22

3expF2
3

2
~N21/3h22/3!Gdh. ~3!

We assume the number of native contacts in the folded s
is equal tozN, wherez is the average number of contacts p
residue divided by two, and is roughly equal to unity. T
. 11, 15 September 1997
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4410 T.-L. Chiu and R. A. Goldstein: Folding in model proteins
total number of contacts is then equal tozNh, while the
number of native contacts is equal tozNr. The total number
of states withzNr native contacts andzN(h2r) non-native
contacts is simply equal to the total number of states w
zNh contacts times the probability thatzNr of these con-
tacts are native, or

V0~h,r!5V0~h!S zhN
zrN D Pnat

zrNPnon
z~h2r!N . ~4!

Pnat is the probability of any formed contact being native a
Pnon512Pnat is the corresponding probability of the conta
being non-native. One advantage of using order parame
based on contacts is that we do not have to use any artifi
constraints to prevent unphysical folded yet extend
states.12 Instead, an additional complication is caused by
fact that the probability of any contact being native will d
pend upon how many other native contacts there are, in
ith
a

-
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native contacts constrain the protein from making other n
native contacts, a cause of much of the cooperativity in p
tein folding. We assume a simple quadratic form for th
dependence, and write

Pnat5Pnat
0 ~11ar2!, ~5!

wherePnat
0 is the probability of a contact being native in th

limit of r→0, assumed to be equal to the number of poss
native contacts divided by the total number of possible c
tacts, anda is a constant that will be determined by the ne
for the conformational entropy of the completely folded sta
~h51,r51! to be zero. Using this approach, we are able
model the cooperativity through the calculation of the e
tropy, rather than having to postulate cooperative energ
interactions.

Combining Eqs.~4! and ~5! yields
a given
ability
V0~h,r!5V0~h!
~zNh!! @Pnat

0 ~11ar2!#zNr@12Pnat
0 ~11ar2!#zN~h2r!

@zN~h2r!#! ~zNr!!
. ~6!

The next step is to include the effect of intramolecular interactions by considering how many of these states have
energyE. Again following Bryngelson and Wolynes, we start by using the central limit theorem to represent the prob
of a polymer chain having total attractive energyE as a Gaussian with an averageĒ and standard deviationDE that are
functions ofh andr.12

P~Euh,r!5
1

@2pDE~h,r!2#1/2 expH 2
@E2Ē~h,r!#2

2DE~h,r!2 J , ~7!

whereP(Euh,r) is the conditional probability that a protein with given values of the order parametersh andr would have
energyE. This results in the final expression

V~h,r,E!5V0~h,r!P~Euh,r!5
1

3
nNS h

ND N GS N

h
11D

GS N

h
2N11D N21/2h22expF2

3

2
~N21/3h22/3!G

3
~zNh!! @Pnat

0 ~11ar2!#zNr@12Pnat
0 ~11ar2!#zN~h2r!

@zN~h2r!#! ~zNr!!

1

@2pDE~h,r!2#1/2 expH 2
@E2Ē~h,r!#2

2DE~h,r!2 J . ~8!
,

or-
nd
o-
in-

ion

of
In order to convert from a microcanonical ensemble w
a specified energyE to a canonical ensemble with a temper
ture T, we use the Legendre transformation

1

T
5S ]S

]ED , ~9!

whereS(h,r,E)5 ln V(h,r,E) to yield12

E5Ē~h,r!2
DE~h,r!2

T
. ~10!

Substituting Eq.~10! into Eq. ~8! yields the temperature de
pendence of the entropy

S~T,h,r!5S0~h,r!2
DE~h,r!2

2T2 , ~11!
-
whereS0(h,r)5 log(V0(h,r)).

Combining Eqs.~10! and ~11!, we finally arrive at the
expression for free energy as a function of temperatureh,
andr

F~T,h,r!5E2TS5Ē~h,r!2
DE~h,r!2

2T
2TS0~h,r!.

~12!

We are interested in understanding the relative imp
tance of nonspecific hydrophobic forces of compaction a
side-chain specific interactions in directing the folding pr
cess. For this reason, we model the energies of random
teractions as forming a distribution with average interact
energy g0 and standard deviationDg. g0 then represents
these general forces of compaction, while the magnitude
. 11, 15 September 1997



d
he

o
an
ha
b

of
he

a
on

o
es
re

th

ld
h
o
di-

rri
o
g

d

a
e

el-
v
te

o
on
-

th

f
ld

te

ual
e

ct
nce

n-

to
i-
he
i-
e-
tion
om
est
are
ve-
di-

f
.

er-
he
re-

4411T.-L. Chiu and R. A. Goldstein: Folding in model proteins
Dg characterizes the range of interaction strengths base
the properties of the individual residues. Following t
‘‘principle of minimal frustration,’’10 we would expect the
variation among the contact energies of native contacts t
significantly smaller than the variation in the energies of r
dom contacts. In fact, lattice simulations have indicated t
homogeneity of native interactions increases a protein’s a
ity to fold rapidly.27 We neglect the variation in strengths
contacts formed in the native state, and assume that t
contacts have the same interaction strength, given bygN

1g0 , wheregN represents the stabilizing strength of a n
tive contact relative to the average of the non-native c
tacts. WithzNr native contacts andzN(h2r) non-native
contacts, the values ofĒ(h,r) andDE(h,r) are given by

Ē~h,r!5zN~hg01rgN! ~13!

and

DE~h,r!25zN~h2r!Dg2. ~14!

We can characterize the free-energy landscape by lo
ing at the types of minima that exist. At large temperatur
the entropic terms dominate, and the protein will exist p
dominantly in an unfolded~small h and r! state. At low
temperatures, the dominant thermodynamic state will be
folded ~largeh andr! state. For large negative values ofg0

there is a range of temperature where a compact but unfo
state~largeh, smallr! is thermodynamically dominant. Suc
a state might correspond to the molten-globule state
served either transiently or at equilibrium in acidic con
tions in the presence of denaturants. We can also determ
which values of the parameters result in a free-energy ba
between the unfolded and folded states. If such a barrier d
not exist, folding would be diffusion limited, correspondin
to the ‘‘type 0’’ folding described by Wolynes an
co-workers.28 Folding under conditions where a barrierdoes
exist would correspond to ‘‘type I’’ or ‘‘type II’’ folding.
There is some degree of disorder even in folded proteins,
the minimum in the free energy corresponding to the fold
state is generally not ath5r51. We define all states with
r>0.8 as ‘‘folded,’’ while all states withh>0.5 are defined
as ‘‘compact.’’

In order to connect more directly with the theory dev
oped by Govindarajan and Goldstein, we use parameter
ues representing those appropriate for a 27-residue pro
confined to a cubic lattice. For a cubic lattice,n55. The
maximally compact conformations make 28 contacts, sz
528/27. With a total of 156 possible contacts between n
adjacent residues,Pnat

0 528/156. Setting the value of the con
formational entropy atr5h51 to zero setsa in Eq. ~5! to
2.703. As all energies are relative, we set the width of
distribution of random compact states~DE(h51, r50)
5AzNDg! equal to one, orDg50.19. We set the value o
gN520.45 based on the work of Govindarajan and Go
stein, which suggested that the largest possible value
Tf /Tg would occur when the the stability of the folded sta
relative to compact unfolded states (zNgN /AzNDg) is equal
to the square root of the number of possible contacts.20,23
J. Chem. Phys., Vol. 107, No
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The folding temperatureTf is defined as the temperature
where the Boltzmann-weighted sum of folded states is eq
to half of the total Boltzmann-weighted sum. Similarly th
compaction transition temperatureTu represented the tem-
perature where the Boltzmann-weighted sum of compa
states represents half of the total population. The depende
of Tf and Tu as a function ofg0 for the parameter values
described above are shown in Fig. 1.

We are interested in studying the transition from the u
folded state to folded state, with the order parametersh and
r changing as the protein compacts and folds. In order
simplify the computation, we first derive a reaction coord
nate by computing an approximate reaction pathway. T
totally unfolded initial state is modeled as the state of max
mum entropy. We then find the saddle points in the fre
energy landscape, and calculate an approximate reac
pathway by calculating the trajectories of steepest slope fr
the unfolded state and all of the saddle points to the clos
minima. The various piece-wise continuous segments
then assembled into a continuous reaction pathway. Mo
ment along this path is associated with the reaction coor
natej, with the value ofj corresponding to the folded state
~r50.8! defined asjF . This approach is in the same spirit o
the concept of minimum-energy path in chemical kinetics29

Typical reaction pathways forT/Tf50.8 and various values
of g0 are shown in Fig. 2.

Bryngelson and Wolynes demonstrated that under c
tain assumptions the diffusion coefficient for changes of t
reaction coordinates in a model such as ours can be rep
sented with the Ferry-law expression

FIG. 1. Folding temperatureTf ~—! and compaction transition temperature
Tu ~---! as a function of the average interactiong0 .
. 11, 15 September 1997
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4412 T.-L. Chiu and R. A. Goldstein: Folding in model proteins
D~h,r,T!5D0 expF2
DE2~h,r!

~kT!2 G , ~15!

where D0 is related to the time-scale for conformation
changes of the protein.11 The conceptual basis of the supe
Arrhenius behavior is that as the temperature decreases
system is more likely to populate lower energy and th
deeper local minima, reducing the ability of the system
escape these minima more than would be predicted wit
simple Arrhenius law. This also assumes that the protein
sufficiently optimized for folding to avoid glassy behavio
We use this expression in our model, although the assu
tion made by Bryngelson and Wolynes, that the transiti
states representing escape from local traps have an en
distribution equivalent to the ensemble of states for the p
tein with that value ofr andh becomes questionable as th
strength of the contacts increases. We assume that this
fusion coefficient is appropriate for motion along the rea
tion coordinatej, whether this involves portions of the
reaction pathway involving predominantly compaction~in-
creasingh! or folding ~increasingr!. The free-energy profile
and diffusion coefficient along the folding pathway fo
T/Tf50.8 and various values ofg0 are shown in Figs. 3 and
4. As we are only interested in relative rates, we do n
attempt to estimateD0 .

FIG. 2. Folding pathway showing changes in the order parametersh andr
corresponding to movement along the reaction coordinatej, for T/Tf50.8
and various values ofg0 : g0520.2 ~---!, g0520.4 ~– – –!, g0520.6
~•-•-•-!, g0520.85 ~optimal condition! ~—!, andg0521.0 ~—•••—•••!.
J. Chem. Phys., Vol. 107, No
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Once the free-energy landscape has been construc
the reaction pathway defined, and the diffusion coefficie
calculated, we can use a simple diffusion equation to mod
the population of the folding proteinsP(j,t)22

FIG. 3. Free-energy profile along the folding pathway forT/Tf50.8
and various values ofg0 : g0520.2 ~---!, g0520.4 ~– – – !, g0520.6
~•-•-•-!, g0520.85 ~optimal condition! ~—!, and g0521.0 ~—•••—•••!.
jF represents the value of the reaction coordinate for the folded sta
~r50.8!.

FIG. 4. Relative diffusion coefficientD/D0 along the folding pathway for
T/Tf50.8 and various values ofg0 :g0520.2 ~---!, g0520.4 ~– – –!,
g0520.6 ~•-•-•-!, g0520.85 ~optimal condition! ~—!, and g0521.0
~—•••—•••!.
. 11, 15 September 1997
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4413T.-L. Chiu and R. A. Goldstein: Folding in model proteins
]P~j,t !

]t
5

]

]j H D~j!F]P~j,t !

]j
1

P~j,t !

kT

]F~j!

]j G J . ~16!

The initial population is set equal to a narrow Gaussian d
tribution of j values centered around the point of maximu
entropy.P(j) is set equal to zero at the value ofj where
r50.8, as folded proteins are removed from the populati
The length of time necessary for the remaining population
nonfolded proteins to decrease to 1/e of their original popu-
lation is defined as the folding timet f . Because of the
boundary conditions atr50.8, this time reflects the mea
first passage time. Similarly, the time required for the po
lation of noncompact proteins to decrease to 1/e of their
original value is defined as the compaction timetu .

III. RESULTS

In general, for temperatures around the temperature
the folding transition, increasing the temperature gener
decreases the folding time, providing one more possible
planation why proteins are only marginally stable. The va
of T/Tf is then determined by requirements other than
need to fold quickly, such as the necessity for the unfold
state to be sufficiently thermodynamically inaccessible
that the protein is not overly susceptible to proteolysis. W
are then interested in trying to find the optimal value ofg0

when T/Tf is determined by such thermodynamic criter
Figure 5 displays the main results of this paper, the fold
time t f as a function ofg0 for various values ofT/Tf .

For marginally stable proteins~with T/Tf between 0.8
and 1.0!, the optimal values ofg0 are in the range of20.85
to 20.95, indicating that the magnitude of the optimal av

FIG. 5. Folding timet f as a function ofg0 for various values ofT/Tf :
T/Tf50.7 ~—•••—•••!, T/Tf50.75 ~•••!, T/Tf50.8 ~—!, T/Tf50.9 ~---!,
and T/Tf51.0 ~•-•-•!. Folding times are scaled by the unknown diffusio
coefficientD0 .
J. Chem. Phys., Vol. 107, No
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age interaction between two residues is quite large relativ
the variation in random non-native interactions~Dg50.19!
and the strength of the native interactions relative to the n
native interactions (gN520.45). A typical time evolution of
P(j) for T/Tf50.8 andg0 equal to its optimal value of
20.85 is shown in Fig. 6. We can similarly plot the relativ
population of unfolded~h,0.5!, compact but unfolded
~h>0.5,r,0.8! and folded population~r>0.8! as a function
of time, as shown in Fig. 7. Under optimal conditions, t
protein quickly contracts, forming a relatively compact sta
with a compaction timetu50.06/D0 , followed by a slower
folding with t f52.05/D0 . The fastest folding correspond
unsurprisingly, to type 0 folding, where there is no fre
energy barrier and the rate of folding is diffusion limited.28

The compact state with a low amount of correct struct
corresponds to the smallest value of the diffusion coefficie
asDE2 is proportional toh2r in this simple model. It is this
compact unfolded state that corresponds to the ‘‘kine
bottleneck.’’ Our results suggest that under optimal con
tions, proteins would collapse quickly to a relatively compa
state with limited correct tertiary structure, similar to wh
has been postulated to exist in the so-called ‘‘molten-glob
state.’’ Such results have been observed b
experimentally30–34 and in computer simulations.2,35–40

As theT/Tf is reduced below 0.8, the dependence of
folding time on g0 becomes more complicated. In fact,
T/Tf50.75 there are two different optimal values ofg0 with
almost identical values oft f ; g0520.75, where the dynam
ics resemble that discussed above, with fast compaction
lowed by slower folding, andg0520.20, where compaction
and folding proceed more simultaneously. At even lower v

FIG. 6. Time evolution of the population of proteins along the react
pathway P(j/jF) for T/Tf50.8 and g0520.85. ~1! t50; ~2! t
50.05/D0 ; ~3! t50.25/D0 ; ~4! t50.50/D0 ; ~5! t51.00/D0 ; ~6! t
51.50/D0 ; ~7! t52.00/D0 ; ~8! t52.50/D0 .
. 11, 15 September 1997
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4414 T.-L. Chiu and R. A. Goldstein: Folding in model proteins
ues of T/Tf , faster folding is observed with moderate
negative values ofg0 .

In the above plots, we fixedgN at the approximate maxi
mum value consistent with the lattice model. We can a
explore how the dependence of the folding time ong0 is
affected by the value ofgN . As shown in Fig. 8, the genera
results of the theory are not overly affected by changes
this parameter.

IV. DISCUSSION

We can understand the existence of an optimal value
g0 by considering all of the various factors that change asg0

is modified. There are three major factors. As the comp
folded state has more contacts than the unfolded state, m
ing g0 increasingly negative increases the overall gradien
the free energy, as can be seen in Fig. 3. This effect of
change is modulated by the fact that for larger negative
ues ofg0 , the folding pathway proceeds with an initial rap
compaction, and then through the generation of correct c
tacts maintaining a roughly constant degree of compact
As a result, the free-energy gradient for the latter, slow
parts of protein folding is actually reduced. A second eff
is due to the fact that as the protein compacts more quic
the protein folding pathway passes through regions of
creasedh2r, where DE is a maximum and the diffusion
coefficient is a minimum. The major effect, however, is d
to the change inTf with g0 , as shown in Fig. 1. Asg0 is
made increasingly negative, the ensemble of unfolded st
becomes more and more dominated by compact states
the entropy of the unfolded state decreases. Folding can
occur at a higher temperature. This means that the diffus

FIG. 7. Population of unfolded state~•••!, compact unfolded state~---! and
folded state~—! as a function of time forT/Tf50.8 andg0520.85. Times,
shown on a log scale, are multiplied by the unknown diffusion coeffici
D0 .
J. Chem. Phys., Vol. 107, No
o
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coefficient can be larger, even with a reaction pathway t
proceeds through increasingly rougher areas of the fr
energy landscape. As a result, for marginally stable prote
the folding time decreases with increasingly negativeg0 ,
until g0 is large enough so that there is little further chan
in Tf , as shown in Fig. 1. It is only under these circum
stances that the other effects start to become more domin
and the folding time increases with further changes ing0 .

Thirumalai argued that fast folding sequences have sm
values ofs5(Tu2Tf)/Tu .18,19 We find that the situation is
a bit more complicated. While makingg0 increasingly nega-
tive increasesTf , it has a much larger effect onTu . The
result is that the large negative values ofg0 under optimal
folding conditions correspond to quite large values ofs.
That is not to say that our results directly contradict the
sults of Thirumalai. Ifg0 is mostly determined by the ge
neric properties of amino acids, it still may be true thatg0 is
roughly a constant for all biologically relevant sequenc
Under these more specific conditions, there may be more
a connection betweens and the folding time.

It is interesting to note that the results of this simp
model so closely resemble experimental observations of p
tein folding. We find that under optimal folding conditions,
state similar to a molten-globule state results, where ther
compaction and a relatively small amount of tertiary stru
ture. Folding then involves the search for correct conta
within this ensemble of compact structures. These results
consistent with models such as the three-stage rand
search model proposed by Shakhnovich and co-workers
small proteins.2 ~The effect of nucleation, possibly importan
in the folding of larger proteins,17 cannot be incorporated
into the current model.! These results also suggest that t

FIG. 8. Folding timet f as a function ofg0 for various values ofgN , with
T/Tf set equal to 0.8:gN520.35 ~—•••—•••!, gN520.37 ~•••!, gN

520.40 ~•-•-•!, gN520.45 ~—!, andgN520.50 ~---!. Folding times are
scaled by the unknown diffusion coefficientD0 .t
. 11, 15 September 1997
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4415T.-L. Chiu and R. A. Goldstein: Folding in model proteins
structure is formed by interactions that would be particula
relevant in a compact state, such as patterns
hydrophobicity.7 This result is consistent with observation
that binary encodings of hydrophobicity are often sufficie
to stabilize protein structures, and are frequently observe
sequences of biological proteins,41,42and that hydrophobicity
is conserved during evolution much more than lo
propensities.24 This also may indicate the importance of h
drogen bond formation in determining the folded structu
as once the protein collapsed and much of the protein
inaccessible to solvent, the stabilizing effect of intraprot
hydrogen bonds would not be cancelled by the loss
protein-solvent hydrogen bonds.

For proteins with high stability~T/Tf less than 0.75!,
optimal values ofg0 are much closer to zero, and the optim
folding involves simultaneous compaction and formation
native contacts. This suggests that the optimal folding sit
tion may be dependent on the thermodynamic propertie
the protein, and that different proteins may have evolv
following different folding strategies.

Finally, these results suggest that simulations which
glect noncompact states might yield reasonable results. C
versely, the complicated dependence of the folding rate
g0 and the dependence of this effect onT demonstrate the
danger of making general conclusions based on simulat
performed under only a limited number of values of th
parameter.
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